Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Reverberation lags viewed in hard X-rays from an accreting stellar-mass black hole
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 17 February 2026

Reverberation lags viewed in hard X-rays from an accreting stellar-mass black hole

  • Bei You  ORCID: orcid.org/0000-0002-8231-063X1,
  • Wei Yu  ORCID: orcid.org/0000-0002-3229-24532,3,
  • Adam Ingram  ORCID: orcid.org/0000-0002-5311-90784,
  • Barbara De Marco5,
  • Jin-Lu Qu2,
  • Zong-Hong Zhu  ORCID: orcid.org/0000-0002-3567-67431,6,
  • Andrea Santangelo  ORCID: orcid.org/0000-0003-4187-95603 &
  • …
  • Sai-En Xu1 

Nature Communications , Article number:  (2026) Cite this article

  • 235 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Astrophysical disks
  • High-energy astrophysics
  • Time-domain astronomy
  • Transient astrophysical phenomena

Abstract

The X-ray-emitting corona near a black hole (BH) is too small to be directly imaged, but the rapid variability is used to infer the geometry by measuring time lags caused by coronal X-rays reflecting off the disk, known as reverberation lags. Though reverberation lags have previously been detected for some supermassive BHs in active galactic nuclei (AGNs), detecting them from stellar-mass BHs poses much greater challenges due to their size being over a million times smaller. Previous measurements of reverberation lags for stellar-mass BHs were limited to energies below 10 keV. Here, we report the detection of the Compton hump reverberation, peaking at about 30 keV, from an X-ray binary. The accompanying detection of an iron line feature at about 6.4 keV confirms the X-ray reverberation scenario and provides strong evidence that accretion flows in AGNs and X-ray binaries are governed by an ubiquitous process.

Similar content being viewed by others

Light bending and X-ray echoes from behind a supermassive black hole

Article 28 July 2021

An X-ray-quiet black hole born with a negligible kick in a massive binary within the Large Magellanic Cloud

Article 18 July 2022

Monthly quasi-periodic eruptions from repeated stellar disruption by a massive black hole

Article Open access 07 September 2023

Data availability

All Insight-HXMT data used in this work (Proposal ID: P0114661) are publicly available and can be downloaded from the Insight-HXMT website (http://archive.hxmt.cn/proposal). The NICER datasets analyzed during this study are available at NASA’s High Energy Astrophysics Science Archive Research Center (https://heasarc.gsfc.nasa.gov/FTP/nicer/data/obs/). The data generated in this study are publicly available at: https://github.com/MAXIJ1820/generate_data. Source data are provided with this paper.

Code availability

The Insight-HXMT data reduction was performed using software available from the Insight-HXMT website (http://hxmten.ihep.ac.cn/). The time lag was performed with Stingray, a reliable Python library for X-ray timing analysis (see https://stingray.readthedocs.io/en/latest/index.html). The model PROPFLUC can be downloaded from the website: https://github.com/HEASARC/xspec_localmodels/tree/master/propfluc. The new model presented here, reltransCpF, can be downloaded from https://github.com/reltrans/Youetal2025.

References

  1. Lasota, J.-P. The disc instability model of Dwarf Novae and low-mass X-ray binary transients. N. Astron. Rev. 45, 449–508 (2001).

    Google Scholar 

  2. Wilkinson, T. & Uttley, P. Accretion disc variability in the hard state of black hole X-ray binaries. Mon. Not. R. Astron. Soc. 397, 666–676 (2009).

    Google Scholar 

  3. Uttley, P., McHardy, I. M. & Papadakis, I. E. Measuring the broad-band power spectra of active galactic nuclei with RXTE. Mon. Not. R. Astron. Soc. 332, 231–250 (2002).

    Google Scholar 

  4. Uttley, P. et al. The causal connection between disc and power-law variability in hard state black hole X-ray binaries. Mon. Not. R. Astron. Soc. 414, 60–64 (2011).

    Google Scholar 

  5. Cassatella, P., Uttley, P., Wilms, J. & Poutanen, J. Joint spectral-timing modelling of the hard lags in GX 339-4: constraints on reflection models. Mon. Not. R. Astron. Soc. 422, 2407–2416 (2012).

    Google Scholar 

  6. Uttley, P., Cackett, E. M., Fabian, A. C., Kara, E. & Wilkins, D. R. X-ray reverberation around accreting black holes. Astron. Astrophys. Rev. 22, 72 (2014).

    Google Scholar 

  7. Méndez, M. et al. Coupling between the accreting corona and the relativistic jet in the microquasar GRS 1915+105. Nat. Astron. 6, 577–583 (2022).

    Google Scholar 

  8. Uttley, P. & Malzac, J. Large and complex X-ray time lags from black hole accretion discs with compact inner coronae. Mon. Not. R. Astron. Soc. 536, 3284–3307 (2025).

    Google Scholar 

  9. Kotov, O., Churazov, E. & Gilfanov, M. On the X-ray time-lags in the black hole candidates. Mon. Not. R. Astron. Soc. 327, 799–807 (2001).

    Google Scholar 

  10. Arévalo, P. & Uttley, P. Investigating a fluctuating-accretion model for the spectral-timing properties of accreting black hole systems. Mon. Not. R. Astron. Soc. 367, 801–814 (2006).

    Google Scholar 

  11. Kylafis, N., Papadakis, I., Reig, P., Giannios, D. & Pooley, G. A jet model for galactic black-hole X-ray sources: some constraining correlations. Astron. Astrophys. 489, 481–487 (2008).

    Google Scholar 

  12. Balbus, S. A. & Hawley, J. F. Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 1 (1998).

    Google Scholar 

  13. Nowak, M. A., Vaughan, B. A., Wilms, J., Dove, J. B. & Begelman, M. C. Rossi X-ray Timing Explorer observation of Cygnus X-1. II. Timing analysis. Astrophys. J. 510, 874–891 (1999).

    Google Scholar 

  14. De Marco, B., Ponti, G., Muñoz-Darias, T. & Nandra, K. Tracing the reverberation lag in the hard state of black hole X-ray binaries. Astrophys. J. 814, 50 (2015).

    Google Scholar 

  15. De Marco, B. et al. Evolution of the reverberation lag in GX 339–4 at the end of an outburst. Mon. Not. R. Astron. Soc. 471, 1475–1487 (2017).

    Google Scholar 

  16. Kara, E. et al. The corona contracts in a black-hole transient. Nature 565, 198–201 (2019).

    Google Scholar 

  17. Fabian, A. & Ross, R. X-ray reflection. Space Sci. Rev. 157, 167–176 (2010).

    Google Scholar 

  18. García, J. et al. A complete grid of ionized reflection calculations. Astrophys. J. 768, 146 (2013).

    Google Scholar 

  19. Dauser, T., García, J. & Wilms, J. Relativistic reflection: review and recent developments in modeling. Astron. Nachr. 337, 362–367 (2016).

    Google Scholar 

  20. Zdziarski, A. A. & Gierliński, M. Radiative processes, spectral states and variability of black-hole binaries. Prog. Theor. Phys. Suppl. 155, 99–119 (2004).

    Google Scholar 

  21. You, B. et al. Insight-HXMT observations of jet-like corona in a black hole X-ray binary MAXI J1820+070. Nat. Commun. 12, 1025 (2021).

    Google Scholar 

  22. Fabian, A. C. et al. Broad line emission from iron K- and L-shell transitions in the active galaxy 1H0707-495. Nature 459, 540–542 (2009).

    Google Scholar 

  23. Zoghbi, A. et al. Observations of MCG–5-23-16 with Suzaku, XMM-Newton and NuSTAR: disk tomography and compton hump reverberation. Astrophys. J. 789, 56 (2014).

    Google Scholar 

  24. Kara, E. et al. Iron K and compton hump reverberation in SWIFT J2127.4+5654 and NGC 1365 revealed by NuSTAR and XMM-Newton. Mon. Not. R. Astron. Soc. 446, 737–749 (2015).

    Google Scholar 

  25. McHardy, I. M., Koerding, E., Knigge, C., Uttley, P. & Fender, R. Active galactic nuclei as scaled-up galactic black holes. Nature 444, 730–732 (2006).

    Google Scholar 

  26. Arévalo, P., Papadakis, I., Uttley, P., McHardy, I. & Brinkmann, W. Spectral-timing evidence for a very high state in the narrow-line Seyfert 1 Ark 564. Mon. Not. R. Astron. Soc. 372, 401–409 (2006).

    Google Scholar 

  27. Wang, J. et al. The NICER ‘Reverberation Machine’: a systematic study of time lags in black hole X-ray binaries. Astrophys. J. 930, 18 (2022).

    Google Scholar 

  28. Zhang, S., Lu, F. J., Zhang, S. N. & Li, T. P. Introduction to the hard X-ray modulation telescope. Proc. SPIE 9144, 914421 (2014).

    Google Scholar 

  29. You, B. et al. Observations of a black hole X-Ray binary indicate formation of a magnetically arrested disk. Science 381, 961–964 (2023).

    Google Scholar 

  30. Wilkins, D. R. & Fabian, A. C. The origin of the lag spectra observed in AGN: reverberation and the propagation of X-ray source fluctuations. Mon. Not. R. Astron. Soc. 430, 247–258 (2013).

    Google Scholar 

  31. Mahmoud, R. D., Done, C. & De Marco, B. Reverberation reveals the truncated disc in the hard state of GX 339-4. Mon. Not. R. Astron. Soc. 486, 2137–2152 (2019).

    Google Scholar 

  32. De Marco, B. et al. The inner flow geometry in MAXI J1820+070 during hard and hard-intermediate states. Astron. Astrophys. 654, 14 (2021).

    Google Scholar 

  33. Wandel, A. & Mushotzky, R. F. Observational determination of the masses of active galactic nuclei. Astrophys. J. Part 2 Lett. Ed. 306, L61–L65 (1986).

    Google Scholar 

  34. Marconi, A. & Hunt, L. K. The relation between black hole mass, bulge mass, and near-infrared luminosity. Astrophys. J. 589, 21 (2003).

    Google Scholar 

  35. Malizia, A. et al. First high-energy observations of narrow-line Seyfert 1s with INTEGRAL/IBIS. Mon. Not. R. Astron. Soc. 389, 1360–1366 (2008).

    Google Scholar 

  36. Ponti, G. et al. CAIXA: A catalogue of AGN in the XMM-Newton archive - III. Excess variance analysis. Astron. Astrophys. 542, 83 (2012).

    Google Scholar 

  37. Emmanoulopoulos, D., Papadakis, I., Dovčiak, M. & McHardy, I. General relativistic modelling of the negative reverberation X-ray time delays in AGN. Mon. Not. R. Astron. Soc. 439, 3931–3950 (2014).

    Google Scholar 

  38. Lyubarskii, Y. E. Flicker noise in accretion discs. Mon. Not. R. Astron. Soc. 292, 679–685 (1997).

    Google Scholar 

  39. Pottschmidt, K. et al. Temporal evolution of X-ray lags in Cygnus X-1. Astron. Astrophys. 357, 17–20 (2000).

    Google Scholar 

  40. Wang, Y. et al. The evolution of the broadband temporal features observed in the black-hole transient MAXI J1820+070 with Insight-HXMT. Astrophys. J. 896, 33 (2020).

    Google Scholar 

  41. Ingram, A. & Done, C. Modelling variability in black hole binaries: linking simulations to observations. Mon. Not. R. Astron. Soc. 419, 2369–2378 (2012).

    Google Scholar 

  42. Kawamura, T., Done, C., Axelsson, M. & Takahashi, T. MAXI J1820+070 X-ray spectral-timing reveals the nature of the accretion flow in black hole binaries. Mon. Not. R. Astron. Soc. 519, 4434–4453 (2023).

    Google Scholar 

  43. Ingram, A. & Done, C. A physical model for the continuum variability and quasi-periodic oscillation in accreting black holes. Mon. Not. R. Astron. Soc. 415, 2323–2335 (2011).

    Google Scholar 

  44. Ingram, A. & van der Klis, M. An exact analytic treatment of propagating mass accretion rate fluctuations in X-ray binaries. Mon. Not. R. Astron. Soc. 434, 1476–1485 (2013).

    Google Scholar 

  45. Rapisarda, S., Ingram, A. & van der Klis, M. Evolution of the hot flow of MAXI J1543-564. Mon. Not. R. Astron. Soc. 440, 2882–2893 (2014).

    Google Scholar 

  46. Rapisarda, S., Ingram, A., Kalamkar, M. & van der Klis, M. Modelling the cross-spectral variability of the black hole binary MAXI J1659-152 with propagating accretion rate fluctuations. Mon. Not. R. Astron. Soc. 462, 4078–4093 (2016).

    Google Scholar 

  47. De Rosa, A. et al. Accretion in strong field gravity with eXTP. Sci. China Phys. Mech. Astron. 62, 29504 (2019).

    Google Scholar 

  48. Cruise, M. et al. The NewAthena mission concept in the context of the next decade of X-ray astronomy. Nat. Astron. 9, 36–44 (2025).

  49. Zoghbi, A. et al. Broad iron L line and X-ray reverberation in 1H0707-495. Mon. Not. R. Astron. Soc. 401, 2419–2432 (2010).

    Google Scholar 

  50. Vaughan, S., Edelson, R., Warwick, R. S. & Uttley, P. On characterizing the variability properties of X-ray light curves from active galaxies. Mon. Not. R. Astron. Soc. 345, 1271–1284 (2003).

    Google Scholar 

  51. Mizumoto, M. et al. X-ray short-time lags in the Fe-K energy band produced by scattering clouds in active galactic nuclei. Mon. Not. R. Astron. Soc. 478, 971–982 (2018).

    Google Scholar 

  52. Svoboda, J. et al. Origin of the X-ray disc-reflection steep radial emissivity. Astron. Astrophys. 545, 106 (2012).

    Google Scholar 

  53. Ingram, A. et al. A public relativistic transfer function model for X-ray reverberation mapping of accreting black holes. Mon. Not. R. Astron. Soc. 488, 324–347 (2019).

    Google Scholar 

  54. Shreeram, S. & Ingram, A. Exploring the radial disc ionization profile of the black hole X-ray binary GRS 1915+105. Mon. Not. R. Astron. Soc. 492, 405–412 (2020).

    Google Scholar 

  55. Mastroserio, G. et al. Modelling correlated variability in accreting black holes: the effect of high density and variable ionization on reverberation lags. Mon. Not. R. Astron. Soc. 507, 55–73 (2021).

    Google Scholar 

  56. Zdziarski, A. A., Johnson, W. N. & Magdziarz, P. Broad-band γ-ray and X-ray spectra of NGC 4151 and their implications for physical processes and geometry. Mon. Not. R. Astron. Soc. 283, 193–206 (1996).

    Google Scholar 

  57. Mastroserio, G., Ingram, A. & van der Klis, M. Multi-time-scale X-ray reverberation mapping of accreting black holes. Mon. Not. R. Astron. Soc. 475, 4027–4042 (2018).

    Google Scholar 

  58. Ingram, A. R. & Motta, S. E. A review of quasi-periodic oscillations from black hole X-ray binaries: observation and theory. N. Astron. Rev. 85, 101524 (2019).

    Google Scholar 

  59. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

    Google Scholar 

  60. Churazov, E., Gilfanov, M. & Revnivtsev, M. Soft state of Cygnus X-1: stable disc and unstable corona. Mon. Not. R. Astron. Soc. 321, 759–766 (2001).

    Google Scholar 

Download references

Acknowledgements

B.Y. is supported by NSFC grants 12322307, 12361131579, 12273026; the National Program on Key Research and Development Project 2021YFA0718500. Xiaomi Foundation/Xiaomi Young Talents Program. The data analysis in this paper has been done on the supercomputing system in the Supercomputing Center of Wuhan University. W.Y. acknowledges financial support from the Sino-German (CSC-DAAD) Postdoc Scholarship Program (No. 57718047) and the Alexander von Humboldt Foundation. A.I. acknowledges support from the Royal Society. B.D.M. acknowledges support via a Ramón y Cajal Fellowship (RYC2018-025950-I), the Spanish MINECO grants PID2023-148661NB-I00, PID2022-136828NB-C44, and the AGAUR/Generalitat de Catalunya grant SGR-386/2021. J.-L.Q. acknowledges support from the grant U2031205. Z.-H.Z. acknowledges support from the National Natural Science Foundation of China under Grants Nos. 12021003 and 12433001.

Author information

Authors and Affiliations

  1. Department of Astronomy, School of Physics and Technology, Wuhan University, Wuhan, China

    Bei You, Zong-Hong Zhu & Sai-En Xu

  2. Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China

    Wei Yu & Jin-Lu Qu

  3. Institut für Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Eberhard Karls Universität, Tübingen, Germany

    Wei Yu & Andrea Santangelo

  4. School of Mathematics, Statistics, and Physics, Newcastle University, Newcastle upon Tyne, UK

    Adam Ingram

  5. Departament de Física, EEBE, Universitat Politécnica de Catalunya, Av. Eduard Maristany 16, 08019, Barcelona, Spain

    Barbara De Marco

  6. Department of Astronomy, Beijing Normal University, Beijing, China

    Zong-Hong Zhu

Authors
  1. Bei You
    View author publications

    Search author on:PubMed Google Scholar

  2. Wei Yu
    View author publications

    Search author on:PubMed Google Scholar

  3. Adam Ingram
    View author publications

    Search author on:PubMed Google Scholar

  4. Barbara De Marco
    View author publications

    Search author on:PubMed Google Scholar

  5. Jin-Lu Qu
    View author publications

    Search author on:PubMed Google Scholar

  6. Zong-Hong Zhu
    View author publications

    Search author on:PubMed Google Scholar

  7. Andrea Santangelo
    View author publications

    Search author on:PubMed Google Scholar

  8. Sai-En Xu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

B.Y. initiated the project, specifically proposing data analysis and model interpretation, and took the lead in manuscript writing. W. Y. led the timing analysis and contributed to the text writing. A.I. led the interpretation of the Frequency-dependent time lags and contributed to the writing of the text. B.D. contributed to the model discussion and the writing of the text. J.-L.Q., Z.-H.Z., A.S., and S.-E.X. contributed to the model discussion. All the authors joined in the modification of the text at all stages.

Corresponding authors

Correspondence to Bei You or Wei Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, B., Yu, W., Ingram, A. et al. Reverberation lags viewed in hard X-rays from an accreting stellar-mass black hole. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69604-9

Download citation

  • Received: 19 September 2025

  • Accepted: 03 February 2026

  • Published: 17 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69604-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing