Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Transcranial focused ultrasound stimulation enhances semantic memory by modulating brain morphology, neurochemistry and neural dynamics
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 16 February 2026

Transcranial focused ultrasound stimulation enhances semantic memory by modulating brain morphology, neurochemistry and neural dynamics

  • JeYoung Jung  ORCID: orcid.org/0000-0003-3739-73311,2,3,4,5,
  • Cyril Atkinson-Clement  ORCID: orcid.org/0000-0001-9499-34851,2,3,
  • Marcus Kaiser  ORCID: orcid.org/0000-0002-4654-31102,3,6 &
  • …
  • Matthew A. Lambon Ralph  ORCID: orcid.org/0000-0001-5907-24887 

Nature Communications , Article number:  (2026) Cite this article

  • 2414 Accesses

  • 2 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Human behaviour
  • Long-term memory

Abstract

The ventromedial anterior temporal lobe (ATL) is a core transmodal hub for semantic memory, yet non-invasive modulation of this region has remained challenging. Transcranial ultrasound stimulation (TUS) offers high spatial precision suitable for deep brain targets. In this study, we investigated whether theta-burst TUS (tbTUS) to the ventromedial ATL enhances semantic memory, using a multimodal neuroimaging approach—magnetic resonance spectroscopy (MRS), functional MRI (fMRI), and voxel-based morphometry (VBM). Compared to control stimulation, tbTUS improved semantic task performance. MRS showed decreased GABA and increased Glx, reflecting shifts in excitation-inhibition balance, alongside increases in NAA, creatine and choline, suggesting enhanced neuronal metabolism. fMRI demonstrated reduced ATL activity during semantic processing and strengthened effective connectivity across the semantic network. VBM revealed increased ATL grey matter volume. These findings provide convergent evidence that tbTUS modulates neurochemistry, functional dynamics, and brain morphology to enhance semantic memory, highlighting its neurorehabilitation potential.

Similar content being viewed by others

Brain overlapping system-level architecture influenced by external magnetic stimulation and internal gene expression in AD-spectrum patients

Article 04 April 2025

A longitudinal, randomized experimental pilot study to investigate the effects of airborne ultrasound on human mental health, cognition, and brain structure

Article Open access 12 March 2021

Increased anti-correlation between the left dorsolateral prefrontal cortex and the default mode network following Stanford Neuromodulation Therapy (SNT): analysis of a double-blinded, randomized, sham-controlled trial

Article Open access 06 July 2024

Data availability

The data generated in this study have been deposited in the Open Science Framework database under the CC BY 4.0 license (https://doi.org/10.17605/OSF.IO/FVK7C)108. Source data are provided with this paper.

Code availability

The open-source tool used to determine transducer positioning is available at (https://github.com/CyrilAtkinson/TUS_entry)95.

References

  1. Binder, J. R. & Desai, R. H. The neurobiology of semantic memory. Trends Cogn. Sci. 15, 527–536 (2011).

    Google Scholar 

  2. Jefferies, E. & Lambon Ralph, M. A. Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. Brain 129, 2132–2147 (2006).

    Google Scholar 

  3. Verma, M. & Howard, R. J. Semantic memory and language dysfunction in early Alzheimer’s disease: a review. Int. J. Geriatr. Psychiatry 27, 1209–1217 (2012).

    Google Scholar 

  4. Patterson, K., Nestor, P. J. & Rogers, T. T. Where do you know what you know? The representation of semantic knowledge in the human brain. Nat. Rev. Neurosci. 8, 976–987 (2007).

    Google Scholar 

  5. Peelen, M. V. & Caramazza, A. Conceptual object representations in human anterior temporal cortex. J. Neurosci. 32, 15728–15736 (2012).

    Google Scholar 

  6. Lambon Ralph, M. A., Jefferies, E., Patterson, K. & Rogers, T. T. The neural and computational bases of semantic cognition. Nat. Rev. Neurosci. 18, 42–55 (2017).

    Google Scholar 

  7. Jackson, R. L., Rogers, T. T. & Lambon Ralph, M. A. Reverse-engineering the cortical architecture for controlled semantic cognition. Nat. Hum. Behav. 5, 774–786 (2021).

    Google Scholar 

  8. Hodges, J. R., Bozeat, S., Lambon Ralph, M. A., Patterson, K. & Spatt, J. The role of conceptual knowledge in object use evidence from semantic dementia. Brain 123, 1913–1925 (2000).

    Google Scholar 

  9. Mummery, C. J. et al. A voxel-based morphometry study of semantic dementia: relationship between temporal lobe atrophy and semantic memory. Ann. Neurol. 47, 36–45 (2000).

    Google Scholar 

  10. Coutanche, M. N. & Thompson-Schill, S. L. Creating concepts from converging features in human cortex. Cereb. Cortex 25, 2584–2593 (2015).

    Google Scholar 

  11. Murphy, C. et al. Fractionating the anterior temporal lobe: MVPA reveals differential responses to input and conceptual modality. Neuroimage 147, 19–31 (2017).

    Google Scholar 

  12. Clarke, A., Taylor, K. I. & Tyler, L. K. The evolution of meaning: spatio-temporal dynamics of visual object recognition. J. Cogn. Neurosci. 23, 1887–1899 (2011).

    Google Scholar 

  13. Mollo, G., Cornelissen, P. L., Millman, R. E., Ellis, A. W. & Jefferies, E. Oscillatory dynamics supporting semantic cognition: MEG evidence for the contribution of the anterior temporal lobe hub and modality-specific spokes. PLoS ONE 12, e0169269 (2017).

    Google Scholar 

  14. Lambon Ralph, M. A., Pobric, G. & Jefferies, E. Conceptual knowledge is underpinned by the temporal pole bilaterally: convergent evidence from rTMS. Cereb. Cortex 19, 832–838 (2009).

    Google Scholar 

  15. Pobric, G., Jefferies, E. & Lambon Ralph, M. A. Anterior temporal lobes mediate semantic representation: mimicking semantic dementia by using rTMS in normal participants. Proc. Natl. Acad. Sci. USA. 104, 20137–20141 (2007).

    Google Scholar 

  16. Jung, J. & Lambon Ralph, M. A. Enhancing vs. inhibiting semantic performance with transcranial magnetic stimulation over the anterior temporal lobe: frequency- and task-specific effects. Neuroimage 234, 117959 (2021).

    Google Scholar 

  17. Binney, R. J. et al. Cathodal tDCS of the bilateral anterior temporal lobes facilitates semantically-driven verbal fluency. Neuropsychologia 111, 62–71 (2018).

    Google Scholar 

  18. Chen, Y. et al. The ‘when’ and ‘where’ of semantic coding in the anterior temporal lobe: temporal representational similarity analysis of electrocorticogram data. Cortex 79, 1–13 (2016).

    Google Scholar 

  19. Shimotake, A. et al. Direct exploration of the role of the ventral anterior temporal lobe in semantic memory: cortical stimulation and local field potential evidence from subdural grid electrodes. Cereb. Cortex 25, 3802–3817 (2015).

    Google Scholar 

  20. Rogers, T.T. et al. Evidence for a deep, distributed and dynamic code for animacy in human ventral anterior temporal cortex. eLife 10, e66276 (2021).

  21. Binney, R. J. et al. The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and semantic dementia. Cereb. Cortex 20, 2728–2738 (2010).

    Google Scholar 

  22. Visser, M., Jefferies, E., Embleton, K. V. & Lambon Ralph, M. A. Both the middle temporal gyrus and the ventral anterior temporal area are crucial for multimodal semantic processing: distortion-corrected fMRI evidence for a double gradient of information convergence in the temporal lobes. J. Cogn. Neurosci. 24, 1766–1778 (2012).

    Google Scholar 

  23. Rice, G. E., Hoffman, P. & Lambon Ralph, M. A. Graded specialization within and between the anterior temporal lobes. Ann. N Y Acad. Sci. 1359, 84–97 (2015).

  24. Jung, J., Williams, S. R., Lambon & Ralph, M. A. The role of GABA in semantic memory and its neuroplasticity. eLife 12, RP91771 (2025).

  25. Jung, J., Williams, S. R., Nezhad, F. S. & Lambon Ralph, M. A. Neurochemical profiles of the anterior temporal lobe predict response of repetitive transcranial magnetic stimulation on semantic processing. Neuroimage 258, 119386 (2022).

    Google Scholar 

  26. Jung, J., Williams, S. R., Sanaei Nezhad, F. & Lambon Ralph, M. A. GABA concentrations in the anterior temporal lobe predict human semantic processing. Sci. Rep. 7, 15748 (2017).

    Google Scholar 

  27. Caffaratti, H. et al. Neuromodulation with ultrasound: hypotheses on the directionality of effects and community resource. eLife 13, RP100827 (2024).

  28. Blackmore, D. G., Razansky, D. & Gotz, J. Ultrasound as a versatile tool for short- and long-term improvement and monitoring of brain function. Neuron 111, 1174–1190 (2023).

    Google Scholar 

  29. Legon, W. et al. A retrospective qualitative report of symptoms and safety from transcranial focused ultrasound for neuromodulation in humans. Sci. Rep. 10, 5573 (2020).

    Google Scholar 

  30. Rabut, C. et al. Ultrasound technologies for imaging and modulating neural activity. Neuron 108, 93–110 (2020).

    Google Scholar 

  31. Darmani, G. et al. Non-invasive transcranial ultrasound stimulation for neuromodulation. Clin. Neurophysiol. 135, 51–73 (2022).

    Google Scholar 

  32. Yoo, S., Mittelstein, D. R., Hurt, R. C., Lacroix, J. & Shapiro, M. G. Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification. Nat. Commun. 13, 493 (2022).

    Google Scholar 

  33. Tyler, W. J. Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis. Neuroscientist 17, 25–36 (2011).

    Google Scholar 

  34. Folloni, D. et al. Manipulation of subcortical and deep cortical activity in the primate brain using transcranial focused ultrasound stimulation. Neuron 101, 1109–1116 e1105 (2019).

    Google Scholar 

  35. Verhagen, L. et al. Offline impact of transcranial focused ultrasound on cortical activation in primates. eLife 8, e40541 (2019).

  36. Folloni, D. et al. Ultrasound modulation of macaque prefrontal cortex selectively alters credit assignment-related activity and behavior. Sci. Adv. 7, eabg7700 (2021).

    Google Scholar 

  37. Atkinson-Clement, C. et al. Dynamical and individualised approach of transcranial ultrasound neuromodulation effects in non-human primates. Sci. Rep. 14, 11916 (2024).

    Google Scholar 

  38. Sanguinetti, J. L. et al. Transcranial focused ultrasound to the right prefrontal cortex improves mood and alters functional connectivity in humans. Front. Hum. Neurosci. 14, 52 (2020).

    Google Scholar 

  39. Yaakub, S. N. et al. Transcranial focused ultrasound-mediated neurochemical and functional connectivity changes in deep cortical regions in humans. Nat. Commun. 14, 5318 (2023).

    Google Scholar 

  40. Nakajima, K. et al. A causal role of anterior prefrontal-putamen circuit for response inhibition revealed by transcranial ultrasound stimulation in humans. Cell Rep. 40, 111197 (2022).

    Google Scholar 

  41. Atkinson-Clement, C., Alkhawashki, M., Gatica, M., Ross, J. & Kaiser, M. Dynamic changes in human brain connectivity following ultrasound neuromodulation. Sci. Rep. 14, 30025 (2024).

    Google Scholar 

  42. Atkinson-Clement, C., Alkhawashki, M., Gatica, M., Kontogouris, S. A. & Kaiser, M. Delay- and pressure-dependent neuromodulatory effects of transcranial ultrasound stimulation. Neuromodulation 28, 444–454 (2025).

  43. Zhang, T. et al. Excitatory-inhibitory modulation of transcranial focus ultrasound stimulation on human motor cortex. CNS Neurosci. Ther. 29, 3829–3841 (2023).

    Google Scholar 

  44. Qin, P. P. et al. The effectiveness and safety of low-intensity transcranial ultrasound stimulation: a systematic review of human and animal studies. Neurosci. Biobehav Rev. 156, 105501 (2024).

    Google Scholar 

  45. Watts, W. W. et al. Brief transcranial focused ultrasound stimulation causes lasting modifications to the synaptic circuitry of the hippocampus. Brain Stimul. 18, 1587–1599 (2025).

    Google Scholar 

  46. Zhang, T., Pan, N., Wang, Y., Liu, C. & Hu, S. Transcranial focused ultrasound neuromodulation: a review of the excitatory and inhibitory effects on brain activity in human and animals. Front. Hum. Neurosci. 15, 749162 (2021).

    Google Scholar 

  47. Zhang, Y. et al. Transcranial ultrasound stimulation of the human motor cortex. iScience 24, 103429 (2021).

    Google Scholar 

  48. Atkinson-Clement, C., Kaiser, M., Lambon Ralph, M. A. & Jung, J. Ventricle stimulation as a potential gold-standard control stimulation site for transcranial focused ultrasound stimulation. Brain Stimul. 17, 1328–1330 (2024).

    Google Scholar 

  49. Pobric, G., Jefferies, E. & Ralph, M. A. Amodal semantic representations depend on both anterior temporal lobes: evidence from repetitive transcranial magnetic stimulation. Neuropsychologia 48, 1336–1342 (2010).

    Google Scholar 

  50. Zhao, Z. et al. Modulation effects of low-intensity transcranial ultrasound stimulation on the neuronal firing activity and synaptic plasticity of mice. Neuroimage 270, 119952 (2023).

    Google Scholar 

  51. Huang, X. et al. Transcranial low-intensity pulsed ultrasound modulates structural and functional synaptic plasticity in rat hippocampus. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66, 930–938 (2019).

    Google Scholar 

  52. Jung, J. & Lambon Ralph, M. A. Mapping the dynamic network interactions underpinning cognition: a cTBS-fMRI study of the flexible adaptive neural system for semantics. Cereb. Cortex 26, 3580–3590 (2016).

    Google Scholar 

  53. Friston, K. J., Harrison, L. & Penny, W. Dynamic causal modelling. Neuroimage 19, 1273–1302 (2003).

    Google Scholar 

  54. Kim, H. J. et al. Long-lasting forms of plasticity through patterned ultrasound-induced brainwave entrainment. Sci. Adv. 10, eadk3198 (2024).

    Google Scholar 

  55. Bailey, C. H., Bartsch, D. & Kandel, E. R. Toward a molecular definition of long-term memory storage. Proc. Natl. Acad. Sci. USA. 93, 13445–13452 (1996).

    Google Scholar 

  56. Di Lazzaro, V. et al. Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex. J. Physiol. 565, 945–950 (2005).

    Google Scholar 

  57. Ziemann, U., Rothwell, J. C. & Ridding, M. C. Interaction between intracortical inhibition and facilitation in human motor cortex. J. Physiol. 496, 873–881 (1996).

    Google Scholar 

  58. Vogels, T. P., Sprekeler, H., Zenke, F., Clopath, C. & Gerstner, W. Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334, 1569–1573 (2011).

    Google Scholar 

  59. Stagg, C. J. et al. Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex. J. Physiol. 589, 5845–5855 (2011).

    Google Scholar 

  60. Rae, C. D. A guide to the metabolic pathways and function of metabolites observed in human brain 1H magnetic resonance spectra. Neurochem Res. 39, 1–36 (2014).

    Google Scholar 

  61. Dyke, K. et al. Comparing GABA-dependent physiological measures of inhibition with proton magnetic resonance spectroscopy measurement of GABA using ultra-high-field MRI. Neuroimage 152, 360–370 (2017).

    Google Scholar 

  62. Hermans, L. et al. GABA levels and measures of intracortical and interhemispheric excitability in healthy young and older adults: an MRS-TMS study. Neurobiol. Aging 65, 168–177 (2018).

    Google Scholar 

  63. Lea-Carnall, C. A., El-Deredy, W., Stagg, C. J., Williams, S. R. & Trujillo-Barreto, N. J. A mean-field model of glutamate and GABA synaptic dynamics for functional MRS. Neuroimage 266, 119813 (2023).

    Google Scholar 

  64. Rothman, D. L., Behar, K. L., Hyder, F. & Shulman, R. G. In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: implications for brain function. Annu Rev. Physiol. 65, 401–427 (2003).

    Google Scholar 

  65. Chhina, N. et al. Measurement of human tricarboxylic acid cycle rates during visual activation by (13)C magnetic resonance spectroscopy. J. Neurosci. Res. 66, 737–746 (2001).

    Google Scholar 

  66. Sibson, N. R. et al. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc. Natl. Acad. Sci. USA. 95, 316–321 (1998).

    Google Scholar 

  67. Duncan, N. W., Wiebking, C. & Northoff, G. Associations of regional GABA and glutamate with intrinsic and extrinsic neural activity in humans—a review of multimodal imaging studies. Neurosci. Biobehav. Rev. 47, 36–52 (2014).

    Google Scholar 

  68. Neubauer, A. C. & Fink, A. Intelligence and neural efficiency. Neurosci. Biobehav Rev. 33, 1004–1023 (2009).

    Google Scholar 

  69. Moffett, J. R., Ross, B., Arun, P., Madhavarao, C. N. & Namboodiri, A. M. N-acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog. Neurobiol. 81, 89–131 (2007).

    Google Scholar 

  70. Wang, H. et al. Magnetic resonance spectroscopy in Alzheimer’s disease: systematic review and meta-analysis. J. Alzheimers Dis. 46, 1049–1070 (2015).

    Google Scholar 

  71. Schuff, N. et al. Alzheimer disease: quantitative H-1 MR spectroscopic imaging of frontoparietal brain. Radiology 207, 91–102 (1998).

    Google Scholar 

  72. Coulthard, E. et al. Proton magnetic resonance spectroscopy in frontotemporal dementia. J. Neurol. 253, 861–868 (2006).

    Google Scholar 

  73. Ross, A. J. & Sachdev, P. S. Magnetic resonance spectroscopy in cognitive research. Brain Res. Rev. 44, 83–102 (2004).

    Google Scholar 

  74. Martinez-Bisbal, M. C., Arana, E., Marti-Bonmati, L., Molla, E. & Celda, B. Cognitive impairment: classification by 1H magnetic resonance spectroscopy. Eur. J. Neurol. 11, 187–193 (2004).

    Google Scholar 

  75. McKiernan, E., Su, L. & O’Brien, J. MRS in neurodegenerative dementias, prodromal syndromes and at-risk states: a systematic review of the literature. NMR Biomed. 36, e4896 (2023).

    Google Scholar 

  76. Pettegrew, J. W., Klunk, W. E., Panchalingam, K., McClure, R. J. & Stanley, J. A. Magnetic resonance spectroscopic changes in Alzheimer’s disease. Ann. N. Y Acad. Sci. 826, 282–306 (1997).

    Google Scholar 

  77. Ferguson, K. J. et al. Magnetic resonance spectroscopy and cognitive function in healthy elderly men. Brain 125, 2743–2749 (2002).

    Google Scholar 

  78. Paus, T. Inferring causality in brain images: a perturbation approach. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 1109–1114 (2005).

    Google Scholar 

  79. Lee, L. et al. Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. J. Neurosci. 23, 5308–5318 (2003).

    Google Scholar 

  80. O’Shea, J., Johansen-Berg, H., Trief, D., Gobel, S. & Rushworth, M. F. Functionally specific reorganization in human premotor cortex. Neuron 54, 479–490 (2007).

    Google Scholar 

  81. Andoh, J. & Paus, T. Combining functional neuroimaging with off-line brain stimulation: modulation of task-related activity in language areas. J. Cogn. Neurosci. 23, 349–361 (2011).

    Google Scholar 

  82. Hartwigsen, G. et al. Perturbation of the left inferior frontal gyrus triggers adaptive plasticity in the right homologous area during speech production. Proc. Natl. Acad. Sci. USA. 110, 16402–16407 (2013).

    Google Scholar 

  83. Binney, R.J. & Lambon Ralph, M.A. Using a combination of fMRI and anterior temporal lobe rTMS to measure intrinsic and induced activation changes across the semantic cognition network. Neuropsychologia 76, 170–181 (2014).

  84. Grefkes, C. et al. Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. Neuroimage 50, 233–242 (2010).

    Google Scholar 

  85. Pei, J. et al. Low-intensity transcranial ultrasound stimulation improves memory in vascular dementia by enhancing neuronal activity and promoting spine formation. Neuroimage 291, 120584 (2024).

    Google Scholar 

  86. Jung, J. & Lambon Ralph, M. A. The immediate impact of transcranial magnetic stimulation on brain structure: short-term neuroplasticity following one session of cTBS. Neuroimage 240, 118375 (2021).

    Google Scholar 

  87. Ashburner, J. & Friston, K. J. Voxel-based morphometry—the methods. Neuroimage 11, 805–821 (2000).

    Google Scholar 

  88. Zatorre, R. J., Fields, R. D. & Johansen-Berg, H. Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat. Neurosci. 15, 528–536 (2012).

    Google Scholar 

  89. Zeng, K. et al. Induction of human motor cortex plasticity by theta burst transcranial ultrasound stimulation. Ann. Neurol. 91, 238–252 (2022).

    Google Scholar 

  90. Stagg, C. J., Bachtiar, V. & Johansen-Berg, H. What are we measuring with GABA magnetic resonance spectroscopy? Commun. Integr. Biol. 4, 573–575 (2011).

    Google Scholar 

  91. Oldfield, R. C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113 (1971).

    Google Scholar 

  92. Adlam, A. L. R., Patterson, K., Bozeat, S. & Hodges, J. R. The Cambridge Semantic Memory Test Battery: detection of semantic deficits in semantic dementia and Alzheimer’s disease. Neurocase 16, 193–207 (2010).

    Google Scholar 

  93. Bozeat, S., Lambon Ralph, M. A., Patterson, K., Garrard, P. & Hodges, J. R. Non-verbal semantic impairment in semantic dementia. Neuropsychologia 38, 1207–1215 (2000).

    Google Scholar 

  94. Moore, K. et al. A modified Camel and Cactus Test detects presymptomatic semantic impairment in genetic frontotemporal dementia within the GENFI cohort. Appl. Neuropsychol. Adult 29, 112–119 (2022).

    Google Scholar 

  95. Atkinson-Clement, C. & Kaiser, M. Optimizing transcranial focused ultrasound stimulation: an open-source tool for precise targeting. Neuromodulation 28, 185–187 (2025).

    Google Scholar 

  96. Yaakub, S. N. et al. Pseudo-CTs from T1-weighted MRI for planning of low-intensity transcranial focused ultrasound neuromodulation: An open-source tool. Brain Stimul. 16, 75–78 (2023).

    Google Scholar 

  97. Pasquinelli, C., Hanson, L. G., Siebner, H. R., Lee, H. J. & Thielscher, A. Safety of transcranial focused ultrasound stimulation: a systematic review of the state of knowledge from both human and animal studies. Brain Stimul. 12, 1367–1380 (2019).

    Google Scholar 

  98. Mullins, P. G. et al. Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA. Neuroimage 86, 43–52 (2014).

    Google Scholar 

  99. Sanaei Nezhad, F. et al. Quantification of GABA, glutamate and glutamine in a single measurement at 3 T using GABA-edited MEGA-PRESS. NMR Biomed. 31, e3847 (2018).

  100. Sanaei Nezhad, F. et al. Number of subjects required in common study designs for functional GABA magnetic resonance spectroscopy in the human brain at 3 Tesla. Eur. J. Neurosci. 51, 1784–1793 (2020).

    Google Scholar 

  101. Gaser, C. et al. CAT: a computational anatomy toolbox for the analysis of structural MRI data. Gigascience 13, giae049 (2024).

  102. Good, C. D. et al. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14, 21–36 (2001).

    Google Scholar 

  103. Edden, R. A., Puts, N. A., Harris, A. D., Barker, P. B. & Evans, C. J. Gannet: a batch-processing tool for the quantitative analysis of gamma-aminobutyric acid-edited MR spectroscopy spectra. J. Magn. Reson. Imaging 40, 1445–1452 (2014).

    Google Scholar 

  104. Near, J. et al. Frequency and phase drift correction of magnetic resonance spectroscopy data by spectral registration in the time domain. Magn. Reson. Med. 73, 44–50 (2015).

    Google Scholar 

  105. Harris, A. D., Puts, N. A. & Edden, R. A. Tissue correction for GABA-edited MRS: Considerations of voxel composition, tissue segmentation, and tissue relaxations. J. Magn. Reson. Imaging 42, 1431–1440 (2015).

    Google Scholar 

  106. Mohammadi-Nejad, A.-R., Pszczolkowski, S., Auer, D. & Sotiropoulos, S. Multi-modal neuroimaging pipelines for data preprocessing (v1.6.3). Zenodo https://doi.org/10.5281/zenodo.8059550 (2023).

  107. Brett, M., Anton, J.-L., Valabregue, R. & Poline, J.-B. Region of interest analysis using an SPM toolbox. In the 8th International Conference on Functional Mapping of the Human Brain (Sendai, Japan, 2002).

  108. Jung, J. TUS Enchance Semantic Memory (OSF, 2025).

Download references

Acknowledgements

The authors acknowledge Sarah Wilson, Louise Cowell, Andrew Cooper, Jan A Paul, and Mehri Kaviani for their MRI support in the project. J.J. was supported by the AMS Springboard (SBF007\100077). M.K. and C.A. were supported by the Engineering and Physical Sciences Research Council (EP/W004488/1, EP/X01925X/1 and EP/W035057/1). M.K. was also supported by the Guangci Professorship Program of Rui Jin Hospital (Shanghai Jiao Tong University). J.J., M.A.L.R., and M.K. were supported by the EPSRC & MRC-funded NEUROMOD + . M.A.L.R. is supported by MRC intramural funding (MC_UU_00030/9).

Author information

Authors and Affiliations

  1. School of Psychology, University of Nottingham, Nottingham, UK

    JeYoung Jung & Cyril Atkinson-Clement

  2. Centre For Neurotechnology, Neuromodulation and Neurotherapeutics, University of Nottingham, Nottingham, UK

    JeYoung Jung, Cyril Atkinson-Clement & Marcus Kaiser

  3. NIHR Biomedical Research Centre, University of Nottingham, Nottingham, UK

    JeYoung Jung, Cyril Atkinson-Clement & Marcus Kaiser

  4. Centre for Dementia, Institute of Mental Health, University of Nottingham, Nottingham, UK

    JeYoung Jung

  5. Brain Convergence Research Centre, College of Medicine, Korea University, Seoul, South Korea

    JeYoung Jung

  6. Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

    Marcus Kaiser

  7. MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK

    Matthew A. Lambon Ralph

Authors
  1. JeYoung Jung
    View author publications

    Search author on:PubMed Google Scholar

  2. Cyril Atkinson-Clement
    View author publications

    Search author on:PubMed Google Scholar

  3. Marcus Kaiser
    View author publications

    Search author on:PubMed Google Scholar

  4. Matthew A. Lambon Ralph
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualisation: J.J. and M.A.L.R.; methodology: J.J., C.A., and M.K.; investigation: J.J. and C.A.; writing—J.J. and C.A.; writing—review and editing: J.J., C.A., M.K., and M.A.L.R.

Corresponding author

Correspondence to JeYoung Jung.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Chenglong Fu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, J., Atkinson-Clement, C., Kaiser, M. et al. Transcranial focused ultrasound stimulation enhances semantic memory by modulating brain morphology, neurochemistry and neural dynamics. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69579-7

Download citation

  • Received: 14 April 2025

  • Accepted: 27 January 2026

  • Published: 16 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69579-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing