Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
GLP-1 activates KATP channels in coronary pericytes as the effector of brain-gut-heart signalling mediating cardioprotection
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 February 2026

GLP-1 activates KATP channels in coronary pericytes as the effector of brain-gut-heart signalling mediating cardioprotection

  • Svetlana Mastitskaya  ORCID: orcid.org/0000-0002-4819-29081 na1,
  • Felipe Santos Simões de Freitas2,
  • Lowri E. Evans1 &
  • …
  • David Attwell  ORCID: orcid.org/0000-0003-3618-08432 na1 

Nature Communications , Article number:  (2026) Cite this article

  • 1901 Accesses

  • 38 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Autonomic nervous system
  • Cell signalling
  • Myocardial infarction
  • Neuro–vascular interactions

Abstract

Failure to reperfuse the coronary microvasculature (“no-reflow”) affects up to 50% of patients after unblocking a coronary artery that was causing ischaemia and acute myocardial infarction. This “no-reflow” is associated with reduced left ventricular ejection fraction, increased infarct size and death. We show that the incretin hormone GLP-1 (glucagon-like peptide 1) can be used to protect the heart after ischaemia by activating ATP-sensitive K+ channels on pericytes that constrict coronary capillaries. Coronary capillary dilation can be activated pharmacologically or by vagally-mediated GLP-1 release from the gut evoked by skeletal muscle ischaemia, and is abolished by block or genetic deletion of pericyte KATP channels. These results define a brain-gut-heart pathway mediating cardioprotection and suggest pharmacological therapies to reduce ischaemia-induced coronary no-reflow and improve post-infarct recovery.

Similar content being viewed by others

Glucagon-like peptide-1 receptor: mechanisms and advances in therapy

Article Open access 18 September 2024

Downregulation of Gldc attenuates myocardial ischemia reperfusion injury in vitro by modulating Akt and NF-κB signalings

Article Open access 02 January 2025

Reduction in GLP-1 secretory capacity may be a novel independent risk factor of coronary artery stenosis

Article Open access 02 August 2021

Data availability

The data that support the findings of this study are available within the article or from the corresponding author upon request. The source data underlying Figs. 2–4 are provided as a Source data file. Source data are provided with this paper.

References

  1. Krug, A., de Rochemont, W. M. & Korb, G. Blood supply of the myocardium after temporary coronary occlusion. Circ. Res. 19, 57–62 (1966).

    Google Scholar 

  2. Kloner, R. A., Ganote, C. E. & Jennings, R. B. The ‘no-reflow’ phenomenon after temporary coronary occlusion in the dog. J. Clin. Investig. 54, 1496–1508 (1974).

    Google Scholar 

  3. Niccoli, G., Burzotta, F., Galiuto, L. & Crea, F. Myocardial no-reflow in humans. J. Am. Coll. Cardiol. 54, 281–292 (2009).

    Google Scholar 

  4. Van Kranenburg, M. et al. Prognostic value of microvascular obstruction and infarct size, as measured by CMR in STEMI patients. JACC Cardiovasc. Imaging 7, 930–939 (2014).

    Google Scholar 

  5. Heusch, G. Coronary microvascular obstruction: the new frontier in cardioprotection. Basic Res. Cardiol. 114, 45 (2019).

    Google Scholar 

  6. Dalkara, T., Østergaard, L., Heusch, G. & Attwell, D. Pericytes in the brain and heart: functional roles and response to ischaemia and reperfusion. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvae147 (2024).

  7. De Waha, S. et al. Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: an individual patient data pooled analysis from seven randomized trials. Eur. Heart J. 38, 3502–3510 (2017).

    Google Scholar 

  8. O’Farrell, F. M. et al. Capillary pericytes mediate coronary no-reflow after myocardial ischaemia. eLife 6, e29280 (2017).

    Google Scholar 

  9. Hall, C. N. et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508, 55–60 (2014).

    Google Scholar 

  10. Freitas, F. & Attwell, D. Pericyte-mediated constriction of renal capillaries evokes no-reflow and kidney injury following ischaemia. eLife 11, e74211 (2023).

    Google Scholar 

  11. Galli, M. et al. Coronary microvascular obstruction and dysfunction in patients with acute myocardial infarction. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-023-00953-4 (2023).

  12. Li, Q. et al. Ischemia preconditioning alleviates ischemia/reperfusion injury-induced coronary no-reflow and contraction of microvascular pericytes in rats. Microvasc. Res. 142, 104349 (2022).

    Google Scholar 

  13. Mastitskaya, S. et al. Cardioprotection evoked by remote ischaemic preconditioning is critically dependent on the activity of vagal pre-ganglionic neurones. Cardiovasc. Res. 95, 487–494 (2012).

    Google Scholar 

  14. Mastitskaya, S. et al. Identifying the source of a humoral factor of remote (pre)conditioning cardioprotection. PLoS ONE 11, e0150108 (2016).

    Google Scholar 

  15. Basalay, M. V. et al. Glucagon-like peptide-1 (GLP-1) mediates cardioprotection by remote ischaemic conditioning. Cardiovasc. Res. 112, 669–676 (2016).

    Google Scholar 

  16. Ast, J. et al. Expanded LUXendin color palette for GLP1R detection and visualization in vitro and in vivo. JACS Au 2, 1007–1017 (2022).

    Google Scholar 

  17. Konstantinov, I. E. et al. Remote ischemic preconditioning of the recipient reduces myocardial ischemia-reperfusion injury of the denervated donor heart via a Katp channel-dependent mechanism. Transplantation 79, 1691–1695 (2005).

    Google Scholar 

  18. Xiong, Q. et al. GLP-1 relaxes rat coronary arteries by enhancing ATP-sensitive potassium channel currents. Cardiol. Res. Pract. 2019, 1968785 (2019).

    Google Scholar 

  19. Kwon, H.-J. et al. Evidence for glucagon-like peptide-1 receptor signaling to activate ATP-sensitive potassium channels in pancreatic beta cells. Biochem. Biophys. Res. Comm. 469, 216–221 (2016).

    Google Scholar 

  20. Aziz, Q. et al. The ATP-sensitive potassium channel subunit, Kir6.1, in vascular smooth muscle plays a major role in blood pressure control. Hypertension 64, 523–529 (2014).

    Google Scholar 

  21. Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Google Scholar 

  22. Satoh, E. et al. Intracellular nucleotide-mediated gating of SUR/Kir6.0 complex potassium channels expressed in a mammalian cell line and its modification by pinacidil. J. Physiol. 511, 663–674 (1997).

    Google Scholar 

  23. Huang, Y., Hu, D., Huang, C. & Nichols, C. G. Genetic discovery of ATP-sensitive K+ channels in cardiovascular diseases. Circ. Arrhythmia Electrophysiol 12, e007322 (2019).

    Google Scholar 

  24. Qi, D. & Young, L. H. AMPK: energy sensor and survival mechanism in the ischemic heart. Trends Endocrin. Metab. 26, 422–429 (2015).

    Google Scholar 

  25. Yoshida, H. et al. AMP-activated protein kinase connects cellular energy metabolism to KATP channel function. J. Mol. Cell. Cardiol. 52, 410–418 (2012).

    Google Scholar 

  26. Lim, A. et al. Glucose deprivation regulates KATP channel trafficking via AMP-activated protein kinase in pancreatic beta-cells. Diabetes 58, 2813–2819 (2009).

    Google Scholar 

  27. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Investig. 108, 1167–1174 (2001).

    Google Scholar 

  28. Xu, S. et al. Remote cyclic compression ameliorates myocardial infarction injury in rats via AMPK-dependent pathway. Microvasc. Res. 141, 104313 (2022).

    Google Scholar 

  29. Li, X. et al. PKA-mediated eNOS phosphorylation in the protection of ischemic preconditioning against no-reflow. Microvasc. Res. 84, 44–54 (2012).

    Google Scholar 

  30. Dillard, J., Meng, X., Nelin, L., Liu, Y. & Chen, B. Nitric oxide activates AMPK by modulating PDE3A in human pulmonary artery smooth muscle cells. Physiol. Rep. 8, e14559 (2020).

    Google Scholar 

  31. Deshmukh, A. S. et al. Nitric oxide increases cyclic GMP levels, AMP-activated protein kinase (AMPK)α1-specific activity and glucose transport in human skeletal muscle. Diabetologia 53, 1142–1150 (2010).

    Google Scholar 

  32. Merlin, J. et al. The M3-muscarinic acetylcholine receptor stimulates glucose uptake in L6 skeletal muscle cells by a CaMKK-AMPK-dependent mechanism. Cell Signal. 22, 11‘04–1113 (2020).

    Google Scholar 

  33. Xue, R., Sun, L., Yu, X., Li, D. & Zang, W. Vagal nerve stimulation improves mitochondrial dynamics via an M3 receptor/CaMKKβ/AMPK pathway in isoproterenol-induced myocardial ischaemia. J. Cell. Mol. Med. 21, 58–71 (2017).

    Google Scholar 

  34. Green, B. D. et al. GLP-1 and related peptides cause concentration-dependent relaxation of rat aorta through a pathway involving KATP and cAMP. Arch. Biochem. Biophys. 478, 136–142 (2008).

    Google Scholar 

  35. Bose, A. K., Mocanu, M. M., Carr, R. D., Brand, C. L. & Yellon, D. M. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 54, 146–151 (2005).

    Google Scholar 

  36. Davis, H. & Attwell, D. A tight squeeze: how do we make sense of small changes of vessel diameter? J. Physiol. 601, 2263–2272 (2023).

    Google Scholar 

  37. Cruz Hernández, J. C. et al. Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer’s disease mouse models. Nat. Neurosci. 22, 413–420 (2019).

    Google Scholar 

  38. Korte, N. et al. Inhibiting Ca2+ channels in Alzheimer’s disease model mice relaxes pericytes, improves cerebral blood flow and reduces immune cell stalling and hypoxia. Nat. Neurosci. 27, 2086–2100 (2024).

    Google Scholar 

  39. Heusch, G. & Kleinbongard, P. The spleen in ischaemic heart disease. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-024-01114-x.

  40. Krieger, J.-P., Daniels, D., Lee, S., Mastitskaya, S. & Langhans, W. (2025), Glucagon-Like Peptide-1 Links Ingestion, Homeostasis, and the Heart. Compr. Physiol. 15, e7 (2025).

    Google Scholar 

  41. Holst, J. J. The physiology of glucagon-like peptide 1. Physiol. Rev. 87, 1409–1439 (2007).

    Google Scholar 

  42. Berthoud, H. et al. Direct vagal input to the gastrointestinal tract and other viscera: Re-definition of autonomic neuroscience or experimental artifacts? Autonom. Neurosci. 260, 103310 (2025).

    Google Scholar 

  43. Sonne, D. P., Engstrøm, T. & Treiman, M. Protective effects of GLP-1 analogues exendin-4 and GLP-1(9-36) amide against ischemia-reperfusion injury in rat heart. Regul. Pept. 146, 243–249 (2008).

    Google Scholar 

  44. Nikolaidis, L. A. et al. Effects of glucogon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 109, 962–965 (2004).

    Google Scholar 

  45. Sokos, G. G., Nikolaidis, L. A., Mankad, S., Elahi, D. & Shannon, R. P. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J. Card. Fail. 12, 694–699 (2004).

    Google Scholar 

  46. Ogpu, I. R., Ngwudike, C., Lal, K., Danielian, A. & Daoud, S. N. Role of glucagon-like peptide-1 agonist in patients undergoing percutaneous coronary intervention or coronary artery bypass grafting: a meta-analysis. Am. Heart J. Plus 11, 100063 (2021).

    Google Scholar 

  47. Nortley, R. et al. Amyloid β oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes. Science 365, eaav9518 (2019).

    Google Scholar 

  48. Li, Q. & Puro, D. G. Adenosine activates ATP-sensitive K+ currents in pericytes of rat retinal microvessels: role of A1 and A2a receptors. Brain Res. 907, 93–99 (2001).

    Google Scholar 

  49. Marzilli, M., Orsini, E., Marraccini, P. & Testa, R. Beneficial effects of intracoronary adenosine as an adjunct to primary angioplasty in acute myocardial infarction. Circulation 101, 2154–2159 (2000).

    Google Scholar 

  50. Stoel, M. G. et al. High dose adenosine for suboptimal myocardial reperfusion after primary PCI: a randomized placebo-controlled pilot study. Catheter. Cardiovasc. Interv. 71, 283–289 (2008).

    Google Scholar 

  51. Ito, H. et al. Intravenous nicorandil can preserve microvascular integrity and myocardial viability in patients with reperfused anterior wall myocardial infarction. J. Am. Coll. Cardiol. 33, 654–660 (1999).

    Google Scholar 

  52. Gejl, M. et al. Exenatide alters myocardial glucose transport and uptake depending on insulin resistance and increases myocardial blood flow in patients with type 2 diabetes. J. Clin. Endocrin. Metab. 97, E1165–E1169 (2012).

    Google Scholar 

  53. Ussher, J. R. et al. Inactivation of the cardiomyocyte glucagon-like peptide-1 receptor (GLP-1R) unmasks cardiomyocyte-independent GLP-1R-mediated cardioprotection. Mol. Metab. 3, 507–517 (2014).

    Google Scholar 

  54. McLean, B. A., Wong, C. K., Kabir, M. G. & Drucker, D. J. Glucagon-like Peptide-1 receptor Tie2+ cells are essential for the cardioprotective actions of liraglutide in mice with experimental myocardial infarction. Mol. Metab. 66, 101641 (2022).

    Google Scholar 

  55. Zhao, G., Joca, H. C., Nelson, M. T. & Lederer, W. J. ATP- and voltage-dependent electro-metabolic signaling regulates blood flow in heart. Proc. Natl. Acad. Sci. USA 117, 7461–7470 (2020).

    Google Scholar 

  56. Methner, C., Cao, Z., Mishra, A. & Kaul, S. Mechanism and potential treatment of “no reflow” phenomenon after acute myocardial infarction: role of pericytes and GPR39. Am. J. Physiol. Heart Circ. Physiol. 321, H1030–H1041 (2021).

    Google Scholar 

  57. Liao, H. et al. GPR39 promotes cardiac hypertrophy by regulating the AMPK-mTOR pathway and protein synthesis. Cell Biol. Int. 45, 1211–1219 (2021).

    Google Scholar 

  58. Saw, E. L., Kakinuma, Y., Fronius, M. & Katare, R. The non-neuronal cholinergic system in the heart: a comprehensive review. J. Mol. Cell. Cardiol. 125, 129–139 (2018).

    Google Scholar 

  59. Kawada, T. et al. Differential acetylcholine release mechanisms in the ischemic and non-ischemic myocardium. J. Mol. Cell. Cardiol. 32, 405–414 (2000).

    Google Scholar 

  60. Heusch, G. & Gersh, B. J. ERICCA and RIPHeart: two nails in the coffin for cardioprotection by remote ischemic conditioning? Probably not!. Eur. Heart J. 37, 200–202 (2016).

    Google Scholar 

  61. Wang, X. Propofol and isoflurane enhancement of tonic gamma-aminobutyric acid type a current in cardiac vagal neurons in the nucleus ambiguus. Anesth. Analg. 108, 142–148 (2009).

    Google Scholar 

  62. Mullur, N., Morissette, A., Morrow, N. M. & Mulvihill, E. E. GLP-1 receptor agonist-based therapies and cardiovascular risk: a review of mechanisms. J. Endocrinol. 19, e240046 (2024).

    Google Scholar 

  63. Nizari, S. et al. Glucagon-like peptide-1 (GLP-1) receptor activation dilates cerebral arterioles, increases cerebral blood flow, and mediates remote (pre)conditioning neuroprotection against ischaemic stroke. Basic Res. Cardiol. 116, 32 (2021).

    Google Scholar 

  64. Ang, R. et al. Modulation of cardiac ventricular excitability by GLP-1 (glucagon-like peptide-1). Circ. Arrhythm. Electrophysiol. 11, e006740 (2018).

    Google Scholar 

  65. Ast, J. et al. Expanded LUXendin color palette for GLP1R detection and visualization in vivo and in vitro. JACS Au 2, 1007–1017 (2022).

    Google Scholar 

  66. Avolio, E. et al. Cardiac pericyte reprogramming by MEK inhibition promotes arteriologenesis and angiogenesis of the ischemic heart. J. Clin. Investig. 132, e152308 (2022).

    Google Scholar 

  67. Zhu, X., Bergles, D. E. & Nishiyama, A. NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135, 145–157 (2008).

    Google Scholar 

  68. Huang, W. et al. Novel NG2-CreERT2 knock-in mice demonstrate heterogeneous differentiation potential of NG2 glia during development. Glia 62, 896–913 (2014).

    Google Scholar 

  69. Green, E. M. et al. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science 351, 617–621 (2016).

    Google Scholar 

Download references

Acknowledgements

The study was supported by the British Heart Foundation Intermediate Basic Science Research Fellowship (FS/IBSRF/21/25060) to S.M., and an ERC Advanced Investigator Award (740427, BrainEnergy), Wellcome Trust Senior Investigator Award (099222/Z/12/Z), a Rosetrees Trust grant (M153-F2), and a BHF/UK-DRI Centre for Vascular Dementia Research grant to D.A. The authors thank Frank Kirchhoff for NG2-Cre mice, Akiko Nishiyama and Dirk Dietrich for NG2-dsRed mice, Andrew Tinker for Kir6.1flx/flx mice, Elisa Avolio for providing human pericyte culture, David Hodson and Johannes Broichhagen for providing Luxendin555 probe, Thomas Kampourakis for suggesting the use of Mavacamten, Stuart Martin for genotyping, and Wolfgang Langhans, Alice Adriaenssens and Sergey Kandabarau for advice during this work.

Author information

Author notes
  1. These authors jointly supervised this work: Svetlana Mastitskaya, David Attwell.

Authors and Affiliations

  1. Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK

    Svetlana Mastitskaya & Lowri E. Evans

  2. Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK

    Felipe Santos Simões de Freitas & David Attwell

Authors
  1. Svetlana Mastitskaya
    View author publications

    Search author on:PubMed Google Scholar

  2. Felipe Santos Simões de Freitas
    View author publications

    Search author on:PubMed Google Scholar

  3. Lowri E. Evans
    View author publications

    Search author on:PubMed Google Scholar

  4. David Attwell
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.M. and D.A. designed experiments. S.M. performed experiments and analysed the data. F.S.S.F. performed immunostaining for the study of perfusion volume and capillary blockages (Fig. 2), L.E.E. performed experiments and immunostaining for the Kir6.1 localisation study (Fig. 4d, e). S.M. and D.A. wrote the manuscript.

Corresponding authors

Correspondence to Svetlana Mastitskaya or David Attwell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Reporting summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastitskaya, S., de Freitas, F.S.S., Evans, L.E. et al. GLP-1 activates KATP channels in coronary pericytes as the effector of brain-gut-heart signalling mediating cardioprotection. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69555-1

Download citation

  • Received: 19 July 2025

  • Accepted: 03 February 2026

  • Published: 14 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69555-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing