Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Earth system simulations suggest that the Proterozoic ocean was greener but less productive
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 17 February 2026

Earth system simulations suggest that the Proterozoic ocean was greener but less productive

  • Peng Liu  ORCID: orcid.org/0000-0003-4175-504X1,2,
  • Yonggang Liu  ORCID: orcid.org/0000-0001-8844-21853,
  • Lin Dong  ORCID: orcid.org/0000-0003-1754-842X4,
  • Jian Zhang5,
  • Sanzhong Li  ORCID: orcid.org/0000-0002-3436-27931,2 &
  • …
  • Yihui Chen  ORCID: orcid.org/0000-0001-9166-08373,6 

Nature Communications , Article number:  (2026) Cite this article

  • 1702 Accesses

  • 10 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biogeochemistry
  • Palaeoceanography
  • Palaeoclimate

Abstract

Geological records suggest that marine phytoplankton might have arisen in the Proterozoic while zooplankton remained absent, and marine productivity was not excessively low. However, quantitative estimates of phytoplankton biomass and net primary productivity remain elusive. Here, we use the Community Earth System Model version 1.2.2, modifying biological module and boundary conditions, to simulate marine biogeochemical cycles in the Proterozoic. The simulations demonstrate that, within the expected range of nutrient levels, phytoplankton at sea surface was more than 2 times denser than present, sustaining a greener ocean due to the absence of predators. Heavier surface chlorophyll in the Proterozoic would block sunlight from reaching subsurface layers. This so-called self-shielding effect would decrease subsurface net primary productivity significantly. Simulations show that, through the combined influence of low nitrate level under a low-oxygen environment, the absence of diatoms, and self-shielding, the Proterozoic net primary productivity was only approximately 60% and 30% of the present level in warm (almost ice-free) and cold (sea-ice reaches around 30°N/S) periods, respectively. These findings are subject to uncertainties in model framework and Proterozoic nutrients levels; a slightly less green ocean or more productive ocean was possible if the phosphorus level was much lower or higher than the present level.

Similar content being viewed by others

Feedbacks between phytoplankton and nutrient cycles in a warming ocean

Article 22 May 2024

Dynamic redox and nutrient cycling response to climate forcing in the Mesoproterozoic ocean

Article Open access 20 October 2023

Major restructuring of marine plankton assemblages under global warming

Article Open access 01 September 2021

Data availability

The simulation results used for the present study are archived on Zenodo with the identifier https://doi.org/10.5281/zenodo.18489467. Source data are provided as a Source data file. Source data are provided with this paper.

Code availability

The source code of CESM1.2.2 can be accessed at https://github.com/ESCOMP/CESM. The NCAR Command Language (NCL) version 6.2.2 (https://doi.org/10.5065/D6WD3XH5) is used for graphing.

References

  1. Hoffman, P. F. et al. Snowball Earth climate dynamics and Cryogenian geology-geobiology. Sci. Adv. 3, e1600983 (2017).

    Google Scholar 

  2. Kasting, J. F. Methane and climate during the Precambrian era. Precambrian Res. 137, 119–129 (2005).

    Google Scholar 

  3. Butterfield, N. J. Proterozoic photosynthesis–a critical review. Palaeontology 58, 953–972 (2015).

    Google Scholar 

  4. Crockford, P. W. et al. Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity. Nature 559, 613–616 (2018).

    Google Scholar 

  5. Brocks, J. J. et al. The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548, 578–581 (2017).

    Google Scholar 

  6. Wang, X., Dong, L., Ma, H., Lang, X. & Wang, R. Primary productivity recovery and shallow-water oxygenation during the Sturtian deglaciation in South China. Glob. Planet. Change 241, 104546 (2024).

    Google Scholar 

  7. Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A. & Butterfield, N. J. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nat. Geosci. 7, 257–265 (2014).

    Google Scholar 

  8. Tziperman, E., Halevy, I., Johnston, D. T., Knoll, A. H. & Schrag, D. P. Biologically induced initiation of Neoproterozoic snowball-Earth events. Proc. Natl. Acad. Sci. USA. 108, 15091–15096 (2011).

    Google Scholar 

  9. Rothman, D. H., Hayes, J. M. & Summons, R. E. Dynamics of the Neoproterozoic carbon cycle. Proc. Natl. Acad. Sci. USA. 100, 8124–8129 (2003).

    Google Scholar 

  10. Feulner, G., Hallmann, C. & Kienert, H. Snowball cooling after algal rise. Nat. Geosci. 8, 659–662 (2015).

    Google Scholar 

  11. Kump, L. R. The rise of atmospheric oxygen. Nature 451, 277–278 (2008).

    Google Scholar 

  12. Planavsky, N. J. et al. Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature 477, 448–451 (2011).

    Google Scholar 

  13. Liu, P. et al. Large influence of dust on the Precambrian climate. Nat. Commun. 11, 4427 (2020).

    Google Scholar 

  14. Motomura, K. et al. The nitrate-limited freshwater environment of the late Paleoproterozoic Embury Lake Formation, Flin Flon belt. Can. Chem. Geol. 616, 121234 (2023).

    Google Scholar 

  15. Kang, J., Gill, B., Reid, R., Zhang, F. & Xiao, S. Nitrate limitation in early Neoproterozoic oceans delayed the ecological rise of eukaryotes. Sci. Adv. 9, eade9647 (2023).

    Google Scholar 

  16. Laakso, T. A. & Schrag, D. P. A small marine biosphere in the Proterozoic. Geobiol 17, 161–171 (2019).

    Google Scholar 

  17. Guilbaud, R. et al. Phosphorus-limited conditions in the early Neoproterozoic ocean maintained low levels of atmospheric oxygen. Nat. Geosci. 13, 296–301 (2020).

    Google Scholar 

  18. Planavsky, N. J. et al. The evolution of the marine phosphate reservoir. Nature 467, 1088–1090 (2010).

    Google Scholar 

  19. Cebrian, J., Stutes, A. L. & Corcoran, A. A. Effects of nutrient enrichment and shading on sediment primary production and metabolism in eutrophic estuaries. Mar. Ecol. Prog. Ser. 312, 29–43 (2006).

    Google Scholar 

  20. Estes, J. A. et al. Trophic Downgrading of Planet Earth. Science 333, 301–306 (2011).

    Google Scholar 

  21. Eckford-Soper, L. K., Andersen, K. H., Hansen, T. F. & Canfield, D. E. A case for an active eukaryotic marine biosphere during the Proterozoic era. Proc. Natl. Acad. Sci. USA. 119, e2122042119 (2022).

    Google Scholar 

  22. Laakso, T. A. & Schrag, D. A theory of atmospheric oxygen. Geobiology 15, 366–384 (2017).

    Google Scholar 

  23. Claire, M. W., Catling, D. C. & Zahnle, K. J. Biogeochemical modelling of the rise in atmospheric oxygen. Geobiology 4, 239–269 (2006).

    Google Scholar 

  24. Gianchandani, K., Halevy, I., Gildor, H., Ashkenazy, Y. & Tziperman, E. Production of Neoproterozoic banded iron formations in a partially ice-covered ocean. Nat. Geosci. 17, 298–301 (2024).

  25. Ramme, L., Ilyina, T. & Marotzke, J. Moderate greenhouse climate and rapid carbonate formation after Marinoan snowball Earth. Nat. Commun. 15, 3571 (2024).

    Google Scholar 

  26. Cao, X. et al. Earth’s tectonic and plate boundary evolution over 1.8 billion years. Geosci. Front. 15, 101922 (2024).

    Google Scholar 

  27. Li, Z.-X. et al. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res. 160, 179–210 (2008).

    Google Scholar 

  28. Liu, P., Liu, Y., Gu, S., Hoffman, P. & Li, S. A positive cooling feedback for the Neoproterozoic snowball Earth initiation due to weakening of ocean ventilation. Geophys. Res. Lett. 50, e2022GL102020 (2023).

    Google Scholar 

  29. Long, M. C. et al. Simulations with the marine biogeochemistry library (MARBL). J. Adv. Model. Earth Syst. 13, e2021MS002647 (2021).

    Google Scholar 

  30. Sims, P. A., Mann, D. G. & Medlin, L. K. Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45, 361–402 (2006).

    Google Scholar 

  31. Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Annu. Rev. Mar. Sci. 9, 413–444 (2017).

    Google Scholar 

  32. Holder, C. & Gnanadesikan, A. How well do Earth System Models capture apparent relationships between phytoplankton biomass and environmental variables? Glob. Biogeochem. Cycles 37, e2023GB007701 (2023).

    Google Scholar 

  33. Marinov, I., Doney, S. & Lima, I. Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light. Biogeosciences 7, 3941–3959 (2010).

    Google Scholar 

  34. Beckmann, A. & Hense, I. Beneath the surface: characteristics of oceanic ecosystems under weak mixing conditions—a theoretical investigation. Prog. Oceanogr. 75, 771–796 (2007).

    Google Scholar 

  35. Holmer, M. & Bondgaard, E. J. Photosynthetic and growth response of eelgrass to low oxygen and high sulfide concentrations during hypoxic events. Aquat. Bot. 70, 29–38 (2001).

    Google Scholar 

  36. Twilley, R. R., Kemp, W. M., Staver, K. W., Stevenson, J. C. & Boynton, W. R. Nutrient enrichment of estuarine submersed vascular plant communities. 1. Algal growth and effects on production of plants and associated communities. Mar. Ecol. Prog. Ser. 23, 179–191 (1985).

    Google Scholar 

  37. Moore, J. K., Doney, S. C. & Lindsay, K. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem. Cycles 18, GB4028 (2004).

  38. Moore, C. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).

    Google Scholar 

  39. McGlathery, K. J. Macroalgal blooms contribute to the decline of seagrass in nutrient-enriched coastal waters. J. Phycol. 37, 453-456 (2001).

  40. Huntington, B. E. & Boyer, K. E. Effects of red macroalgal (Gracilariopsis sp.) abundance on eelgrass Zostera marina in Tomales Bay, California, USA. Mar. Ecol. Prog. Ser. 367, 133–142 (2008).

    Google Scholar 

  41. Churilova, T. Y., Suslin, V., Moiseeva, N. & Efimova, T. Phytoplankton bloom and photosynthetically active radiation in coastal waters. J. Appl. Spectrosc. 86, 1084–1091 (2020).

    Google Scholar 

  42. Sarangi, R., Chauhan, P. & Nayak, S. Phytoplankton bloom monitoring in the offshore water of Northern Arabian Sea using IRS-P4 OCM Satellite data. Indian J. Mar. Sci. 30, 214–221 (2001).

  43. Raghavan, B. et al. Summer chlorophyll-a distribution in eastern Arabian Sea off Karnataka-Goa coast from satellite and in-situ observations. Remote Sens. Mar. Environ. 6406, 64060W (2006).

  44. Heck, K. L. Jr., Pennock, J. R., Valentine, J. F., Coen, L. D. & Sklenar, S. A. Effects of nutrient enrichment and small predator density on seagrass ecosystems: an experimental assessment. Limnol. Oceanogr. 45, 1041–1057 (2000).

    Google Scholar 

  45. Shiomoto, A., Tadokoro, K., Nagasawa, K. & Ishida, Y. Trophic relations in the subarctic North Pacific ecosystem: possible feeding effect from pink salmon. Mar. Ecol. Prog. Ser. 150, 75–85 (1997).

    Google Scholar 

  46. Odate, T. Plankton abundance and size structure in the northern North Pacific Ocean in early summer. Fish. Oceanogr. 3, 267–278 (1994).

    Google Scholar 

  47. Carpenter, S. R. et al. Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecol. Monogr. 71, 163–186 (2001).

    Google Scholar 

  48. Okey, T. A. et al. Simulating community effects of sea floor shading by plankton blooms over the West Florida Shelf. Ecol. Model. 172, 339–359 (2004).

    Google Scholar 

  49. Meyercordt, J. & Meyer-Reil, L.-A. Primary production of benthic microalgae in two shallow coastal lagoons of different trophic status in the southern Baltic Sea. Mar. Ecol. Prog. Ser. 178, 179–191 (1999).

    Google Scholar 

  50. Morel, A. & Bricaud, A. Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep Sea Res. Part A Oceanogr. Res. Pap. 28, 1375–1393 (1981).

    Google Scholar 

  51. Deng, L. et al. Estimation of vertical size-fractionated phytoplankton primary production in the northern South China Sea. Ecol. Indic. 135, 108546 (2022).

    Google Scholar 

  52. Sciascia, R., De Monte, S. & Provenzale, A. Physics of sinking and selection of plankton cell size. Phys. Lett. A 377, 467–472 (2013).

    Google Scholar 

  53. Mills, D. B., Vuillemin, A., Muschler, K., Coskun, ÖK. & Orsi, W. D. The Rise of Algae promoted eukaryote predation in the Neoproterozoic benthos. Sci. Adv. 11, eadt2147 (2025).

    Google Scholar 

  54. Lewis, M. R., Carr, M.-E., Feldman, G. C., Esaias, W. & McClain, C. Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean. Nature 347, 543–545 (1990).

    Google Scholar 

  55. Krüger, O. & Graßl, H. Southern Ocean phytoplankton increases cloud albedo and reduces precipitation. Geophys. Res. Lett. 38, L08809 (2011).

  56. Wang, S., Maltrud, M. E., Burrows, S. M., Elliott, S. M. & Cameron-Smith, P. Impacts of shifts in phytoplankton community on clouds and climate via the sulfur cycle. Glob. Biogeochem. Cycles 32, 1005–1026 (2018).

    Google Scholar 

  57. Mitchell, R. N. & Kirscher, U. Mid-Proterozoic day length stalled by tidal resonance. Nat. Geosci. 16, 567–569 (2023).

    Google Scholar 

  58. Zhou, M. et al. Earth-Moon dynamics from cyclostratigraphy reveals possible ocean tide resonance in the Mesoproterozoic era. Sci. Adv. 10, eadn7674 (2024).

    Google Scholar 

  59. Laakso, T. A. & Schrag, D. P. Regulation of atmospheric oxygen during the Proterozoic. Earth Planet. Sci. Lett. 388, 81–91 (2014).

    Google Scholar 

  60. Rickaby, R. E. M. & Eason Hubbard, M. R. Upper ocean oxygenation, evolution of RuBisCO and the Phanerozoic succession of phytoplankton. Free Radic. Biol. Med. 140, 295–304 (2019).

    Google Scholar 

  61. Yee, D. P. et al. The V-type ATPase enhances photosynthesis in marine phytoplankton and further links phagocytosis to symbiogenesis. Curr. Biol. 33, 2541–2547.e5 (2023).

    Google Scholar 

  62. Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S. & Wakeham, S. G. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep Sea Res. Part II 49, 219–236 (2002).

    Google Scholar 

  63. Letscher, R. T., Moore, J. K., Teng, Y.-C., Primeau, F. & Variable, C. N: P stoichiometry of dissolved organic matter cycling in the Community Earth System Model. Biogeosciences 12, 209–221 (2015).

    Google Scholar 

  64. Li, X. et al. A high-resolution climate simulation dataset for the past 540 million years. Sci. Data 9, 1–10 (2022).

    Google Scholar 

  65. Liu, Y. et al. Spatial continuous modeling of early Cenozoic carbon cycle and climate. Natl. Sci. Rev. 11, nwae061 (2024).

    Google Scholar 

  66. Hurrell, J. W. et al. The community earth system model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).

    Google Scholar 

  67. Smith, R. et al. The Parallel Ocean Program (POP) Reference Manual: Ocean Component of the Community Climate System Model (CCSM) and Community Earth System Model (CESM). Los Alamos National Laboratory Rep. LAUR-01853 141, 1–140 (2010).

  68. Smith, R. D. & McWilliams, J. C. Anisotropic horizontal viscosity for ocean models. Ocean Model. 5, 129–156 (2003).

    Google Scholar 

  69. Gent, P. R. & Mcwilliams, J. C. Isopycnal Mixing In Ocean Circulation Models. J. Phys. Oceanogr. 20, 150–155 (1990).

    Google Scholar 

  70. Liu, Y., Peltier, W., Yang, J. & Vettoretti, G. The initiation of Neoproterozoic “snowball” climates in CCSM3: the influence of paleocontinental configuration. Clim. Past 9, 2555–2577 (2013).

    Google Scholar 

  71. Large, W. G., McWilliams, J. C. & Doney, S. C. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32, 363–403 (1994).

    Google Scholar 

  72. Baatsen, M. et al. The middle to late Eocene greenhouse climate modelled using the CESM 1.0. 5. Clim. Past 16, 2573–2597 (2020).

    Google Scholar 

  73. Moore, J. K., Doney, S. C., Kleypas, J. A., Glover, D. M. & Fung, I. Y. An intermediate complexity marine ecosystem model for the global domain. Deep Sea Res. Part II 49, 403–462 (2002).

    Google Scholar 

  74. Séférian, R. et al. Tracking improvement in simulated marine biogeochemistry between CMIP5 and CMIP6. Curr. Clim. Change Rep. 6, 95–119 (2020).

    Google Scholar 

  75. Molina, E., Martínez, M., Sánchez, S., García, F. & Contreras, A. Growth and biochemical composition with emphasis on the fatty acids of Tetraselmis sp. Appl. Microbiol. Biotechnol. 36, 21–25 (1991).

    Google Scholar 

  76. Anderson, L. A. On the hydrogen and oxygen content of marine phytoplankton. Deep Sea Res. Part I 42, 1675–1680 (1995).

    Google Scholar 

  77. Sharoni, S. & Halevy, I. Geologic controls on phytoplankton elemental composition. Proc. Natl. Acad. Sci. USA. 119, e2113263118 (2022).

    Google Scholar 

  78. Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).

    Google Scholar 

  79. Bohlen, L., Dale, A. W. & Wallmann, K. Simple transfer functions for calculating benthic fixed nitrogen losses and C:N:P regeneration ratios in global biogeochemical models. Glob. Biogeochem. Cycles 26, GB3029 (2012).

  80. Soetaert, K., Herman, P. M. & Middelburg, J. J. A model of early diagenetic processes from the shelf to abyssal depths. Geochim. Cosmochim. Acta 60, 1019–1040 (1996).

    Google Scholar 

  81. Dunne, J. P., Sarmiento, J. L. & Gnanadesikan, A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Glob. Biogeochem. Cycles 21, GB4006 (2007).

  82. Moore, J. K., Lindsay, K., Doney, S. C., Long, M. C. & Misumi, K. Marine Ecosystem Dynamics and Biogeochemical Cycling in the Community Earth System Model [CESM1(BGC)]: comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 Scenarios. J. Clim. 26, 9291–9312 (2013).

    Google Scholar 

  83. Doney, S. C. et al. Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air–sea CO2 fluxes: physical climate and atmospheric dust. Deep Sea Res. Part II 56, 640–655 (2009).

    Google Scholar 

  84. Long, M. C., Lindsay, K., Peacock, S., Moore, J. K. & Doney, S. C. Twentieth-century oceanic carbon uptake and storage in CESM1 (BGC). J. Clim. 26, 6775–6800 (2013).

    Google Scholar 

  85. Park, Y. et al. Emergence of the Southeast Asian islands as a driver for Neogene cooling. Proc. Natl. Acad. Sci. USA. 117, 25319–25326 (2020).

    Google Scholar 

  86. Zuo, H. et al. A revised model of global silicate weathering considering the influence of vegetation cover on erosion rate. Geosci. Model Dev. 17, 3949–3974 (2024).

    Google Scholar 

  87. Gabet, E. J. & Mudd, S. M. A theoretical model coupling chemical weathering rates with denudation rates. Geology 37, 151–154 (2009).

    Google Scholar 

  88. Tang, M., Chu, X., Hao, J. & Shen, B. Orogenic quiescence in Earth’s middle age. Science 371, 728–731 (2021).

    Google Scholar 

  89. Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl. Acad. Sci. USA. 115, E2274–E2283 (2018).

    Google Scholar 

  90. Gough, D. Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981).

    Google Scholar 

  91. Liu, Y., Liu, P., Li, D., Peng, Y. & Hu, Y. Influence of dust on the initiation of Neoproterozoic snowball Earth events. J. Clim. 34, 6673–6689 (2021).

    Google Scholar 

  92. Jickells, T. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71 (2005).

    Google Scholar 

  93. Solmon, F., Chuang, P., Meskhidze, N. & Chen, Y. Acidic processing of mineral dust iron by anthropogenic compounds over the north Pacific Ocean. J. Geophys. Res. Atmos. 114, D02305 (2009).

  94. Hand, J. et al. Estimates of atmospheric-processed soluble iron from observations and a global mineral aerosol model: Biogeochemical implications. J. Geophys. Res. Atmos. 109, D17205 (2004).

  95. Kasting, J. & Walker, J. C. Limits on oxygen concentration in the prebiological atmosphere and the rate of abiotic fixation of nitrogen. J. Geophys. Res. Oceans 86, 1147–1158 (1981).

    Google Scholar 

  96. Kasting, J. F. Stability of ammonia in the primitive terrestrial atmosphere. J. Geophys. Res. Oceans 87, 3091–3098 (1982).

    Google Scholar 

  97. Liu, P. et al. Triple oxygen isotope constraints on atmospheric O2 and biological productivity during the mid-Proterozoic. Proc. Natl. Acad. Sci. USA. 118, e2105074118 (2021).

    Google Scholar 

  98. Mather, T. et al. Nitric acid from volcanoes. Earth Planet. Sci. Lett. 218, 17–30 (2004).

    Google Scholar 

  99. Johnson, B. & Goldblatt, C. The nitrogen budget of Earth. Earth Sci. Rev. 148, 150–173 (2015).

    Google Scholar 

  100. Hartmann, J., Dürr, H. H., Moosdorf, N., Meybeck, M. & Kempe, S. The geochemical composition of the terrestrial surface (without soils) and comparison with the upper continental crust. Int. J. Earth Sci. 101, 365–376 (2012).

    Google Scholar 

  101. Watanabe, Y., Tajika, E. & Ozaki, K. Evolution of iron and oxygen biogeochemical cycles during the Precambrian. Geobiology 21, 689–707 (2023).

    Google Scholar 

  102. Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M. & West, A. J. Global chemical weathering and associated P-release—the role of lithology, temperature and soil properties. Chem. Geol. 363, 145–163 (2014).

    Google Scholar 

  103. Lucas, D. et al. Failure analysis of parameter-induced simulation crashes in climate models. Geosci. Model Dev. 6, 1157–1171 (2013).

    Google Scholar 

Download references

Acknowledgements

Y.L. is supported by the National Natural Science Foundation of China under grant 42225606. P.L is supported by the National Natural Science Foundation of China under grant 42475052, the National Key Research and Development Program of China under grant 2024YFF0808000, Fundamental Research Funds for the Central Universities under grant 202541010, and Young Talent of Lifting Engineering for Science and Technology in Shandong, China under grant SDAST2024QTA022. S.L. is supported by the National Natural Science Foundation of China under grant 42121005. The simulations were performed on the High-performance Computing Platform of Peking University and the Marine Big Data Center of the Institute for Advanced Ocean Study of Ocean University of China. The authors thank the technical support of the National Large Scientific and Technological Infrastructure “Earth System Numerical Simulation Facility” (https://cstr.cn/31134.02.EL).

Author information

Authors and Affiliations

  1. Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education and College of Marine Geosciences, Ocean University of China, Qingdao, China

    Peng Liu & Sanzhong Li

  2. Laoshan Laboratory, Laboratory for Marine Mineral Resources, Qingdao Marine Science and Technology Center, Qingdao, China

    Peng Liu & Sanzhong Li

  3. Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

    Yonggang Liu & Yihui Chen

  4. Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education and School of Earth and Space Sciences, Peking University, Beijing, China

    Lin Dong

  5. State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

    Jian Zhang

  6. National Satellite Meteorological Center, China Meteorological Administration, Beijing, China

    Yihui Chen

Authors
  1. Peng Liu
    View author publications

    Search author on:PubMed Google Scholar

  2. Yonggang Liu
    View author publications

    Search author on:PubMed Google Scholar

  3. Lin Dong
    View author publications

    Search author on:PubMed Google Scholar

  4. Jian Zhang
    View author publications

    Search author on:PubMed Google Scholar

  5. Sanzhong Li
    View author publications

    Search author on:PubMed Google Scholar

  6. Yihui Chen
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.L. proposed the project. P.L. and Y.L. performed modeling analyses. P.L. and Y.L. wrote the manuscript. L.D., J.Z., S.L., and Y.C. contributed to the discussion and manuscript revision.

Corresponding author

Correspondence to Yonggang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Liu, Y., Dong, L. et al. Earth system simulations suggest that the Proterozoic ocean was greener but less productive. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69654-z

Download citation

  • Received: 15 April 2025

  • Accepted: 06 February 2026

  • Published: 17 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69654-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology