Abstract
Programming rapid, repeatable motions in soft materials has remained a challenge in active matter and biomimetic design. Here, we present a light-controlled chemomechanical network based on Tetrahymena thermophila calcium-binding protein 2 (Tcb2), a Ca2+-sensitive contractile protein. These networks—driven by Ca2+-triggered structural rearrangements—exhibit dynamic self-assembly, spatiotemporal growth, and contraction rates comparable to actomyosin systems. By coupling light-sensitive chelators for optically triggered Ca2+ release, we achieve precise growth and repeatable mechanical contractility of Tcb2 networks, revealing emergent phenomena such as boundary-localized active regions and density gradient-driven reversals in motion. A coupled reaction-diffusion and elastic model explains these dynamics, highlighting the interplay between chemical network assembly and mechanical response. We further demonstrate active transport of particles via network-mediated forces in vitro and implement reinforcement learning to program seconds-scale spatiotemporal actuation in silico. These results establish a platform for designing responsive active materials with rapid chemomechanical dynamics and tunable optical control, with applications in synthetic cells, sub-cellular force generation, and programmable biomaterials.
Data availability
Data supporting this study are available in Zenodo (https://doi.org/10.5281/zenodo.18318970101).
Code availability
Code for modeling and reinforcement learning control of Tcb2 network contraction is available via Zenodo (https://doi.org/10.5281/zenodo.18394283102).
References
Gompper, G. et al. The 2025 motile active matter roadmap. J. Phys.: Condens. Matter 37, 143501 (2025).
Yashin, V. V. & Balazs, A. C. Pattern formation and shape changes in self-oscillating polymer gels. Science 314, 798 (2006).
Yoshida, R. Self-oscillating gels driven by the Belousov–Zhabotinsky reaction as novel smart materials. Adv. Mater. 22, 3463 (2010).
Grinthal, A. & Aizenberg, J. Adaptive all the way down: building responsive materials from hierarchies of chemomechanical feedback. Chem. Soc. Rev. 42, 7072 (2013).
Blanc, B. et al. Active pulsatile gels: From a chemical microreactor to a polymeric actuator. Langmuir 40, 6862 (2024).
Blanc, B. et al. Collective chemomechanical oscillations in active hydrogels. Proc. Natl Acad. Sci. USA. 121, e2313258121 (2024).
Xue, L. et al. Light-regulated growth from dynamic swollen substrates for making rough surfaces. Nat. Commun. 11, 963 (2020).
Chen, M., Zhong, M. & Johnson, J. A. Light-controlled radical polymerization: mechanisms, methods, and applications. Chem. Rev. 116, 10167 (2016).
Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418 (2002).
Freeman, R. et al. Reversible self-assembly of superstructured networks. Science 362, 808 (2018).
Kim, Y.-K., Wang, X., Mondkar, P., Bukusoglu, E. & Abbott, N. L. Self-reporting and self-regulating liquid crystals. Nature 557, 539 (2018).
Li, S. et al. Liquid-induced topological transformations of cellular microstructures. Nature 592, 386 (2021).
Liu, S., Shankar, S., Marchetti, M. C. & Wu, Y. Viscoelastic control of spatiotemporal order in bacterial active matter. Nature 590, 80 (2021).
Sokolov, A., Apodaca, M. M., Grzybowski, B. A. & Aranson, I. S. Swimming bacteria power microscopic gears. Proc. Natl Acad. Sci. USA. 107, 969 (2010).
Gu, H. et al. Magnetic cilia carpets with programmable metachronal waves. Nat. Commun. 11, 2637 (2020).
Wang, W. et al. Cilia metasurfaces for electronically programmable microfluidic manipulation. Nature 605, 681 (2022).
Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431 (2012).
Schaller, V., Weber, C., Semmrich, C., Frey, E. & Bausch, A. R. Polar patterns of driven filaments. Nature 467, 73 (2010).
Muresan, C. G. et al. F-actin architecture determines constraints on myosin thick filament motion. Nat. Commun. 13, 7008 (2022).
Yadav, V. et al. Filament nucleation tunes mechanical memory in active polymer networks. Adv. Funct. Mater. 29, (2019).
Linsmeier, I. et al. Disordered actomyosin networks are sufficient to produce cooperative and telescopic contractility. Nat. Commun. 7, 12615 (2016).
Redford, S. A. et al. Motor crosslinking augments elasticity in active nematics. Soft Matter 20, 2480 (2024).
Lemma, L. M. et al. Spatio-temporal patterning of extensile active stresses in microtubule-based active fluids. PNAS Nexus 2, pgad130 (2023).
Murrell, M., Oakes, P. W., Lenz, M. & Gardel, M. L. Forcing cells into shape: the mechanics of actomyosin contractility. Nat. Rev. Mol. Cell Biol. 16, 486 (2015).
Sakamoto, R. et al. Tug-of-war between actomyosin-driven antagonistic forces determines the positioning symmetry in cell-sized confinement. Nat. Commun. 11, 3063 (2020).
Sakamoto, R., Izri, Z., Shimamoto, Y., Miyazaki, M. & Maeda, Y. T. Geometric trade-off between contractile force and viscous drag determines the actomyosin-based motility of a cell-sized droplet. Proc. Natl Acad. Sci. USA. 119, e2121147119 (2022).
Adkins, R. et al. Dynamics of active liquid interfaces. Science 377, 768 (2022).
Ruijgrok, P. V. et al. Optical control of fast and processive engineered myosins in vitro and in living cells. Nat. Chem. Biol. 17, 540 (2021).
Ross, T. D. et al. Controlling organization and forces in active matter through optically defined boundaries. Nature 572, 224 (2019).
Malik-Garbi, M. et al. Scaling behaviour in steady-state contracting actomyosin networks. Nat. Phys. 15, 509 (2019).
Oakes, P. W. et al. Optogenetic control of RhoA reveals zyxin-mediated elasticity of stress fibres. Nat. Commun. 8, 15817 (2017).
Schuppler, M., Keber, F. C., Kröger, M. & Bausch, A. R. Boundaries steer the contraction of active gels. Nat. Commun. 7, 13120 (2016).
Cavanaugh, K. E., Oakes, P. W. & Gardel, M. L. Optogenetic control of RhoA to probe subcellular mechanochemical circuitry. Curr. Protoc. Cell Biol. 86, e102 (2020).
Chandrasekar, S., Beach, J. R. & Oakes, P. W. Shining a light on RhoA: optical control of cell contractility. Int. J. Biochem. Cell Biol. 161, 106442 (2023).
Qu, Z. et al. Persistent fluid flows defined by active matter boundaries. Commun. Phys. 4, 1 (2021).
Mathijssen, A. J. T. M., Culver, J., Bhamla, M. S. & Prakash, M. Collective intercellular communication through ultra-fast hydrodynamic trigger waves. Nature 571, 560 (2019).
Ruiz, F., Garreau de Loubresse, N., Klotz, C., Beisson, J. & Koll, F. Centrin deficiency in Paramecium affects the geometry of basal-body duplication. Curr. Biol. 15, 2097 (2005).
Mahadevan, L. & Matsudaira, P. Motility powered by supramolecular springs and ratchets. Science 288, 95 (2000).
Hawkes, R. B. & Holberton, D. V. Myonemal contraction of Spirostomum. I. Kinetics of contraction and relaxation. J. Cell. Physiol. 84, 225 (1974).
Misra, G., Dickinson, R. B. & Ladd, A. J. C. Mechanics of Vorticella contraction. Biophys. J. 98, 2923 (2010).
Kilpatrick, A. M., Honts, J. E., Sleister, H. M. & Fowler, C. A. Solution NMR structures of the C-domain of Tetrahymena cytoskeletal protein Tcb2 reveal distinct calcium-induced structural rearrangements. Proteins 84, 1748 (2016).
Floyd, C. et al. A unified model for the dynamics of ATP-independent ultrafast contraction. Proc. Natl. Acad. Sci. USA. 120, e2217737120 (2023).
Upadhyaya, A. et al. Power-limited contraction dynamics of Vorticella convallaria: an ultrafast biological spring. Biophys. J. 94, 265 (2008).
Chung, E. G. & Ryu, S. Stalk-length-dependence of the contractility of Vorticella convallaria. Phys. Biol. 14, 066002 (2017).
Ryu, S., Lang, M. J. & Matsudaira, P. Maximal force characteristics of the Ca2+-powered actuator of Vorticella convallaria. Biophys. J. 103, 860 (2012).
Chang, R. & Prakash, M. Topological damping in an ultrafast giant cell. Proc. Natl. Acad. Sci. USA. 120, e2303940120 (2023).
Chang, R. & Prakash, M. Cellular Olympics: Ultrafast Cellular Motility Across the Tree of Life. Annu. Rev. Microbiol. 79, 405–426 (2025).
Lannan, J. et al. Fishnet mesh of centrin-Sfi1 drives ultrafast calcium-activated contraction of the giant cell Spirostomum ambiguum. bioRxiv 2024 (2024).
Norton, M. M., Grover, P., Hagan, M. F. & Fraden, S. Optimal control of active nematics. Phys. Rev. Lett. 125, 178005 (2020).
Ghosh, S., Joshi, C., Baskaran, A. & Hagan, M.F. Spatiotemporal control of structure and dynamics in a polar active fluid. Soft Matter 20, 7059–7071 (2024).
Ghosh, S., Baskaran, A. & Hagan, M.F. Achieving designed texture and flows in bulk active nematics using optimal control theory. J. Chem. Phys. 162, 134902 (2025).
Wagner, C. G., Norton, M. M., Park, J. S. & Grover, P. Exact coherent structures and phase space geometry of preturbulent 2D active nematic channel flow. Phys. Rev. Lett. 128, 028003 (2022).
Nishiyama, K. et al. Closed-loop control of active nematic flows. Phys. Rev. X. 15, 041053 (2025)
Shankar, S., Scharrer, L. V., Bowick, M. J. & Marchetti, M. C. Design rules for controlling active topological defects. Proc. Natl Acad. Sci. USA. 121, e2400933121 (2024).
Floyd, C., Dinner, A.R. & Vaikuntanathan, S. Learning to control non-equilibrium dynamics using local imperfect gradients. arXiv:2404.03798 (2024).
Floyd, C., Dinner, A.R. & Vaikuntanathan, S. Tailoring interactions between active nematic defects with reinforcement learning. Soft Matter. 21, 4488–4497 (2025).
Takemasa, T. et al. Cloning and sequencing of the gene for Tetrahymena calcium-binding 25-kDa protein. J. Biol. Chem. 264, 19293 (1989).
Kilpatrick, A. M. et al. Backbone and side-chain chemical shift assignments for the C-terminal domain of Tcb2, a cytoskeletal calcium-binding protein from Tetrahymena thermophila. Biomol. NMR Assign. 10, 281 (2016).
Hanyu, K., Takemasa, T., Numata, O., Takahashi, M. & Watanabe, Y. Immunofluorescence localization of a 25-kDa Tetrahymena EF-hand Ca2+-binding protein, TCBP-25, in the cell cortex and possible involvement in conjugation. Exp. Cell Res. 219, 487 (1995).
Nakagawa, T., Fujiu, K., Cole, E. S. & Numata, O. Involvement of a 25 kDa Tetrahymena Ca2+-binding protein in pronuclear exchange. Cell Struct. Funct. 33, 151 (2008).
Ohnishi, K. & Watanabe, Y. Purification and some properties of a new Ca2+-binding protein (TCBP-10) present in Tetrahymena cilium. J. Biol. Chem. 258, 13978 (1983).
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493 (2024).
Honts, J. E. & Williams, N. E. Novel cytoskeletal proteins in the cortex of Tetrahymena. J. Eukaryot. Microbiol. 50, 9 (2003).
Yang, C.-F. & Tsai, W.-C. Calmodulin: The switch button of calcium signaling. Tzu Chi Med. J. 34, 15 (2022).
DMNP-EDTA, tetrapotassium salt (caged calcium). Biotium https://biotium.com/product/dmnp-edta-tetrapotassium-salt-caged-calcium (2016).
Bers, D. M., Patton, C. W. & Nuccitelli, R. A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol. 40, 3 (1994).
Barreto-Chang, O.L. & Dolmetsch, R.E. Calcium imaging of cortical neurons using Fura-2 AM. J. Vis. Exp. (2009).
Tsien, R. & Pozzan, T. Measurement of cytosolic free Ca2+ with Quin2. Methods Enzymol. 172, 230–262 (1989).
Bechhoefer, J.Control Theory for Physicists (Cambridge Univ. Press, 2021).
Polygon: Cellular-resolution optogenetics & photostimulation. Mightex https://www.mightexbio.com/polygon (2017).
Yang, F., Liu, S., Lee, H. J., Phillips, R. & Thomson, M. Dynamic flow control through active matter programming language. Nat. Mater. 24, 615 (2025).
Chandrasekharan, N.P., Lei, X., Honts, J., Bhamla, S. & Coyle, S.M. Decoding ultrasensitive self-assembly of the calcium-regulated Tetrahymena cytoskeletal protein Tcb2 using optical actuation. J. Biol. Chem. 301, 10824 (2025).
Phan-Thien, N. & Mai-Duy, N.Understanding Viscoelasticity: An Introduction to Rheology (Springer, 2013).
Ashby, M. F. & Cebon, D. Materials selection in mechanical design. J. Phys. IV 3, C7 (1993).
Li, X. et al. Tensile force-induced cytoskeletal remodeling: Mechanics before chemistry. PLoS Comput. Biol. 16, e1007693 (2020).
Sutton, R.S. & Barto, A.G.Reinforcement Learning: An Introduction (MIT Press, 2018).
Falk, M. J., Alizadehyazdi, V., Jaeger, H. & Murugan, A. Learning to control active matter. Phys. Rev. Res. 3, 033291 (2021).
Chennakesavalu, S. & Rotskoff, G.M. Probing the theoretical and computational limits of dissipative design. J. Chem. Phys. 155, (2021).
Silver, D. et al. Deterministic policy gradient algorithms. in Proc. International Conference on Machine Learning 387–395 (PMLR, 2014).
Lillicrap, T.P. et al. Continuous control with deep reinforcement learning. arXiv:1509.02971 (2015).
Floyd, C., Levine, H., Jarzynski, C. & Papoian, G. A. Understanding cytoskeletal avalanches using mechanical stability analysis. Proc. Natl Acad. Sci. USA. 118, e2110239118 (2021).
Vicente-Manzanares, M., Ma, X., Adelstein, R. S. & Horwitz, A. R. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 10, 778 (2009).
Sakamoto, R. & Murrell, M. P. Mechanical power is maximized during contractile ring-like formation in a biomimetic dividing cell model. Nat. Commun. 15, 9731 (2024).
Soares e Silva, M. et al. Active multistage coarsening of actin networks driven by myosin motors. Proc. Natl Acad. Sci. USA. 108, 9408 (2011).
Wagoner, J. A. & Dill, K. A. Evolution of mechanical cooperativity among myosin II motors. Proc. Natl Acad. Sci. USA. 118, e2101871118 (2021).
Krishna, A., Savinov, M., Ierushalmi, N., Mogilner, A. & Keren, K. Size-dependent transition from steady contraction to waves in actomyosin networks with turnover. Nat. Phys. 20, 123–134 (2024).
Mattila, P. K. & Lappalainen, P. Filopodia: molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 9, 446 (2008).
Murrell, M. P. & Gardel, M. L. F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex. Proc. Natl Acad. Sci. USA. 109, 20820 (2012).
Lenz, M. Reversal of contractility as a signature of self-organization in cytoskeletal bundles. eLife 9, e51751 (2020).
Bement, W. M. et al. Activator–inhibitor coupling between Rho signalling and actin assembly makes the cell cortex an excitable medium. Nat. Cell Biol. 17, 1471 (2015).
Maxian, O., Dinner, A.R. & Munro, E. Actin network heterogeneity tunes activator-inhibitor dynamics at the cell cortex. Proc. Natl. Acad. Sci. U.S.A. 122, e2520485122 (2025).
Ishihara, A., Gee, K., Schwartz, S., Jacobson, K. & Lee, J. Photoactivation of caged compounds in single living cells: an application to the study of cell locomotion. Biotechniques 23, 268 (1997).
Blosser, M. C., Horst, B. G. & Keller, S. L. cDICE method produces giant lipid vesicles under physiological conditions of charged lipids and ionic solutions. Soft Matter 12, 7364 (2016).
Abkarian, M., Loiseau, E. & Massiera, G. Continuous droplet interface crossing encapsulation (cDICE) for high throughput monodisperse vesicle design. Soft Matter 7, 4610 (2011).
Moga, A., Yandrapalli, N., Dimova, R. & Robinson, T. Optimization of the inverted emulsion method for high-yield production of biomimetic giant unilamellar vesicles. ChemBioChem 20, 2674 (2019).
Kirillov, A. et al. Segment anything. Proc. IEEE/CVF Int. Conf. Comput. Vis. 4015–4026 (2023).
Nar, K. segment-anything-video: MetaSeg: Packaged version of the Segment Anything repository. GitHub.
Thielicke, W. & Sonntag, R. Particle image velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab. J. Open Res. Softw. 9, 12 (2021).
Karaev, N. et al. CoTracker: It is better to track together. in Proc. ECCV (2024).
Tian, J. & other contributors. ReinforcementLearning.jl: A reinforcement learning package for the Julia programming language. GitHub https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl (2020).
Lei, X. et al. Light-induced assembly and repeatable actuation in Ca2+-driven chemomechanical protein networks_Nat_Comm_2026. Zenodo https://doi.org/10.5281/zenodo.18318970 (2026).
Lei, X. et al. TCB2 network: Tcb2 NatComm 2026Jan. Zenodo https://doi.org/10.5281/zenodo.18394283 (2026).
Acknowledgements
We wish to thank Douglas Chalker for providing the Tcb2-GFP-tagged Tetrahymena strain, Heidi Sleister and students for creating the GFP/mCherry versions of Tcb2 and Mary Elting, Fred Chang, Jane Maienschein, and Suri Vaikuntanathan for helpful discussions. A.R.D. acknowledges support from National Science Foundation (NSF) award MCB-2313725 and the University of Chicago Materials Research Science and Engineering Center funded by NSF award DMR-2011854. S.C. acknowledges support from NSF award MCB-2313723 and the David and Lucille Packard Fellowship for Science and Engineering. C.F. acknowledges support from the University of Chicago Data Science Institute (DSI) AI + Science Research Initiative. J.H. acknowledges support from NSF award MCB-2313727 and from the Marshall & Judith Flapan Professorship in Biology. S.B. acknowledges support from NSF award MCB-2313724, National Institutes of Health (NIH) award R35GM142588 and Schmidt Sciences, LLC. The authors acknowledge the University of Chicago’s Research Computing Center for computing resources.
Author information
Authors and Affiliations
Contributions
X.L., C.F., L.C., T.C., N.C., A.R.D., S.C., J.H., S.B. investigation; X.L. and C.F. formal analysis, X.L., C.F., L.C., N.C., A.R.D., S.C., J.H., S.B. methodology; A.R.D., S.C., J.H., S.B. funding acquisition; A.R.D., S.C., J.H., S.B. supervision; X.L. and C.F. writing original draft; X.L., C.F., A.R.D., S.C., J.H., S.B. writing-review and editing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Lei, X., Floyd, C., Casas-Ferrer, L. et al. Light-induced assembly and repeatable actuation in Ca2+-driven chemomechanical protein networks. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69651-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-69651-2