Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Adoptive γδ T cell therapy controls cytomegalovirus infection in preclinical transplantation models
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 17 February 2026

Adoptive γδ T cell therapy controls cytomegalovirus infection in preclinical transplantation models

  • Gabriel Marsères  ORCID: orcid.org/0000-0002-9200-24541,
  • Coline Gentil1,
  • Claire Tinevez1,
  • Maxime Courant1,2,
  • Anaïs Cosentino1,2,
  • Selma Cornillot-Clément1,
  • Victor Bigot1,
  • Vincent Pitard1,3,
  • Atika Zouine3,
  • Julien Izotte4,
  • Isabelle Garrigue5,
  • Valérie Prouzet-Mauleon6,
  • Béatrice Turcq  ORCID: orcid.org/0000-0003-2235-85406,
  • Dany Anglicheau  ORCID: orcid.org/0000-0001-5793-61747,
  • Edouard Forcade  ORCID: orcid.org/0000-0002-8873-28681,8,
  • Hannah Kaminski  ORCID: orcid.org/0000-0003-1604-38251,2,
  • Bruno Silva-Santos  ORCID: orcid.org/0000-0003-4141-93029,
  • Pierre Merville1,2,
  • Myriam Capone1,
  • Julie Déchanet-Merville  ORCID: orcid.org/0000-0001-7521-95311,3 na1 &
  • …
  • Lionel Couzi  ORCID: orcid.org/0000-0002-9213-61961,2 na1 

Nature Communications , Article number:  (2026) Cite this article

  • 1409 Accesses

  • 11 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Immunotherapy
  • Transplant immunology
  • Viral infection

Abstract

γδ T cells show promise for anti-tumoral therapies but have yet to be evaluated to treat infectious diseases. In this preclinical study, we assess a Vδ1 + γδ T cell-based adoptive cell therapy, named Delta One T cells, to treat cytomegalovirus (CMV) infection in high-risk transplant recipients. Even when expanded from CMV-naïve healthy donors, Delta One T cells efficiently control CMV dissemination in vitro. CMV recognition is independent of the γδTCR but requires LFA-1 co-stimulation. In an in vivo model, adoptive transfer of mouse γδ T cells recapitulating Delta One T cell features protects mice against lethal murine CMV infection. Importantly, CMV-reactive Delta One T cells can be successfully generated from kidney transplant recipients undergoing refractory CMV infections and maintain their functionality in the presence of immunosuppressive drugs. These findings broaden the scope of γδ T cell therapies to infectious diseases and uncover a universal adoptive T cell therapy to treat refractory CMV infections.

Similar content being viewed by others

Cytomegalovirus drives Vδ1+ γδ T cell expansion and clonality in common variable immunodeficiency

Article Open access 20 May 2024

Comparable anti-CMV responses of transplant donor and third-party CMV-specific T cells for treatment of CMV infection after allogeneic stem cell transplantation

Article 11 January 2022

Unconventional T cells and kidney disease

Article 26 August 2021

Data availability

All datasets generated and analyzed during this study are available in the Source Data file provided. Source data are provided with this paper.

References

  1. Humar, A. et al. The efficacy and safety of 200 days valganciclovir cytomegalovirus prophylaxis in high-risk kidney transplant recipients. Am. J. Transplant. 10, 1228–1237 (2010).

    Google Scholar 

  2. Witzke, O. et al. Valganciclovir prophylaxis versus preemptive therapy in cytomegalovirus-positive renal allograft recipients: 1-year results of a randomized clinical trial. Transplantation 93, 61–68 (2012).

    Google Scholar 

  3. Kliem, V. et al. Improvement in long-term renal graft survival due to CMV prophylaxis with oral ganciclovir: results of a randomized clinical trial. Am. J. Transplant. 8, 975–983 (2008).

    Google Scholar 

  4. Kotton, C. N. et al. The third international consensus guidelines on the management of cytomegalovirus in solid-organ transplantation. Transplantation 102, 900–931 (2018).

  5. Ljungman, P. et al. Guidelines for the management of cytomegalovirus infection in patients with haematological malignancies and after stem cell transplantation from the 2017 European Conference on Infections in Leukaemia (ECIL 7). Lancet Infect. Dis. 19, e260–e272 (2019).

    Google Scholar 

  6. Natori, Y. et al. Recurrence of CMV infection & the effect of prolonged antivirals in organ transplant recipients. Transplantation 101, 1449–1454 (2017).

    Google Scholar 

  7. Ljungman, P., Hakki, M. & Boeckh, M. Cytomegalovirus in hematopoietic stem cell transplant recipients. Hematol. Oncol. Clin. North Am. 25, 151–169 (2011).

    Google Scholar 

  8. Couzi, L. et al. High incidence of anticytomegalovirus drug resistance among D+R-kidney transplant recipients receiving preemptive therapy. Am. J. Transplant. 12, 202–209 (2012).

    Google Scholar 

  9. Avery, R. K. et al. Maribavir for refractory cytomegalovirus infections with or without resistance post-transplant: results from a phase 3 randomized clinical trial. Clin. Infect. Dis. 75, 690–701 (2022).

    Google Scholar 

  10. Chou, S. et al. Drug resistance assessed in a phase 3 clinical trial of maribavir therapy for refractory or resistant cytomegalovirus infection in transplant recipients. J. Infect. Dis. 229, 413–421 (2024).

    Google Scholar 

  11. Chemaly, R. F. et al. Cytomegalovirus (CMV) cell-mediated immunity and cmv infection after allogeneic hematopoietic cell transplantation: the REACT study. Clin. Infect. Dis. 71, 2365–2374 (2020).

    Google Scholar 

  12. Nicholson, E. & Peggs, K. S. Cytomegalovirus-specific T-cell therapies: current status and future prospects. Immunotherapy 7, 135–146 (2015).

    Google Scholar 

  13. Houghtelin, A. & Bollard, C. M. Virus-specific T cells for the immunocompromised patient. Front. Immunol. 8, 1272 (2017).

  14. Prockop, S. E. et al. Third-party cytomegalovirus-specific T cells improved survival in refractory cytomegalovirus viremia after hematopoietic transplant. J. Clin. Investig. 133, e165476 (2023).

    Google Scholar 

  15. Khoury, R. et al. Third-party virus specific T cells for the treatment of double stranded DNA viral reactivation and PTLD after solid organ transplant. Am. J. Transplant. 24, 1634–1643 https://doi.org/10.1016/j.ajt.2024.04.009. (2024).

  16. Smith, C. et al. Autologous adoptive T-cell therapy for recurrent or drug-resistant cytomegalovirus complications in solid organ transplant recipients: a single-arm open-label phase I clinical trial. Clin. Infect. Dis. 68, 632–640 https://doi.org/10.1093/cid/ciy549. (2018).

  17. Smith, C. et al. T cell repertoire remodeling following post-transplant T cell therapy coincides with clinical response. J. Clin. Investig. 129, 5020–5032 (2019).

    Google Scholar 

  18. Kaminski, H. et al. Understanding human γδ T cell biology toward a better management of cytomegalovirus infection. Immunol. Rev. 298, 264–288 (2020).

    Google Scholar 

  19. Shen, L. et al. Fast-acting γδ T-cell subpopulation and protective immunity against infections. Immunol. Rev. 298, 254–263 (2020).

    Google Scholar 

  20. Pamplona, A. & Silva-Santos, B. γδ T cells in malaria: a double-edged sword. FEBS J. 288, 1118–1129 (2021).

    Google Scholar 

  21. Prinz, I. et al. Donor Vδ1+ γδ T cells expand after allogeneic hematopoietic stem cell transplantation and show reactivity against CMV-infected cells but not against progressing B-CLL. Exp. Hematol. Oncol. 2, 2–5 (2013).

    Google Scholar 

  22. Déchanet, J. et al. Implication of γδ T cells in the human immune response to cytomegalovirus. J. Clin. Investig. 103, 1437–1449 (1999).

    Google Scholar 

  23. Couzi, L. et al. Gamma-delta T cell expansion is closely associated with cytomegalovirus infection in all solid organ transplant recipients. Transpl. Int. 24, e40–e42 (2011).

    Google Scholar 

  24. Pitard, V. et al. Long-term expansion of effector/memory Vδ2− γδ T cells is a specific blood signature of CMV infection. Blood 112, 1317–1324 (2008).

    Google Scholar 

  25. Halary, F. et al. Shared reactivity of Vδ2 neg γδ T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J. Exp. Med. 201, 1567–1578 (2005).

    Google Scholar 

  26. Couzi, L. et al. Antibody-dependent anti-cytomegalovirus activity of human gd T cells expressing CD16 (FcgRIIIa). Blood 119, 1418–1427 (2012).

    Google Scholar 

  27. Kaminski, H. et al. Surveillance of γδ T cells predicts cytomegalovirus infection resolution in kidney transplants. J. Am. Soc. Nephrol. 27, 637–645 (2016).

    Google Scholar 

  28. Khairallah, C. et al. γδ T cells confer protection against murine cytomegalovirus (MCMV). PLoS Pathog 11, 1–22 (2015).

    Google Scholar 

  29. Sell, S. et al. Control of murine cytomegalovirus infection by γδ T cells. PLoS Pathog 11, 1–21 (2015).

    Google Scholar 

  30. Almeida, A. R. et al. Delta one T cells for immunotherapy of chronic lymphocytic leukemia: clinical-grade expansion/differentiation and preclinical proof of concept. Clin. Cancer Res. 22, 5795–5804 (2016).

    Google Scholar 

  31. Di Lorenzo, B. et al. Broad cytotoxic targeting of acute myeloid leukemia by polyclonal delta one T cells. Cancer Immunol. Res. 7, 552–558 (2019).

    Google Scholar 

  32. Sánchez Martínez, D. et al. Generation and proof-of-concept for allogeneic CD123 CAR-Delta One T (DOT) cells in acute myeloid leukemia. J. Immunother. Cancer 10, e005400 (2022).

    Google Scholar 

  33. Mensurado, S. et al. CD155/PVR determines Acute Myeloid Leukemia targeting by Delta One T cells. Blood J. 143 https://doi.org/10.1182/blood.2023022992. (2024)

  34. Gattinoni, L. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J. Clin. Investig. 115, 1616–1626 (2005).

    Google Scholar 

  35. Berger, C. et al. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J. Clin. Investig. 118, 294–305 (2008).

    Google Scholar 

  36. Kang, S., Brown, H. M. & Hwang, S. Direct antiviral mechanisms of interferon-gamma. Immune Netw 18, e33 (2018).

    Google Scholar 

  37. Guerville, F. et al. TCR-dependent sensitization of human γδ T cells to non-myeloid IL-18 in cytomegalovirus and tumor stress surveillance. OncoImmunology 4, 1–13 (2015).

    Google Scholar 

  38. Kaminski, H. et al. Characterization of a unique γδ T-cell subset as a specific marker of cytomegalovirus infection severity. J. Infect. Dis. https://doi.org/10.1093/infdis/jiaa400. (2020).

  39. Willcox, C. R. et al. Cytomegalovirus and tumor stress surveillance by binding of a human γδ T cell antigen receptor to endothelial protein C receptor. Nat. Immunol. 13, 872–879 (2012).

    Google Scholar 

  40. Marlin, R. et al. Sensing of cell stress by human γδ TCR-dependent recognition of annexin A2. Proc. Natl. Acad. Sci. USA 114, 3163–3168 (2017).

    Google Scholar 

  41. Simões, A. E., Di Lorenzo, B. & Silva-Santos, B. Molecular determinants of target cell recognition by human γδ T cells. Front. Immunol. 9, 1–7 (2018).

    Google Scholar 

  42. Amini, L. et al. Comprehensive characterization of a next-generation antiviral T-cell product and feasibility for application in immunosuppressed transplant patients. Front. Immunol. 10, 1148 (2019).

    Google Scholar 

  43. Ferrandiz, I. et al. Impact of early blood transfusion after kidney transplantation on the incidence of donor-specific anti-LA Antibodies. Am. J. Transplant. 16, 2661–2669 (2016).

    Google Scholar 

  44. Varis, T., Kaukonen, K.-M., Kivistö, K. T. & Neuvonen, P. J. Plasma concentrations and effects of oral methylprednisolone are considerably increased by itraconazole*. Clin. Pharmacol. Ther. 64, 363–368 (1998).

    Google Scholar 

  45. Jarque, M. et al. Cellular immunity to predict the risk of cytomegalovirus infection in kidney transplantation: a prospective, interventional, multicenter clinical trial. Clin. Infect. Dis. 1, 1–11 (2020).

    Google Scholar 

  46. Hanley, P. J. et al. Erratum for the research article: “CMV-specific T cells generated from naïve T cells recognize atypical epitopes and may be protective in vivo” by P. J. Hanley, J. J. Melenhorst, S. Nikiforow, P. Scheinberg, J. W. Blaney, G. Demmler-Harrison, C. R. Cruz. Sci. Transl. Med. 8, 321er1–321er1 (2016).

    Google Scholar 

  47. Jackson, S. E., Mason, G. M., Okecha, G., Sissons, J. G. P. & Wills, M. R. Diverse specificities, phenotypes, and antiviral activities of cytomegalovirus-specific CD8+ T Cells. J. Virol. 88, 10894–10908 (2014).

    Google Scholar 

  48. Houldcroft, C. J. et al. Assessing Anti-HCMV cell mediated immune responses in transplant recipients and healthy controls using a novel functional assay. Front. Cell. Infect. Microbiol. 10, 1–21 (2020).

    Google Scholar 

  49. Watanabe, M., Ito, M., Kamiya, H. & Sakurai, M. Adherence of peripheral blood leukocytes to cytomegalovirus-infected fibroblasts. Microbiol. Immunol. 40, 519–523 (1996).

    Google Scholar 

  50. Waldman, W. J., Knight, D. A. & Huang, E. H. An in vitro model of T cell activation by autologous cytomegalovirus (CMV)-infected human adult endothelial cells: contribution of CMV-enhanced endothelial ICAM-1. J. Immunol. 160, 3143–3151 (1998).

    Google Scholar 

  51. Leong, C. C. et al. Modulation of natural killer cell cytotoxicity in human cytomegalovirus infection: the role of endogenous class I major histocompatibility complex and a viral class I homolog. J. Exp. Med. 187, 1681–1687 (1998).

    Google Scholar 

  52. Siegers, G. M. Integral roles for integrins in γδ T. Front. Immunol. 9, 521 (2018).

  53. van de Berg, P. J. et al. Human cytomegalovirus induces systemic immune activation characterized by a Type 1 Cytokine signature. J. Infect. Dis. 202, 690–699 (2010).

    Google Scholar 

  54. Karaba, A. H. et al. Interleukin-18 and tumor necrosis factor-α are elevated in solid organ transplant recipients with possible cytomegalovirus end-organ disease. Transpl. Infect. Dis. 23, e13682 (2021).

    Google Scholar 

  55. Dalton, J. E., Pearson, J., Scott, P. & Carding, S. R. The interaction of γδ T cells with activated macrophages is a property of the Vγ1 subset. J. Immunol. 171, 6488–6494 (2003).

    Google Scholar 

  56. Hirsh, M. I. & Junger, W. G. Roles of heat shock proteins and γδT cells in inflammation. Am. J. Respir. Cell Mol. Biol. 39, 509–513 (2008).

    Google Scholar 

  57. Drobyski, W. R., Majewski, D. & Hanson, G. Graft-facilitating doses of ex vivo activated γδ T cells do not cause lethal murine graft-vs.-host disease. Biol. Blood Marrow Transplant. 5, 222–230 (1999).

    Google Scholar 

  58. Bachelet, T. et al. Cytomegalovirus-responsive gd T Cells: novel effector cells in antibody-mediated kidney allograft microcirculation lesions. J. Am. Soc. Nephrol. 25, 2471–2482 (2014).

    Google Scholar 

  59. Charmetant, X. et al. T cells’ role in donor-specific antibody generation: insights from transplant recipients and experimental models. Transpl. Int. 38, 12859 (2025).

    Google Scholar 

  60. Yared, N. et al. Long-lived central memory γδ T cells confer protection against murine cytomegalovirus reinfection. PLOS Pathog 20, e1010785 (2024).

    Google Scholar 

  61. Kaminski, H. et al. mTOR inhibitors prevent CMV infection through the restoration of functional ab and gd T cells in kidney transplantation. J. Am. Soc. Nephrol. 33, 121–137 (2022).

    Google Scholar 

  62. Concordet, J. P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242–W245 (2018).

    Google Scholar 

  63. Haeussler, M. et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 17, 148 (2016).

    Google Scholar 

  64. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    Google Scholar 

  65. Tycko, J. et al. Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements. Nat. Commun. 10, 4063 (2019).

    Google Scholar 

  66. Oh, S. A., Seki, A. & Rutz, S. Ribonucleoprotein transfection for CRISPR/Cas9-mediated gene knockout in primary T cells. Curr. Protoc. Immunol. 124, e69 (2019).

  67. Satchell, S. C. et al. Conditionally immortalized human glomerular endothelial cells expressing fenestrations in response to VEGF. Kidney Int. 69, 1633–1640 (2006).

    Google Scholar 

  68. Baer, A. & Kehn-Hall, K. Viral concentration determination through plaque assays: using traditional and novel overlay systems. J. Vis. Exp. 1–10 https://doi.org/10.3791/52065. (2014).

Download references

Acknowledgements

This study was supported by research funding from Fondation de Bordeaux (grant number: FB201903 to L.C.), Fondation du Rein (FRM 9428 Prix Jeune Chercheur 2019 FDR_SFNDT to M.C.) and Agence de la Biomédecine (Appel d’Offres Recherche “Recherche et Greffe” 2021, grant number 21GREFFE004, to L.C.). The authors thank the staff of the Animal Facility A2 (University of Bordeaux, France) and notably Benoit Rousseau for their expertise and assistance regarding mouse experiments. The authors also thank the staff of Vect’UB and CRISP’edit technology platforms (INSERM US005/CNRS UAR3427 TBM Core, University of Bordeaux, France), as well as Daniel Correia (iMM) and Amandine Demestre (ImmunoConcEpT) for technical assistance.

Author information

Author notes
  1. These authors jointly supervised this work: Julie Déchanet-Merville, Lionel Couzi.

Authors and Affiliations

  1. University of Bordeaux, CNRS UMR5164, INSERM ERL1303, ImmunoConcEpT, Bordeaux, France

    Gabriel Marsères, Coline Gentil, Claire Tinevez, Maxime Courant, Anaïs Cosentino, Selma Cornillot-Clément, Victor Bigot, Vincent Pitard, Edouard Forcade, Hannah Kaminski, Pierre Merville, Myriam Capone, Julie Déchanet-Merville & Lionel Couzi

  2. Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France

    Maxime Courant, Anaïs Cosentino, Hannah Kaminski, Pierre Merville & Lionel Couzi

  3. University of Bordeaux, CNRS, INSERM, Flow cytometry facility, TBM Core UAR3427, Bordeaux, France

    Vincent Pitard, Atika Zouine & Julie Déchanet-Merville

  4. Animal Facility A2, University of Bordeaux, Bordeaux, France

    Julien Izotte

  5. Laboratory of Virology, Bordeaux University, Bordeaux, France

    Isabelle Garrigue

  6. University of Bordeaux, CNRS, INSERM, CRISP’edit, TBM Core, UAR3427, Bordeaux, France

    Valérie Prouzet-Mauleon & Béatrice Turcq

  7. Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris University, Paris, France

    Dany Anglicheau

  8. Department of Hematology and Cell Therapy, University Hospital, Bordeaux, France

    Edouard Forcade

  9. Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal

    Bruno Silva-Santos

Authors
  1. Gabriel Marsères
    View author publications

    Search author on:PubMed Google Scholar

  2. Coline Gentil
    View author publications

    Search author on:PubMed Google Scholar

  3. Claire Tinevez
    View author publications

    Search author on:PubMed Google Scholar

  4. Maxime Courant
    View author publications

    Search author on:PubMed Google Scholar

  5. Anaïs Cosentino
    View author publications

    Search author on:PubMed Google Scholar

  6. Selma Cornillot-Clément
    View author publications

    Search author on:PubMed Google Scholar

  7. Victor Bigot
    View author publications

    Search author on:PubMed Google Scholar

  8. Vincent Pitard
    View author publications

    Search author on:PubMed Google Scholar

  9. Atika Zouine
    View author publications

    Search author on:PubMed Google Scholar

  10. Julien Izotte
    View author publications

    Search author on:PubMed Google Scholar

  11. Isabelle Garrigue
    View author publications

    Search author on:PubMed Google Scholar

  12. Valérie Prouzet-Mauleon
    View author publications

    Search author on:PubMed Google Scholar

  13. Béatrice Turcq
    View author publications

    Search author on:PubMed Google Scholar

  14. Dany Anglicheau
    View author publications

    Search author on:PubMed Google Scholar

  15. Edouard Forcade
    View author publications

    Search author on:PubMed Google Scholar

  16. Hannah Kaminski
    View author publications

    Search author on:PubMed Google Scholar

  17. Bruno Silva-Santos
    View author publications

    Search author on:PubMed Google Scholar

  18. Pierre Merville
    View author publications

    Search author on:PubMed Google Scholar

  19. Myriam Capone
    View author publications

    Search author on:PubMed Google Scholar

  20. Julie Déchanet-Merville
    View author publications

    Search author on:PubMed Google Scholar

  21. Lionel Couzi
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization, G.M., J.D.-M., and L.C.; Methodology, G.M., C.G., V.P., V.P.-M., B.T., B.S.-S, H.K., M.Ca., J.D.-M., and L.C.; Investigation, G.M., C.G., M.C., C.T., A.C., S.C.-C., V.B., J.I., V.P., A.Z., I.G., M.Ca., and V.P.-M.; Writing: Original Draft, G.M., C.G., J.D.-M., and L.C.; Writing: Review & Editing, G.M., C.G., J.D.-M., L.C., H.K., V.P.-M., B.T., E.F., P.M., B.S.-S., and M.Ca.; Funding Acquisition, M.C., J.D-M., and L.C.; Resources, D.A.; Supervision, J.D-M. and L.C.

Corresponding authors

Correspondence to Julie Déchanet-Merville or Lionel Couzi.

Ethics declarations

Competing interests

B.S.-S. was a co-inventor of the DOT cell technology now owned by Takeda, which supports his work via a sponsored research agreement. The other authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Leila Amini, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marsères, G., Gentil, C., Tinevez, C. et al. Adoptive γδ T cell therapy controls cytomegalovirus infection in preclinical transplantation models. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69538-2

Download citation

  • Received: 24 July 2024

  • Accepted: 30 January 2026

  • Published: 17 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69538-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing