Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Half-integer thermal conductance in integer quantum Hall states
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 17 February 2026

Half-integer thermal conductance in integer quantum Hall states

  • Ujjal Roy1 na1,
  • Sourav Manna  ORCID: orcid.org/0000-0003-3018-09492 na1,
  • Souvik Chakraborty1,
  • Kenji Watanabe  ORCID: orcid.org/0000-0003-3701-81193,
  • Takashi Taniguchi  ORCID: orcid.org/0000-0002-1467-31053,
  • Ankur Das  ORCID: orcid.org/0000-0002-8289-99154,
  • Moshe Goldstein  ORCID: orcid.org/0000-0003-4456-80045,
  • Yuval Gefen  ORCID: orcid.org/0009-0002-4553-60392 &
  • …
  • Anindya Das  ORCID: orcid.org/0000-0002-6310-15761 

Nature Communications , Article number:  (2026) Cite this article

  • 2422 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Electronic properties and materials
  • Quantum Hall
  • Topological insulators

Abstract

Considering a range of candidate quantum phases of matter, half-integer thermal conductance is believed to be an unambiguous evidence of non-Abelian states. It has been long known that such half-integer values arise due to the presence of Majorana edge modes, representing a significant step towards topological quantum computing. Here, we challenge this prevailing notion by presenting a comprehensive theoretical and experimental study where half-integer two-terminal thermal conductance plateau is realized employing integer quantum Hall states. Our proposed setup features a confined geometry of bilayer graphene, interfacing distinct particle and hole-like integer quantum Hall edges. Each segment of the device exhibits full charge and thermal equilibration. Our approach is amenable to generalization to other quantum Hall platforms, and may give rise to other values of fractional quantized transport. Our study demonstrates that the observation of robust non-integer values of thermal conductance can arise as a manifestation of mundane equilibration dynamics as opposed to underlying non-trivial topology.

Similar content being viewed by others

Direct determination of the topological thermal conductance via local power measurement

Article 09 January 2023

An approach to the QHE in 3D electron systems

Article Open access 16 December 2025

Absent thermal equilibration on fractional quantum Hall edges over macroscopic scale

Article Open access 19 January 2022

Data availability

Source data are provided with this paper. All other data that support the findings of this study are available from the corresponding authors upon request.

References

  1. Kane, C. L. & Fisher, M. P. Thermal transport in a Luttinger liquid. Phys. Rev. Lett. 76, 3192–3195 (1996).

    Google Scholar 

  2. Kane, C. L. & Fisher, M. P. A. Quantized thermal transport in the fractional quantum hall effect. Phys. Rev. B Condens. Matter 55, 15832–15837 (1997).

    Google Scholar 

  3. Greiner, A., Reggiani, L., Kuhn, T. & Varani, L. Thermal conductivity and Lorenz number for one-dimensional ballistic transport. Phys. Rev. Lett. 78, 1114–1117 (1997).

    Google Scholar 

  4. Jezouin, S. et al. Quantum limit of heat flow across a single electronic channel. Science 342, 601–604 (2013).

    Google Scholar 

  5. Banerjee, M. et al. Observed quantization of anyonic heat flow. Nature 545, 75–79 (2017).

    Google Scholar 

  6. Srivastav, S. K. et al. Universal quantized thermal conductance in graphene. Sci. Adv. 5, eaaw5798 (2019).

    Google Scholar 

  7. Srivastav, S. K. et al. Vanishing thermal equilibration for hole-conjugate fractional quantum hall states in graphene. Phys. Rev. Lett. 126, 216803 (2021).

    Google Scholar 

  8. Srivastav, S. K. et al. Determination of topological edge quantum numbers of fractional quantum hall phases by thermal conductance measurements. Nat. Commun. 13, 5185 (2022).

    Google Scholar 

  9. Ma, K. K. W., Peterson, M. R., Scarola, V. W. & Yang, K. Fractional quantum hall effect at the filling factor ν = 5/2. In Encyclopedia of Condensed Matter Physics, 324–365 (Elsevier, 2024).

  10. Matsuda, Y., Shibauchi, T. & Kee, H.-Y. Kitaev quantum spin liquids. Rev. Mod. Phys. 97, 045003 (2025).

    Google Scholar 

  11. Moore, G. & Read, N. Nonabelions in the fractional quantum hall effect. Nucl. Phys. B 360, 362 – 396 (1991).

    Google Scholar 

  12. Banerjee, M. et al. Observation of half-integer thermal Hall conductance. Nature 559, 205–210 (2018).

    Google Scholar 

  13. Paul, A. K., Tiwari, P., Melcer, R., Umansky, V. & Heiblum, M. Topological thermal hall conductance of even-denominator fractional states. Phys. Rev. Lett. 133, 076601 (2024).

    Google Scholar 

  14. Abanin, D. A. & Levitov, L. S. Quantized transport in graphene p-n junctions in a magnetic field. Science 317, 641–643 (2007).

    Google Scholar 

  15. Williams, J. R., Dicarlo, L. & Marcus, C. M. Quantum Hall effect in a gate-controlled p-n junction of graphene. Science 317, 638–641 (2007).

    Google Scholar 

  16. Özyilmaz, B. et al. Electronic transport and quantum Hall effect in bipolar graphene p-n-p junctions. Phys. Rev. Lett. 99, 166804 (2007).

    Google Scholar 

  17. Zimmermann, K. et al. Tunable transmission of quantum hall edge channels with full degeneracy lifting in split-gated graphene devices. Nat. Commun. 8, 14983 (2017).

    Google Scholar 

  18. Pandey, P. et al. Half-quantized hall plateaus in the confined geometry of graphene. arXiv:2410.03896 (2024).

  19. Ji, W. & Wen, X.-G. \(\frac{1}{2}({e}^{2}/h)\) conductance plateau without 1d chiral majorana fermions. Phys. Rev. Lett. 120, 107002 (2018).

    Google Scholar 

  20. Kayyalha, M. et al. Absence of evidence for chiral majorana modes in quantum anomalous Hall-superconductor devices. Science 367, 64–67 (2020).

    Google Scholar 

  21. Uday, A., Lippertz, G., Bhujel, B., Taskin, A. A. & Ando, Y. Non-Majorana origin of the half-integer conductance quantization elucidated by multiterminal superconductor–quantum anomalous hall insulator heterostructure. Phys. Rev. B 111, 035440 (2025).

    Google Scholar 

  22. Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Half-integer conductance plateau at the ν = 2/3 fractional quantum hall state in a quantum point contact. Phys. Rev. Lett. 130, 076205 (2023).

    Google Scholar 

  23. Fauzi, M. H., Nakagawara, K., Hashimoto, K., Shibata, N. & Hirayama, Y. Synthesizing 2h/e2 resistance plateau at the first Landau level confined in a quantum point contact. Commun. Phys. 6, (2023).

  24. McCann, E. & Fal’ko, V. I. Landau-level degeneracy and quantum hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006).

    Google Scholar 

  25. McCann, E. & Koshino, M. The electronic properties of bilayer graphene. Rep. Prog. Phys. 76, 056503 (2013).

    Google Scholar 

  26. Maher, P. et al. Bilayer graphene. tunable fractional quantum hall phases in bilayer graphene. Science 345, 61–64 (2014).

    Google Scholar 

  27. Li, J., Tupikov, Y., Watanabe, K., Taniguchi, T. & Zhu, J. Effective Landau level diagram of bilayer graphene. Phys. Rev. Lett. 120, 047701 (2018).

    Google Scholar 

  28. Kumar, R. et al. Absence of heat flow in ν = 0 quantum Hall ferromagnet in bilayer graphene. Nat. Phys. 20, 1941–1947 (2024).

    Google Scholar 

  29. Matsuo, S. et al. Edge mixing dynamics in graphene p-n junctions in the quantum hall regime. Nat. Commun. 6, 8066 (2015).

    Google Scholar 

  30. Paul, A. K. et al. Interplay of filling fraction and coherence in symmetry broken graphene p-n junction. Commun. Phys. 3 (2020).

  31. Maher, P. et al. Evidence for a spin phase transition at charge neutrality in bilayer graphene. Nat. Phys. 9, 154–158 (2013).

    Google Scholar 

  32. Wei, D. S. et al. Mach-Zehnder interferometry using spin- and valley-polarized quantum hall edge states in graphene. Sci. Adv. 3, e1700600 (2017).

    Google Scholar 

  33. Jo, M. et al. Quantum Hall valley splitters and a tunable Mach-Zehnder interferometer in graphene. Phys. Rev. Lett. 126, 146803 (2021).

    Google Scholar 

  34. Manna, S., Das, A., Goldstein, M. & Gefen, Y. Full classification of transport on an equilibrated 5/2 edge via shot noise. Phys. Rev. Lett. 132, 136502 (2024).

    Google Scholar 

  35. Manna, S., Das, A., Gefen, Y. & Goldstein, M. Shot noise as a diagnostic in the ν = 2/3 fractional quantum hall edge zoo. Low. Temp. Phys. 50, 1113–1122 (2024).

    Google Scholar 

  36. Manna, S., Das, A., Gefen, Y. & Goldstein, M. Multiple mechanisms for emerging conductance plateaus in fractional quantum hall states. Phys. Rev. Lett. 134, 256503 (2025).

    Google Scholar 

  37. Manna, S. & Das, A. Experimentally motivated order of length scales affect shot noise. Phys. Rev. B 112, 195128 (2025).

    Google Scholar 

  38. Amet, F., Williams, J. R., Watanabe, K., Taniguchi, T. & Goldhaber-Gordon, D. Selective equilibration of spin-polarized quantum hall edge states in graphene. Phys. Rev. Lett. 112, 196601 (2014).

    Google Scholar 

  39. Long, W., Sun, Q. -f & Wang, J. Disorder-induced enhancement of transport through graphene p-n junctions. Phys. Rev. Lett. 101, 166806 (2008).

    Google Scholar 

  40. Li, J. & Shen, S.-Q. Disorder effects in the quantum Hall effect of graphene p − n junctions. Phys. Rev. B 78, 205308 (2008).

    Google Scholar 

  41. Berg, E., Oreg, Y., Kim, E.-A. & von Oppen, F. Fractional charges on an integer quantum hall edge. Phys. Rev. Lett. 102, 236402 (2009).

    Google Scholar 

  42. Bid, A. et al. Observation of neutral modes in the fractional quantum hall regime. Nature 466, 585–590 (2010).

    Google Scholar 

  43. Kumar, R. et al. Observation of ballistic upstream modes at fractional quantum hall edges of graphene. Nat. Commun. 13, https://www.nature.com/articles/s41467-021-27805-4 (2022).

  44. Kumar, R. et al. Electrical noise spectroscopy of magnons in a quantum hall ferromagnet. Nat. Commun. 15, https://www.nature.com/articles/s41467-024-49446-z (2024).

  45. Wang, J., Meir, Y. & Gefen, Y. Edge reconstruction in the ν=2/3 fractional quantum hall state. Phys. Rev. Lett. 111, 246803 (2013).

    Google Scholar 

  46. Moore, J. E. & Haldane, F. D. M. Edge excitations of the ν= spin-singlet quantum hall state. Phys. Rev. B 55, 7818–7823 (1997).

    Google Scholar 

  47. Zhang, G., Gornyi, I. & Gefen, Y. Landscapes of an out-of-equilibrium anyonic sea. Phys. Rev. Lett. 134, 096303 (2025).

    Google Scholar 

  48. Zhang, G. et al. Measuring statistics-induced entanglement entropy with a hong–ou–mandel interferometer. Nat. Commun. 15, 3428 (2024).

    Google Scholar 

  49. Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173–177 (2020).

    Google Scholar 

  50. Han, C., Park, J., Gefen, Y. & Sim, H.-S. Topological vacuum bubbles by anyon braiding. Nat. Commun. 7, 11131 (2016).

    Google Scholar 

  51. Rosenow, B., Levkivskyi, I. P. & Halperin, B. I. Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016).

    Google Scholar 

  52. Głodzik, S. & Sedlmayr, N. Quantized thermal Hall conductance and the topological phase diagram of a superconducting bismuth bilayer. Phys. Rev. B 108, 184502 (2023).

    Google Scholar 

  53. Karmakar, S., Ratnakar, A. & Das, S. Elevated Hall responses as indicators of edge reconstruction. arXiv preprint arXiv: 2505.08746 https://arxiv.org/abs/2505.08746 (2025).

  54. Pizzocchero, F. et al. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 7,https://doi.org/10.1038/ncomms11894 (2016).

Download references

Acknowledgements

The authors thank Prof. Moty Heiblum for critical comments on the manuscript. U.R. and S.M. thank Arup Kumar Paul for useful discussions. We thank the International Centre for Theoretical Sciences (ICTS) for participating in the program - Condensed Matter meets Quantum Information (code: ICTS/COMQUI2023/9), where the collaboration was initiated. S.M. was supported by the Weizmann Institute of Science, Israel Deans fellowship through Feinberg Graduate School and the senior postdoctoral fellowship. Y.G. was supported by the InfoSys Chair, IISc, Bangalore. S.M. and Y. G. were also supported by the Minerva Foundation and grant no 2022391 from the United States–Israel Binational Science Foundation (BSF), Jerusalem, Israel. Ankur Das was supported by IISER, Tirupati Startup grant and ANRF/ECRG/2024/001172/PMS. M.G. has been supported by the Israel Science Foundation (ISF) and the Directorate for Defense Research and Development (DDR&D) through Grant No. 3427/21, the ISF Grant No. 1113/23, and the US-Israel Binational Science Foundation (BSF) through Grant No. 2020072. A.D. thanks the Department of Science and Technology (DST) and Science and Engineering Research Board (SERB), India, for financial support (SP/SERB-22-0387), (DST/NM/TUE/QM-5/2019), and also acknowledges funding through the Intensification of Research in High Priority Areas programme of the Science and Engineering Research Board (Grant No. IPA/2020/000034). A.D. also thanks CEFIPRA project SP/IFCP-22-0005. Growing the hBN crystals received support from the Japan Society for the Promotion of Science (KAKENHI grant nos. 19H05790, 20H00354 and 21H05233) to K.W. and T.T. The authors gratefully acknowledge the use of Blender (https://www.blender.org/) and Inkscape (https://inkscape.org/)—both free and open- source software—for the creation and refinement of figures presented in this work.

Author information

Author notes
  1. These authors contributed equally: Ujjal Roy, Sourav Manna.

Authors and Affiliations

  1. Department of Physics, Indian Institute of Science, Bangalore, India

    Ujjal Roy, Souvik Chakraborty & Anindya Das

  2. Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel

    Sourav Manna & Yuval Gefen

  3. National Institute of Material Science, Tsukuba, Japan

    Kenji Watanabe & Takashi Taniguchi

  4. Department of Physics, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India

    Ankur Das

  5. Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv, Israel

    Moshe Goldstein

Authors
  1. Ujjal Roy
    View author publications

    Search author on:PubMed Google Scholar

  2. Sourav Manna
    View author publications

    Search author on:PubMed Google Scholar

  3. Souvik Chakraborty
    View author publications

    Search author on:PubMed Google Scholar

  4. Kenji Watanabe
    View author publications

    Search author on:PubMed Google Scholar

  5. Takashi Taniguchi
    View author publications

    Search author on:PubMed Google Scholar

  6. Ankur Das
    View author publications

    Search author on:PubMed Google Scholar

  7. Moshe Goldstein
    View author publications

    Search author on:PubMed Google Scholar

  8. Yuval Gefen
    View author publications

    Search author on:PubMed Google Scholar

  9. Anindya Das
    View author publications

    Search author on:PubMed Google Scholar

Contributions

K.W. and T.T. synthesized the hBN crystals. U.R. contributed to device fabrication, measurement, data acquisition, and analysis. S.C. contributed to the measurement. S.M., Ankur D., M.G., and Y.G. contributed to the development of theory, analysis and data interpretation. A.D. contributed in designing the experiment, data interpretation, and analysis. All the authors contributed to writing the manuscript.

Corresponding author

Correspondence to Anindya Das.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, U., Manna, S., Chakraborty, S. et al. Half-integer thermal conductance in integer quantum Hall states. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69659-8

Download citation

  • Received: 15 July 2025

  • Accepted: 05 February 2026

  • Published: 17 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69659-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing