Abstract
The ventromedial anterior temporal lobe (ATL) is a core transmodal hub for semantic memory, yet non-invasive modulation of this region has remained challenging. Transcranial ultrasound stimulation (TUS) offers high spatial precision suitable for deep brain targets. In this study, we investigated whether theta-burst TUS (tbTUS) to the ventromedial ATL enhances semantic memory, using a multimodal neuroimaging approach—magnetic resonance spectroscopy (MRS), functional MRI (fMRI), and voxel-based morphometry (VBM). Compared to control stimulation, tbTUS improved semantic task performance. MRS showed decreased GABA and increased Glx, reflecting shifts in excitation-inhibition balance, alongside increases in NAA, creatine and choline, suggesting enhanced neuronal metabolism. fMRI demonstrated reduced ATL activity during semantic processing and strengthened effective connectivity across the semantic network. VBM revealed increased ATL grey matter volume. These findings provide convergent evidence that tbTUS modulates neurochemistry, functional dynamics, and brain morphology to enhance semantic memory, highlighting its neurorehabilitation potential.
Similar content being viewed by others
Data availability
The data generated in this study have been deposited in the Open Science Framework database under the CC BY 4.0 license (https://doi.org/10.17605/OSF.IO/FVK7C)108. Source data are provided with this paper.
Code availability
The open-source tool used to determine transducer positioning is available at (https://github.com/CyrilAtkinson/TUS_entry)95.
References
Binder, J. R. & Desai, R. H. The neurobiology of semantic memory. Trends Cogn. Sci. 15, 527–536 (2011).
Jefferies, E. & Lambon Ralph, M. A. Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. Brain 129, 2132–2147 (2006).
Verma, M. & Howard, R. J. Semantic memory and language dysfunction in early Alzheimer’s disease: a review. Int. J. Geriatr. Psychiatry 27, 1209–1217 (2012).
Patterson, K., Nestor, P. J. & Rogers, T. T. Where do you know what you know? The representation of semantic knowledge in the human brain. Nat. Rev. Neurosci. 8, 976–987 (2007).
Peelen, M. V. & Caramazza, A. Conceptual object representations in human anterior temporal cortex. J. Neurosci. 32, 15728–15736 (2012).
Lambon Ralph, M. A., Jefferies, E., Patterson, K. & Rogers, T. T. The neural and computational bases of semantic cognition. Nat. Rev. Neurosci. 18, 42–55 (2017).
Jackson, R. L., Rogers, T. T. & Lambon Ralph, M. A. Reverse-engineering the cortical architecture for controlled semantic cognition. Nat. Hum. Behav. 5, 774–786 (2021).
Hodges, J. R., Bozeat, S., Lambon Ralph, M. A., Patterson, K. & Spatt, J. The role of conceptual knowledge in object use evidence from semantic dementia. Brain 123, 1913–1925 (2000).
Mummery, C. J. et al. A voxel-based morphometry study of semantic dementia: relationship between temporal lobe atrophy and semantic memory. Ann. Neurol. 47, 36–45 (2000).
Coutanche, M. N. & Thompson-Schill, S. L. Creating concepts from converging features in human cortex. Cereb. Cortex 25, 2584–2593 (2015).
Murphy, C. et al. Fractionating the anterior temporal lobe: MVPA reveals differential responses to input and conceptual modality. Neuroimage 147, 19–31 (2017).
Clarke, A., Taylor, K. I. & Tyler, L. K. The evolution of meaning: spatio-temporal dynamics of visual object recognition. J. Cogn. Neurosci. 23, 1887–1899 (2011).
Mollo, G., Cornelissen, P. L., Millman, R. E., Ellis, A. W. & Jefferies, E. Oscillatory dynamics supporting semantic cognition: MEG evidence for the contribution of the anterior temporal lobe hub and modality-specific spokes. PLoS ONE 12, e0169269 (2017).
Lambon Ralph, M. A., Pobric, G. & Jefferies, E. Conceptual knowledge is underpinned by the temporal pole bilaterally: convergent evidence from rTMS. Cereb. Cortex 19, 832–838 (2009).
Pobric, G., Jefferies, E. & Lambon Ralph, M. A. Anterior temporal lobes mediate semantic representation: mimicking semantic dementia by using rTMS in normal participants. Proc. Natl. Acad. Sci. USA. 104, 20137–20141 (2007).
Jung, J. & Lambon Ralph, M. A. Enhancing vs. inhibiting semantic performance with transcranial magnetic stimulation over the anterior temporal lobe: frequency- and task-specific effects. Neuroimage 234, 117959 (2021).
Binney, R. J. et al. Cathodal tDCS of the bilateral anterior temporal lobes facilitates semantically-driven verbal fluency. Neuropsychologia 111, 62–71 (2018).
Chen, Y. et al. The ‘when’ and ‘where’ of semantic coding in the anterior temporal lobe: temporal representational similarity analysis of electrocorticogram data. Cortex 79, 1–13 (2016).
Shimotake, A. et al. Direct exploration of the role of the ventral anterior temporal lobe in semantic memory: cortical stimulation and local field potential evidence from subdural grid electrodes. Cereb. Cortex 25, 3802–3817 (2015).
Rogers, T.T. et al. Evidence for a deep, distributed and dynamic code for animacy in human ventral anterior temporal cortex. eLife 10, e66276 (2021).
Binney, R. J. et al. The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and semantic dementia. Cereb. Cortex 20, 2728–2738 (2010).
Visser, M., Jefferies, E., Embleton, K. V. & Lambon Ralph, M. A. Both the middle temporal gyrus and the ventral anterior temporal area are crucial for multimodal semantic processing: distortion-corrected fMRI evidence for a double gradient of information convergence in the temporal lobes. J. Cogn. Neurosci. 24, 1766–1778 (2012).
Rice, G. E., Hoffman, P. & Lambon Ralph, M. A. Graded specialization within and between the anterior temporal lobes. Ann. N Y Acad. Sci. 1359, 84–97 (2015).
Jung, J., Williams, S. R., Lambon & Ralph, M. A. The role of GABA in semantic memory and its neuroplasticity. eLife 12, RP91771 (2025).
Jung, J., Williams, S. R., Nezhad, F. S. & Lambon Ralph, M. A. Neurochemical profiles of the anterior temporal lobe predict response of repetitive transcranial magnetic stimulation on semantic processing. Neuroimage 258, 119386 (2022).
Jung, J., Williams, S. R., Sanaei Nezhad, F. & Lambon Ralph, M. A. GABA concentrations in the anterior temporal lobe predict human semantic processing. Sci. Rep. 7, 15748 (2017).
Caffaratti, H. et al. Neuromodulation with ultrasound: hypotheses on the directionality of effects and community resource. eLife 13, RP100827 (2024).
Blackmore, D. G., Razansky, D. & Gotz, J. Ultrasound as a versatile tool for short- and long-term improvement and monitoring of brain function. Neuron 111, 1174–1190 (2023).
Legon, W. et al. A retrospective qualitative report of symptoms and safety from transcranial focused ultrasound for neuromodulation in humans. Sci. Rep. 10, 5573 (2020).
Rabut, C. et al. Ultrasound technologies for imaging and modulating neural activity. Neuron 108, 93–110 (2020).
Darmani, G. et al. Non-invasive transcranial ultrasound stimulation for neuromodulation. Clin. Neurophysiol. 135, 51–73 (2022).
Yoo, S., Mittelstein, D. R., Hurt, R. C., Lacroix, J. & Shapiro, M. G. Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification. Nat. Commun. 13, 493 (2022).
Tyler, W. J. Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis. Neuroscientist 17, 25–36 (2011).
Folloni, D. et al. Manipulation of subcortical and deep cortical activity in the primate brain using transcranial focused ultrasound stimulation. Neuron 101, 1109–1116 e1105 (2019).
Verhagen, L. et al. Offline impact of transcranial focused ultrasound on cortical activation in primates. eLife 8, e40541 (2019).
Folloni, D. et al. Ultrasound modulation of macaque prefrontal cortex selectively alters credit assignment-related activity and behavior. Sci. Adv. 7, eabg7700 (2021).
Atkinson-Clement, C. et al. Dynamical and individualised approach of transcranial ultrasound neuromodulation effects in non-human primates. Sci. Rep. 14, 11916 (2024).
Sanguinetti, J. L. et al. Transcranial focused ultrasound to the right prefrontal cortex improves mood and alters functional connectivity in humans. Front. Hum. Neurosci. 14, 52 (2020).
Yaakub, S. N. et al. Transcranial focused ultrasound-mediated neurochemical and functional connectivity changes in deep cortical regions in humans. Nat. Commun. 14, 5318 (2023).
Nakajima, K. et al. A causal role of anterior prefrontal-putamen circuit for response inhibition revealed by transcranial ultrasound stimulation in humans. Cell Rep. 40, 111197 (2022).
Atkinson-Clement, C., Alkhawashki, M., Gatica, M., Ross, J. & Kaiser, M. Dynamic changes in human brain connectivity following ultrasound neuromodulation. Sci. Rep. 14, 30025 (2024).
Atkinson-Clement, C., Alkhawashki, M., Gatica, M., Kontogouris, S. A. & Kaiser, M. Delay- and pressure-dependent neuromodulatory effects of transcranial ultrasound stimulation. Neuromodulation 28, 444–454 (2025).
Zhang, T. et al. Excitatory-inhibitory modulation of transcranial focus ultrasound stimulation on human motor cortex. CNS Neurosci. Ther. 29, 3829–3841 (2023).
Qin, P. P. et al. The effectiveness and safety of low-intensity transcranial ultrasound stimulation: a systematic review of human and animal studies. Neurosci. Biobehav Rev. 156, 105501 (2024).
Watts, W. W. et al. Brief transcranial focused ultrasound stimulation causes lasting modifications to the synaptic circuitry of the hippocampus. Brain Stimul. 18, 1587–1599 (2025).
Zhang, T., Pan, N., Wang, Y., Liu, C. & Hu, S. Transcranial focused ultrasound neuromodulation: a review of the excitatory and inhibitory effects on brain activity in human and animals. Front. Hum. Neurosci. 15, 749162 (2021).
Zhang, Y. et al. Transcranial ultrasound stimulation of the human motor cortex. iScience 24, 103429 (2021).
Atkinson-Clement, C., Kaiser, M., Lambon Ralph, M. A. & Jung, J. Ventricle stimulation as a potential gold-standard control stimulation site for transcranial focused ultrasound stimulation. Brain Stimul. 17, 1328–1330 (2024).
Pobric, G., Jefferies, E. & Ralph, M. A. Amodal semantic representations depend on both anterior temporal lobes: evidence from repetitive transcranial magnetic stimulation. Neuropsychologia 48, 1336–1342 (2010).
Zhao, Z. et al. Modulation effects of low-intensity transcranial ultrasound stimulation on the neuronal firing activity and synaptic plasticity of mice. Neuroimage 270, 119952 (2023).
Huang, X. et al. Transcranial low-intensity pulsed ultrasound modulates structural and functional synaptic plasticity in rat hippocampus. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66, 930–938 (2019).
Jung, J. & Lambon Ralph, M. A. Mapping the dynamic network interactions underpinning cognition: a cTBS-fMRI study of the flexible adaptive neural system for semantics. Cereb. Cortex 26, 3580–3590 (2016).
Friston, K. J., Harrison, L. & Penny, W. Dynamic causal modelling. Neuroimage 19, 1273–1302 (2003).
Kim, H. J. et al. Long-lasting forms of plasticity through patterned ultrasound-induced brainwave entrainment. Sci. Adv. 10, eadk3198 (2024).
Bailey, C. H., Bartsch, D. & Kandel, E. R. Toward a molecular definition of long-term memory storage. Proc. Natl. Acad. Sci. USA. 93, 13445–13452 (1996).
Di Lazzaro, V. et al. Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex. J. Physiol. 565, 945–950 (2005).
Ziemann, U., Rothwell, J. C. & Ridding, M. C. Interaction between intracortical inhibition and facilitation in human motor cortex. J. Physiol. 496, 873–881 (1996).
Vogels, T. P., Sprekeler, H., Zenke, F., Clopath, C. & Gerstner, W. Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334, 1569–1573 (2011).
Stagg, C. J. et al. Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex. J. Physiol. 589, 5845–5855 (2011).
Rae, C. D. A guide to the metabolic pathways and function of metabolites observed in human brain 1H magnetic resonance spectra. Neurochem Res. 39, 1–36 (2014).
Dyke, K. et al. Comparing GABA-dependent physiological measures of inhibition with proton magnetic resonance spectroscopy measurement of GABA using ultra-high-field MRI. Neuroimage 152, 360–370 (2017).
Hermans, L. et al. GABA levels and measures of intracortical and interhemispheric excitability in healthy young and older adults: an MRS-TMS study. Neurobiol. Aging 65, 168–177 (2018).
Lea-Carnall, C. A., El-Deredy, W., Stagg, C. J., Williams, S. R. & Trujillo-Barreto, N. J. A mean-field model of glutamate and GABA synaptic dynamics for functional MRS. Neuroimage 266, 119813 (2023).
Rothman, D. L., Behar, K. L., Hyder, F. & Shulman, R. G. In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: implications for brain function. Annu Rev. Physiol. 65, 401–427 (2003).
Chhina, N. et al. Measurement of human tricarboxylic acid cycle rates during visual activation by (13)C magnetic resonance spectroscopy. J. Neurosci. Res. 66, 737–746 (2001).
Sibson, N. R. et al. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc. Natl. Acad. Sci. USA. 95, 316–321 (1998).
Duncan, N. W., Wiebking, C. & Northoff, G. Associations of regional GABA and glutamate with intrinsic and extrinsic neural activity in humans—a review of multimodal imaging studies. Neurosci. Biobehav. Rev. 47, 36–52 (2014).
Neubauer, A. C. & Fink, A. Intelligence and neural efficiency. Neurosci. Biobehav Rev. 33, 1004–1023 (2009).
Moffett, J. R., Ross, B., Arun, P., Madhavarao, C. N. & Namboodiri, A. M. N-acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog. Neurobiol. 81, 89–131 (2007).
Wang, H. et al. Magnetic resonance spectroscopy in Alzheimer’s disease: systematic review and meta-analysis. J. Alzheimers Dis. 46, 1049–1070 (2015).
Schuff, N. et al. Alzheimer disease: quantitative H-1 MR spectroscopic imaging of frontoparietal brain. Radiology 207, 91–102 (1998).
Coulthard, E. et al. Proton magnetic resonance spectroscopy in frontotemporal dementia. J. Neurol. 253, 861–868 (2006).
Ross, A. J. & Sachdev, P. S. Magnetic resonance spectroscopy in cognitive research. Brain Res. Rev. 44, 83–102 (2004).
Martinez-Bisbal, M. C., Arana, E., Marti-Bonmati, L., Molla, E. & Celda, B. Cognitive impairment: classification by 1H magnetic resonance spectroscopy. Eur. J. Neurol. 11, 187–193 (2004).
McKiernan, E., Su, L. & O’Brien, J. MRS in neurodegenerative dementias, prodromal syndromes and at-risk states: a systematic review of the literature. NMR Biomed. 36, e4896 (2023).
Pettegrew, J. W., Klunk, W. E., Panchalingam, K., McClure, R. J. & Stanley, J. A. Magnetic resonance spectroscopic changes in Alzheimer’s disease. Ann. N. Y Acad. Sci. 826, 282–306 (1997).
Ferguson, K. J. et al. Magnetic resonance spectroscopy and cognitive function in healthy elderly men. Brain 125, 2743–2749 (2002).
Paus, T. Inferring causality in brain images: a perturbation approach. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 1109–1114 (2005).
Lee, L. et al. Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. J. Neurosci. 23, 5308–5318 (2003).
O’Shea, J., Johansen-Berg, H., Trief, D., Gobel, S. & Rushworth, M. F. Functionally specific reorganization in human premotor cortex. Neuron 54, 479–490 (2007).
Andoh, J. & Paus, T. Combining functional neuroimaging with off-line brain stimulation: modulation of task-related activity in language areas. J. Cogn. Neurosci. 23, 349–361 (2011).
Hartwigsen, G. et al. Perturbation of the left inferior frontal gyrus triggers adaptive plasticity in the right homologous area during speech production. Proc. Natl. Acad. Sci. USA. 110, 16402–16407 (2013).
Binney, R.J. & Lambon Ralph, M.A. Using a combination of fMRI and anterior temporal lobe rTMS to measure intrinsic and induced activation changes across the semantic cognition network. Neuropsychologia 76, 170–181 (2014).
Grefkes, C. et al. Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. Neuroimage 50, 233–242 (2010).
Pei, J. et al. Low-intensity transcranial ultrasound stimulation improves memory in vascular dementia by enhancing neuronal activity and promoting spine formation. Neuroimage 291, 120584 (2024).
Jung, J. & Lambon Ralph, M. A. The immediate impact of transcranial magnetic stimulation on brain structure: short-term neuroplasticity following one session of cTBS. Neuroimage 240, 118375 (2021).
Ashburner, J. & Friston, K. J. Voxel-based morphometry—the methods. Neuroimage 11, 805–821 (2000).
Zatorre, R. J., Fields, R. D. & Johansen-Berg, H. Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat. Neurosci. 15, 528–536 (2012).
Zeng, K. et al. Induction of human motor cortex plasticity by theta burst transcranial ultrasound stimulation. Ann. Neurol. 91, 238–252 (2022).
Stagg, C. J., Bachtiar, V. & Johansen-Berg, H. What are we measuring with GABA magnetic resonance spectroscopy? Commun. Integr. Biol. 4, 573–575 (2011).
Oldfield, R. C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113 (1971).
Adlam, A. L. R., Patterson, K., Bozeat, S. & Hodges, J. R. The Cambridge Semantic Memory Test Battery: detection of semantic deficits in semantic dementia and Alzheimer’s disease. Neurocase 16, 193–207 (2010).
Bozeat, S., Lambon Ralph, M. A., Patterson, K., Garrard, P. & Hodges, J. R. Non-verbal semantic impairment in semantic dementia. Neuropsychologia 38, 1207–1215 (2000).
Moore, K. et al. A modified Camel and Cactus Test detects presymptomatic semantic impairment in genetic frontotemporal dementia within the GENFI cohort. Appl. Neuropsychol. Adult 29, 112–119 (2022).
Atkinson-Clement, C. & Kaiser, M. Optimizing transcranial focused ultrasound stimulation: an open-source tool for precise targeting. Neuromodulation 28, 185–187 (2025).
Yaakub, S. N. et al. Pseudo-CTs from T1-weighted MRI for planning of low-intensity transcranial focused ultrasound neuromodulation: An open-source tool. Brain Stimul. 16, 75–78 (2023).
Pasquinelli, C., Hanson, L. G., Siebner, H. R., Lee, H. J. & Thielscher, A. Safety of transcranial focused ultrasound stimulation: a systematic review of the state of knowledge from both human and animal studies. Brain Stimul. 12, 1367–1380 (2019).
Mullins, P. G. et al. Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA. Neuroimage 86, 43–52 (2014).
Sanaei Nezhad, F. et al. Quantification of GABA, glutamate and glutamine in a single measurement at 3 T using GABA-edited MEGA-PRESS. NMR Biomed. 31, e3847 (2018).
Sanaei Nezhad, F. et al. Number of subjects required in common study designs for functional GABA magnetic resonance spectroscopy in the human brain at 3 Tesla. Eur. J. Neurosci. 51, 1784–1793 (2020).
Gaser, C. et al. CAT: a computational anatomy toolbox for the analysis of structural MRI data. Gigascience 13, giae049 (2024).
Good, C. D. et al. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14, 21–36 (2001).
Edden, R. A., Puts, N. A., Harris, A. D., Barker, P. B. & Evans, C. J. Gannet: a batch-processing tool for the quantitative analysis of gamma-aminobutyric acid-edited MR spectroscopy spectra. J. Magn. Reson. Imaging 40, 1445–1452 (2014).
Near, J. et al. Frequency and phase drift correction of magnetic resonance spectroscopy data by spectral registration in the time domain. Magn. Reson. Med. 73, 44–50 (2015).
Harris, A. D., Puts, N. A. & Edden, R. A. Tissue correction for GABA-edited MRS: Considerations of voxel composition, tissue segmentation, and tissue relaxations. J. Magn. Reson. Imaging 42, 1431–1440 (2015).
Mohammadi-Nejad, A.-R., Pszczolkowski, S., Auer, D. & Sotiropoulos, S. Multi-modal neuroimaging pipelines for data preprocessing (v1.6.3). Zenodo https://doi.org/10.5281/zenodo.8059550 (2023).
Brett, M., Anton, J.-L., Valabregue, R. & Poline, J.-B. Region of interest analysis using an SPM toolbox. In the 8th International Conference on Functional Mapping of the Human Brain (Sendai, Japan, 2002).
Jung, J. TUS Enchance Semantic Memory (OSF, 2025).
Acknowledgements
The authors acknowledge Sarah Wilson, Louise Cowell, Andrew Cooper, Jan A Paul, and Mehri Kaviani for their MRI support in the project. J.J. was supported by the AMS Springboard (SBF007\100077). M.K. and C.A. were supported by the Engineering and Physical Sciences Research Council (EP/W004488/1, EP/X01925X/1 and EP/W035057/1). M.K. was also supported by the Guangci Professorship Program of Rui Jin Hospital (Shanghai Jiao Tong University). J.J., M.A.L.R., and M.K. were supported by the EPSRC & MRC-funded NEUROMOD + . M.A.L.R. is supported by MRC intramural funding (MC_UU_00030/9).
Author information
Authors and Affiliations
Contributions
Conceptualisation: J.J. and M.A.L.R.; methodology: J.J., C.A., and M.K.; investigation: J.J. and C.A.; writing—J.J. and C.A.; writing—review and editing: J.J., C.A., M.K., and M.A.L.R.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Chenglong Fu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Jung, J., Atkinson-Clement, C., Kaiser, M. et al. Transcranial focused ultrasound stimulation enhances semantic memory by modulating brain morphology, neurochemistry and neural dynamics. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69579-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-69579-7


