Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Light-induced assembly and repeatable actuation in Ca2+-driven chemomechanical protein networks
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 February 2026

Light-induced assembly and repeatable actuation in Ca2+-driven chemomechanical protein networks

  • Xiangting Lei1 na1,
  • Carlos Floyd  ORCID: orcid.org/0000-0002-6270-72502 na1,
  • Laura Casas-Ferrer1,
  • Tuhin Chakrabortty  ORCID: orcid.org/0000-0002-4572-33121,
  • Nithesh Chandrasekharan  ORCID: orcid.org/0009-0004-9826-68233,
  • Aaron R. Dinner  ORCID: orcid.org/0000-0001-8328-64272,
  • Scott Coyle3,
  • Jerry Honts4 &
  • …
  • Saad Bhamla  ORCID: orcid.org/0000-0002-9788-99201,5 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biomaterials – proteins
  • Biophysics

Abstract

Programming rapid, repeatable motions in soft materials has remained a challenge in active matter and biomimetic design. Here, we present a light-controlled chemomechanical network based on Tetrahymena thermophila calcium-binding protein 2 (Tcb2), a Ca2+-sensitive contractile protein. These networks—driven by Ca2+-triggered structural rearrangements—exhibit dynamic self-assembly, spatiotemporal growth, and contraction rates comparable to actomyosin systems. By coupling light-sensitive chelators for optically triggered Ca2+ release, we achieve precise growth and repeatable mechanical contractility of Tcb2 networks, revealing emergent phenomena such as boundary-localized active regions and density gradient-driven reversals in motion. A coupled reaction-diffusion and elastic model explains these dynamics, highlighting the interplay between chemical network assembly and mechanical response. We further demonstrate active transport of particles via network-mediated forces in vitro and implement reinforcement learning to program seconds-scale spatiotemporal actuation in silico. These results establish a platform for designing responsive active materials with rapid chemomechanical dynamics and tunable optical control, with applications in synthetic cells, sub-cellular force generation, and programmable biomaterials.

Data availability

Data supporting this study are available in Zenodo (https://doi.org/10.5281/zenodo.18318970101).

Code availability

Code for modeling and reinforcement learning control of Tcb2 network contraction is available via Zenodo (https://doi.org/10.5281/zenodo.18394283102).

References

  1. Gompper, G. et al. The 2025 motile active matter roadmap. J. Phys.: Condens. Matter 37, 143501 (2025).

  2. Yashin, V. V. & Balazs, A. C. Pattern formation and shape changes in self-oscillating polymer gels. Science 314, 798 (2006).

    Google Scholar 

  3. Yoshida, R. Self-oscillating gels driven by the Belousov–Zhabotinsky reaction as novel smart materials. Adv. Mater. 22, 3463 (2010).

    Google Scholar 

  4. Grinthal, A. & Aizenberg, J. Adaptive all the way down: building responsive materials from hierarchies of chemomechanical feedback. Chem. Soc. Rev. 42, 7072 (2013).

    Google Scholar 

  5. Blanc, B. et al. Active pulsatile gels: From a chemical microreactor to a polymeric actuator. Langmuir 40, 6862 (2024).

    Google Scholar 

  6. Blanc, B. et al. Collective chemomechanical oscillations in active hydrogels. Proc. Natl Acad. Sci. USA. 121, e2313258121 (2024).

    Google Scholar 

  7. Xue, L. et al. Light-regulated growth from dynamic swollen substrates for making rough surfaces. Nat. Commun. 11, 963 (2020).

    Google Scholar 

  8. Chen, M., Zhong, M. & Johnson, J. A. Light-controlled radical polymerization: mechanisms, methods, and applications. Chem. Rev. 116, 10167 (2016).

    Google Scholar 

  9. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418 (2002).

    Google Scholar 

  10. Freeman, R. et al. Reversible self-assembly of superstructured networks. Science 362, 808 (2018).

    Google Scholar 

  11. Kim, Y.-K., Wang, X., Mondkar, P., Bukusoglu, E. & Abbott, N. L. Self-reporting and self-regulating liquid crystals. Nature 557, 539 (2018).

    Google Scholar 

  12. Li, S. et al. Liquid-induced topological transformations of cellular microstructures. Nature 592, 386 (2021).

    Google Scholar 

  13. Liu, S., Shankar, S., Marchetti, M. C. & Wu, Y. Viscoelastic control of spatiotemporal order in bacterial active matter. Nature 590, 80 (2021).

    Google Scholar 

  14. Sokolov, A., Apodaca, M. M., Grzybowski, B. A. & Aranson, I. S. Swimming bacteria power microscopic gears. Proc. Natl Acad. Sci. USA. 107, 969 (2010).

    Google Scholar 

  15. Gu, H. et al. Magnetic cilia carpets with programmable metachronal waves. Nat. Commun. 11, 2637 (2020).

    Google Scholar 

  16. Wang, W. et al. Cilia metasurfaces for electronically programmable microfluidic manipulation. Nature 605, 681 (2022).

    Google Scholar 

  17. Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431 (2012).

    Google Scholar 

  18. Schaller, V., Weber, C., Semmrich, C., Frey, E. & Bausch, A. R. Polar patterns of driven filaments. Nature 467, 73 (2010).

    Google Scholar 

  19. Muresan, C. G. et al. F-actin architecture determines constraints on myosin thick filament motion. Nat. Commun. 13, 7008 (2022).

    Google Scholar 

  20. Yadav, V. et al. Filament nucleation tunes mechanical memory in active polymer networks. Adv. Funct. Mater. 29, (2019).

  21. Linsmeier, I. et al. Disordered actomyosin networks are sufficient to produce cooperative and telescopic contractility. Nat. Commun. 7, 12615 (2016).

    Google Scholar 

  22. Redford, S. A. et al. Motor crosslinking augments elasticity in active nematics. Soft Matter 20, 2480 (2024).

    Google Scholar 

  23. Lemma, L. M. et al. Spatio-temporal patterning of extensile active stresses in microtubule-based active fluids. PNAS Nexus 2, pgad130 (2023).

    Google Scholar 

  24. Murrell, M., Oakes, P. W., Lenz, M. & Gardel, M. L. Forcing cells into shape: the mechanics of actomyosin contractility. Nat. Rev. Mol. Cell Biol. 16, 486 (2015).

    Google Scholar 

  25. Sakamoto, R. et al. Tug-of-war between actomyosin-driven antagonistic forces determines the positioning symmetry in cell-sized confinement. Nat. Commun. 11, 3063 (2020).

    Google Scholar 

  26. Sakamoto, R., Izri, Z., Shimamoto, Y., Miyazaki, M. & Maeda, Y. T. Geometric trade-off between contractile force and viscous drag determines the actomyosin-based motility of a cell-sized droplet. Proc. Natl Acad. Sci. USA. 119, e2121147119 (2022).

    Google Scholar 

  27. Adkins, R. et al. Dynamics of active liquid interfaces. Science 377, 768 (2022).

    Google Scholar 

  28. Ruijgrok, P. V. et al. Optical control of fast and processive engineered myosins in vitro and in living cells. Nat. Chem. Biol. 17, 540 (2021).

    Google Scholar 

  29. Ross, T. D. et al. Controlling organization and forces in active matter through optically defined boundaries. Nature 572, 224 (2019).

    Google Scholar 

  30. Malik-Garbi, M. et al. Scaling behaviour in steady-state contracting actomyosin networks. Nat. Phys. 15, 509 (2019).

    Google Scholar 

  31. Oakes, P. W. et al. Optogenetic control of RhoA reveals zyxin-mediated elasticity of stress fibres. Nat. Commun. 8, 15817 (2017).

    Google Scholar 

  32. Schuppler, M., Keber, F. C., Kröger, M. & Bausch, A. R. Boundaries steer the contraction of active gels. Nat. Commun. 7, 13120 (2016).

    Google Scholar 

  33. Cavanaugh, K. E., Oakes, P. W. & Gardel, M. L. Optogenetic control of RhoA to probe subcellular mechanochemical circuitry. Curr. Protoc. Cell Biol. 86, e102 (2020).

    Google Scholar 

  34. Chandrasekar, S., Beach, J. R. & Oakes, P. W. Shining a light on RhoA: optical control of cell contractility. Int. J. Biochem. Cell Biol. 161, 106442 (2023).

    Google Scholar 

  35. Qu, Z. et al. Persistent fluid flows defined by active matter boundaries. Commun. Phys. 4, 1 (2021).

    Google Scholar 

  36. Mathijssen, A. J. T. M., Culver, J., Bhamla, M. S. & Prakash, M. Collective intercellular communication through ultra-fast hydrodynamic trigger waves. Nature 571, 560 (2019).

    Google Scholar 

  37. Ruiz, F., Garreau de Loubresse, N., Klotz, C., Beisson, J. & Koll, F. Centrin deficiency in Paramecium affects the geometry of basal-body duplication. Curr. Biol. 15, 2097 (2005).

    Google Scholar 

  38. Mahadevan, L. & Matsudaira, P. Motility powered by supramolecular springs and ratchets. Science 288, 95 (2000).

    Google Scholar 

  39. Hawkes, R. B. & Holberton, D. V. Myonemal contraction of Spirostomum. I. Kinetics of contraction and relaxation. J. Cell. Physiol. 84, 225 (1974).

    Google Scholar 

  40. Misra, G., Dickinson, R. B. & Ladd, A. J. C. Mechanics of Vorticella contraction. Biophys. J. 98, 2923 (2010).

    Google Scholar 

  41. Kilpatrick, A. M., Honts, J. E., Sleister, H. M. & Fowler, C. A. Solution NMR structures of the C-domain of Tetrahymena cytoskeletal protein Tcb2 reveal distinct calcium-induced structural rearrangements. Proteins 84, 1748 (2016).

    Google Scholar 

  42. Floyd, C. et al. A unified model for the dynamics of ATP-independent ultrafast contraction. Proc. Natl. Acad. Sci. USA. 120, e2217737120 (2023).

    Google Scholar 

  43. Upadhyaya, A. et al. Power-limited contraction dynamics of Vorticella convallaria: an ultrafast biological spring. Biophys. J. 94, 265 (2008).

    Google Scholar 

  44. Chung, E. G. & Ryu, S. Stalk-length-dependence of the contractility of Vorticella convallaria. Phys. Biol. 14, 066002 (2017).

    Google Scholar 

  45. Ryu, S., Lang, M. J. & Matsudaira, P. Maximal force characteristics of the Ca2+-powered actuator of Vorticella convallaria. Biophys. J. 103, 860 (2012).

    Google Scholar 

  46. Chang, R. & Prakash, M. Topological damping in an ultrafast giant cell. Proc. Natl. Acad. Sci. USA. 120, e2303940120 (2023).

    Google Scholar 

  47. Chang, R. & Prakash, M. Cellular Olympics: Ultrafast Cellular Motility Across the Tree of Life. Annu. Rev. Microbiol. 79, 405–426 (2025).

  48. Lannan, J. et al. Fishnet mesh of centrin-Sfi1 drives ultrafast calcium-activated contraction of the giant cell Spirostomum ambiguum. bioRxiv 2024 (2024).

  49. Norton, M. M., Grover, P., Hagan, M. F. & Fraden, S. Optimal control of active nematics. Phys. Rev. Lett. 125, 178005 (2020).

    Google Scholar 

  50. Ghosh, S., Joshi, C., Baskaran, A. & Hagan, M.F. Spatiotemporal control of structure and dynamics in a polar active fluid. Soft Matter 20, 7059–7071 (2024).

  51. Ghosh, S., Baskaran, A. & Hagan, M.F. Achieving designed texture and flows in bulk active nematics using optimal control theory. J. Chem. Phys. 162, 134902 (2025).

  52. Wagner, C. G., Norton, M. M., Park, J. S. & Grover, P. Exact coherent structures and phase space geometry of preturbulent 2D active nematic channel flow. Phys. Rev. Lett. 128, 028003 (2022).

    Google Scholar 

  53. Nishiyama, K. et al. Closed-loop control of active nematic flows. Phys. Rev. X. 15, 041053 (2025)

  54. Shankar, S., Scharrer, L. V., Bowick, M. J. & Marchetti, M. C. Design rules for controlling active topological defects. Proc. Natl Acad. Sci. USA. 121, e2400933121 (2024).

    Google Scholar 

  55. Floyd, C., Dinner, A.R. & Vaikuntanathan, S. Learning to control non-equilibrium dynamics using local imperfect gradients. arXiv:2404.03798 (2024).

  56. Floyd, C., Dinner, A.R. & Vaikuntanathan, S. Tailoring interactions between active nematic defects with reinforcement learning. Soft Matter. 21, 4488–4497 (2025).

  57. Takemasa, T. et al. Cloning and sequencing of the gene for Tetrahymena calcium-binding 25-kDa protein. J. Biol. Chem. 264, 19293 (1989).

    Google Scholar 

  58. Kilpatrick, A. M. et al. Backbone and side-chain chemical shift assignments for the C-terminal domain of Tcb2, a cytoskeletal calcium-binding protein from Tetrahymena thermophila. Biomol. NMR Assign. 10, 281 (2016).

    Google Scholar 

  59. Hanyu, K., Takemasa, T., Numata, O., Takahashi, M. & Watanabe, Y. Immunofluorescence localization of a 25-kDa Tetrahymena EF-hand Ca2+-binding protein, TCBP-25, in the cell cortex and possible involvement in conjugation. Exp. Cell Res. 219, 487 (1995).

    Google Scholar 

  60. Nakagawa, T., Fujiu, K., Cole, E. S. & Numata, O. Involvement of a 25 kDa Tetrahymena Ca2+-binding protein in pronuclear exchange. Cell Struct. Funct. 33, 151 (2008).

    Google Scholar 

  61. Ohnishi, K. & Watanabe, Y. Purification and some properties of a new Ca2+-binding protein (TCBP-10) present in Tetrahymena cilium. J. Biol. Chem. 258, 13978 (1983).

    Google Scholar 

  62. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493 (2024).

    Google Scholar 

  63. Honts, J. E. & Williams, N. E. Novel cytoskeletal proteins in the cortex of Tetrahymena. J. Eukaryot. Microbiol. 50, 9 (2003).

    Google Scholar 

  64. Yang, C.-F. & Tsai, W.-C. Calmodulin: The switch button of calcium signaling. Tzu Chi Med. J. 34, 15 (2022).

    Google Scholar 

  65. DMNP-EDTA, tetrapotassium salt (caged calcium). Biotium https://biotium.com/product/dmnp-edta-tetrapotassium-salt-caged-calcium (2016).

  66. Bers, D. M., Patton, C. W. & Nuccitelli, R. A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol. 40, 3 (1994).

    Google Scholar 

  67. Barreto-Chang, O.L. & Dolmetsch, R.E. Calcium imaging of cortical neurons using Fura-2 AM. J. Vis. Exp. (2009).

  68. Tsien, R. & Pozzan, T. Measurement of cytosolic free Ca2+ with Quin2. Methods Enzymol. 172, 230–262 (1989).

    Google Scholar 

  69. Bechhoefer, J.Control Theory for Physicists (Cambridge Univ. Press, 2021).

  70. Polygon: Cellular-resolution optogenetics & photostimulation. Mightex https://www.mightexbio.com/polygon (2017).

  71. Yang, F., Liu, S., Lee, H. J., Phillips, R. & Thomson, M. Dynamic flow control through active matter programming language. Nat. Mater. 24, 615 (2025).

    Google Scholar 

  72. Chandrasekharan, N.P., Lei, X., Honts, J., Bhamla, S. & Coyle, S.M. Decoding ultrasensitive self-assembly of the calcium-regulated Tetrahymena cytoskeletal protein Tcb2 using optical actuation. J. Biol. Chem. 301, 10824 (2025).

  73. Phan-Thien, N. & Mai-Duy, N.Understanding Viscoelasticity: An Introduction to Rheology (Springer, 2013).

  74. Ashby, M. F. & Cebon, D. Materials selection in mechanical design. J. Phys. IV 3, C7 (1993).

    Google Scholar 

  75. Li, X. et al. Tensile force-induced cytoskeletal remodeling: Mechanics before chemistry. PLoS Comput. Biol. 16, e1007693 (2020).

    Google Scholar 

  76. Sutton, R.S. & Barto, A.G.Reinforcement Learning: An Introduction (MIT Press, 2018).

  77. Falk, M. J., Alizadehyazdi, V., Jaeger, H. & Murugan, A. Learning to control active matter. Phys. Rev. Res. 3, 033291 (2021).

    Google Scholar 

  78. Chennakesavalu, S. & Rotskoff, G.M. Probing the theoretical and computational limits of dissipative design. J. Chem. Phys. 155, (2021).

  79. Silver, D. et al. Deterministic policy gradient algorithms. in Proc. International Conference on Machine Learning 387–395 (PMLR, 2014).

  80. Lillicrap, T.P. et al. Continuous control with deep reinforcement learning. arXiv:1509.02971 (2015).

  81. Floyd, C., Levine, H., Jarzynski, C. & Papoian, G. A. Understanding cytoskeletal avalanches using mechanical stability analysis. Proc. Natl Acad. Sci. USA. 118, e2110239118 (2021).

    Google Scholar 

  82. Vicente-Manzanares, M., Ma, X., Adelstein, R. S. & Horwitz, A. R. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 10, 778 (2009).

    Google Scholar 

  83. Sakamoto, R. & Murrell, M. P. Mechanical power is maximized during contractile ring-like formation in a biomimetic dividing cell model. Nat. Commun. 15, 9731 (2024).

    Google Scholar 

  84. Soares e Silva, M. et al. Active multistage coarsening of actin networks driven by myosin motors. Proc. Natl Acad. Sci. USA. 108, 9408 (2011).

    Google Scholar 

  85. Wagoner, J. A. & Dill, K. A. Evolution of mechanical cooperativity among myosin II motors. Proc. Natl Acad. Sci. USA. 118, e2101871118 (2021).

    Google Scholar 

  86. Krishna, A., Savinov, M., Ierushalmi, N., Mogilner, A. & Keren, K. Size-dependent transition from steady contraction to waves in actomyosin networks with turnover. Nat. Phys. 20, 123–134 (2024).

  87. Mattila, P. K. & Lappalainen, P. Filopodia: molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 9, 446 (2008).

    Google Scholar 

  88. Murrell, M. P. & Gardel, M. L. F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex. Proc. Natl Acad. Sci. USA. 109, 20820 (2012).

    Google Scholar 

  89. Lenz, M. Reversal of contractility as a signature of self-organization in cytoskeletal bundles. eLife 9, e51751 (2020).

    Google Scholar 

  90. Bement, W. M. et al. Activator–inhibitor coupling between Rho signalling and actin assembly makes the cell cortex an excitable medium. Nat. Cell Biol. 17, 1471 (2015).

    Google Scholar 

  91. Maxian, O., Dinner, A.R. & Munro, E. Actin network heterogeneity tunes activator-inhibitor dynamics at the cell cortex. Proc. Natl. Acad. Sci. U.S.A. 122, e2520485122 (2025).

  92. Ishihara, A., Gee, K., Schwartz, S., Jacobson, K. & Lee, J. Photoactivation of caged compounds in single living cells: an application to the study of cell locomotion. Biotechniques 23, 268 (1997).

    Google Scholar 

  93. Blosser, M. C., Horst, B. G. & Keller, S. L. cDICE method produces giant lipid vesicles under physiological conditions of charged lipids and ionic solutions. Soft Matter 12, 7364 (2016).

    Google Scholar 

  94. Abkarian, M., Loiseau, E. & Massiera, G. Continuous droplet interface crossing encapsulation (cDICE) for high throughput monodisperse vesicle design. Soft Matter 7, 4610 (2011).

    Google Scholar 

  95. Moga, A., Yandrapalli, N., Dimova, R. & Robinson, T. Optimization of the inverted emulsion method for high-yield production of biomimetic giant unilamellar vesicles. ChemBioChem 20, 2674 (2019).

    Google Scholar 

  96. Kirillov, A. et al. Segment anything. Proc. IEEE/CVF Int. Conf. Comput. Vis. 4015–4026 (2023).

  97. Nar, K. segment-anything-video: MetaSeg: Packaged version of the Segment Anything repository. GitHub.

  98. Thielicke, W. & Sonntag, R. Particle image velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab. J. Open Res. Softw. 9, 12 (2021).

    Google Scholar 

  99. Karaev, N. et al. CoTracker: It is better to track together. in Proc. ECCV (2024).

  100. Tian, J. & other contributors. ReinforcementLearning.jl: A reinforcement learning package for the Julia programming language. GitHub https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl (2020).

  101. Lei, X. et al. Light-induced assembly and repeatable actuation in Ca2+-driven chemomechanical protein networks_Nat_Comm_2026. Zenodo https://doi.org/10.5281/zenodo.18318970 (2026).

  102. Lei, X. et al. TCB2 network: Tcb2 NatComm 2026Jan. Zenodo https://doi.org/10.5281/zenodo.18394283 (2026).

Download references

Acknowledgements

We wish to thank Douglas Chalker for providing the Tcb2-GFP-tagged Tetrahymena strain, Heidi Sleister and students for creating the GFP/mCherry versions of Tcb2 and Mary Elting, Fred Chang, Jane Maienschein, and Suri Vaikuntanathan for helpful discussions. A.R.D. acknowledges support from National Science Foundation (NSF) award MCB-2313725 and the University of Chicago Materials Research Science and Engineering Center funded by NSF award DMR-2011854. S.C. acknowledges support from NSF award MCB-2313723 and the David and Lucille Packard Fellowship for Science and Engineering. C.F. acknowledges support from the University of Chicago Data Science Institute (DSI) AI + Science Research Initiative.  J.H. acknowledges support from NSF award MCB-2313727 and from the Marshall & Judith Flapan Professorship in Biology. S.B. acknowledges support from NSF award MCB-2313724, National Institutes of Health (NIH) award R35GM142588 and Schmidt Sciences, LLC. The authors acknowledge the University of Chicago’s Research Computing Center for computing resources.

Author information

Author notes
  1. These authors contributed equally: Xiangting Lei, Carlos Floyd.

Authors and Affiliations

  1. School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA

    Xiangting Lei, Laura Casas-Ferrer, Tuhin Chakrabortty & Saad Bhamla

  2. Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL, USA

    Carlos Floyd & Aaron R. Dinner

  3. Department of Biochemistry, University of Wisconsin Madison, Madison, WI, USA

    Nithesh Chandrasekharan & Scott Coyle

  4. Department of Biology, Drake University, Des Moines, IA, USA

    Jerry Honts

  5. BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA

    Saad Bhamla

Authors
  1. Xiangting Lei
    View author publications

    Search author on:PubMed Google Scholar

  2. Carlos Floyd
    View author publications

    Search author on:PubMed Google Scholar

  3. Laura Casas-Ferrer
    View author publications

    Search author on:PubMed Google Scholar

  4. Tuhin Chakrabortty
    View author publications

    Search author on:PubMed Google Scholar

  5. Nithesh Chandrasekharan
    View author publications

    Search author on:PubMed Google Scholar

  6. Aaron R. Dinner
    View author publications

    Search author on:PubMed Google Scholar

  7. Scott Coyle
    View author publications

    Search author on:PubMed Google Scholar

  8. Jerry Honts
    View author publications

    Search author on:PubMed Google Scholar

  9. Saad Bhamla
    View author publications

    Search author on:PubMed Google Scholar

Contributions

X.L., C.F., L.C., T.C., N.C., A.R.D., S.C., J.H., S.B. investigation; X.L. and C.F. formal analysis, X.L., C.F., L.C., N.C., A.R.D., S.C., J.H., S.B. methodology; A.R.D., S.C., J.H., S.B. funding acquisition; A.R.D., S.C., J.H., S.B. supervision; X.L. and C.F. writing original draft; X.L., C.F., A.R.D., S.C., J.H., S.B. writing-review and editing.

Corresponding author

Correspondence to Saad Bhamla.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Movie 1

Supplementary Movie 2

Supplementary Movie 3

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, X., Floyd, C., Casas-Ferrer, L. et al. Light-induced assembly and repeatable actuation in Ca2+-driven chemomechanical protein networks. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69651-2

Download citation

  • Received: 03 October 2025

  • Accepted: 03 February 2026

  • Published: 21 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69651-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing