Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Phase diagram and spectroscopic signatures of a supersolid in the quantum ising magnet K2Co(SeO3)2
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 18 February 2026

Phase diagram and spectroscopic signatures of a supersolid in the quantum ising magnet K2Co(SeO3)2

  • Tong Chen  ORCID: orcid.org/0000-0001-7994-57171 na1,
  • Alireza Ghasemi1 na1,
  • Junyi Zhang  ORCID: orcid.org/0000-0003-3306-16541,
  • Liyu Shi1,
  • Zhenisbek Tagay1,
  • Youzhe Chen1,
  • Lei Chen  ORCID: orcid.org/0000-0002-1282-51442,
  • Eun Sang Choi3,
  • Marcelo Jaime  ORCID: orcid.org/0000-0001-5360-52204 nAff10,
  • Minseong Lee  ORCID: orcid.org/0000-0002-2369-99134,
  • Yiqing Hao  ORCID: orcid.org/0000-0001-5721-32245,
  • Huibo Cao  ORCID: orcid.org/0000-0002-5970-49805,
  • Barry L. Winn  ORCID: orcid.org/0000-0001-6383-43185,
  • Andrey A. Podlesnyak  ORCID: orcid.org/0000-0001-9366-63195,
  • Daniel M. Pajerowski  ORCID: orcid.org/0000-0003-3890-23795,
  • Ruidan Zhong6,7,
  • Xianghan Xu  ORCID: orcid.org/0000-0001-6854-300X7,
  • N. P. Armitage  ORCID: orcid.org/0000-0001-7568-20591,
  • Robert Cava7 &
  • …
  • Collin Broholm  ORCID: orcid.org/0000-0002-1569-98921,8,9 

Nature Communications , Article number:  (2026) Cite this article

  • 145 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Magnetic properties and materials
  • Phase transitions and critical phenomena

Abstract

Supersolid phases are quantum-entangled states of matter exhibiting the dual characteristics of superfluidity and solidity. Theory predicts that hard-core bosons on a triangular lattice can form such phases at half filling and near complete filling. Leveraging an exact mapping between bosons and spin-\(\frac{1}{2}\) degrees of freedom, here we show that these phases are realized in the triangular-lattice antiferromagnet K2Co(SeO3)2. At zero field, neutron diffraction reveals the development of quasi-two-dimensional \(\sqrt{3}\times \sqrt{3}\) magnetic order with Z3 translational symmetry breaking (solidity), though with reduced amplitude indicating strong quantum fluctuations. These fluctuations manifest as equidistant bands of continuum neutron scattering, where the lowest-energy mode is gapless at K \((\frac{1}{3}\frac{1}{3})\), consistent with broken U(1) spin rotational symmetry (superfluidity). For c-axis-oriented magnetic fields near saturation, we find a second phase consistent with a high-field supersolid. These two supersolids are separated by a pronounced 1/3 magnetization plateau phase that supports coherent spin waves, from which we determine the underlying spin Hamiltonian.

Similar content being viewed by others

Wannier states and spin supersolid physics in the triangular antiferromagnet K2Co(SeO3)2

Article Open access 05 July 2025

Giant magnetocaloric effect in spin supersolid candidate Na2BaCo(PO4)2

Article 10 January 2024

Complex magnetic properties associated with competing local and itinerant magnetism in \({\text {Pr}}_2 {\text {Co}}_{0.86} {\text {Si}}_{2.88}\)

Article Open access 24 June 2021

Data availability

The numerical data underlying the magnetization, specific heat, and elastic neutron scattering figures have been deposited in the Figshare database and can be accessed at https://figshare.com/s/9771e9a4e5a2cac62fb8. Due to the large file sizes, the raw inelastic neutron scattering datasets are hosted in the ORNL database https://analysis.sns.govunder the experiment identifier IPTS-29655. Processed inelastic neutron scattering data and all other data that support the findings of this study are available from the corresponding authors upon request.

References

  1. Ramirez, A. P., Hayashi, A., Cava, R. J., Siddharthan, R. & Shastry, B. Zero-point entropy in ‘spin ice’. Nature 399, 333–335 (1999).

    Google Scholar 

  2. Bramwell, S. T. & Gingras, M. J. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001).

    Google Scholar 

  3. Savary, L. & Balents, L. Coulombic quantum liquids in spin-1/2 pyrochlores. Phys. Rev. Lett. 108, 037202 (2012).

    Google Scholar 

  4. Lee, S., Onoda, S. & Balents, L. Generic quantum spin ice. Phys. Rev. B-Condens. Matter Mater. Phys. 86, 104412 (2012).

    Google Scholar 

  5. Gingras, M. J. & McClarty, P. A. Quantum spin ice: a search for gapless quantum spin liquids in pyrochlore magnets. Rep. Prog. Phys. 77, 056501 (2014).

    Google Scholar 

  6. Wannier, G. Antiferromagnetism. The triangular Ising net. Phys. Rev. 79, 357 (1950).

    Google Scholar 

  7. Jiang, H., Weng, M., Weng, Z., Sheng, D. & Balents, L. Supersolid order of frustrated hard-core bosons in a triangular lattice system. Phys. Rev. B 79, 020409 (2009).

    Google Scholar 

  8. Heidarian, D. & Paramekanti, A. Supersolidity in the triangular lattice spin-1/2 XXZ model: a variational perspective. Phys. Rev. Lett. 104, 015301 (2010).

    Google Scholar 

  9. Yamamoto, D., Marmorini, G. & Danshita, I. Quantum phase diagram of the triangular-lattice XXZ model in a magnetic field. Phys. Rev. Lett. 112, 127203 (2014).

    Google Scholar 

  10. Sellmann, D., Zhang, X.-F., Eggert, S. et al. Phase diagram of the antiferromagnetic XXZ model on the triangular lattice. Phys. Rev. B 91, 081104 (2015).

    Google Scholar 

  11. Thouless, D. The flow of a dense superfluid. Ann. Phys. 52, 403–427 (1969).

    Google Scholar 

  12. Andreev, A. & Lifshits, I. Quantum theory of defects in crystals. Zhur Eksper Teor. Fiz. 56, 2057–2068 (1969).

    Google Scholar 

  13. Chester, G. Speculations on Bose-Einstein condensation and quantum crystals. Phys. Rev. A 2, 256 (1970).

    Google Scholar 

  14. Leggett, A. J. Can a solid be “superfluid"? Phys. Rev. Lett. 25, 1543 (1970).

    Google Scholar 

  15. Kim, E. & Chan, M. H.-W. Probable observation of a supersolid helium phase. Nature 427, 225–227 (2004).

    Google Scholar 

  16. Boninsegni, M. & Prokof’ev, N. V. Colloquium: supersolids: What and where are they? Rev. Mod. Phys. 84, 759 (2012).

    Google Scholar 

  17. Li, J.-R. et al. A stripe phase with supersolid properties in spin–orbit-coupled bose-einstein condensates. Nature 543, 91–94 (2017).

    Google Scholar 

  18. Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87–90 (2017).

    Google Scholar 

  19. Melko, R. et al. Supersolid order from disorder: hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127207 (2005).

    Google Scholar 

  20. Wessel, S. & Troyer, M. Supersolid hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127205 (2005).

    Google Scholar 

  21. Boninsegni, M. & Prokof’ev, N. Supersolid phase of hard-core bosons on a triangular lattice. Phys. Rev. Lett. 95, 237204 (2005).

    Google Scholar 

  22. Heidarian, D. & Damle, K. Persistent supersolid phase of hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127206 (2005).

    Google Scholar 

  23. Wang, F., Pollmann, F. & Vishwanath, A. Extended supersolid phase of frustrated hard-core bosons on a triangular lattice. Phys. Rev. Lett. 102, 017203 (2009).

    Google Scholar 

  24. den Hertog, B. C. & Gingras, M. J. Dipolar interactions and origin of spin ice in Ising pyrochlore magnets. Phys. Rev. Lett. 84, 3430 (2000).

    Google Scholar 

  25. Syzranov, S. & Ramirez, A. Eminuscent phase in frustrated magnets: a challenge to quantum spin liquids. Nat. Commun. 13, 2993 (2022).

    Google Scholar 

  26. Villain, J., Bidaux, R., Carton, J.-P. & Conte, R. Order as an effect of disorder. J. de. Phys. 41, 1263–1272 (1980).

    Google Scholar 

  27. Henley, C. L. Ordering due to disorder in a frustrated vector antiferromagnet. Phys. Rev. Lett. 62, 2056 (1989).

    Google Scholar 

  28. Stone, M. B. et al. A comparison of four direct geometry time-of-flight spectrometers at the spallation neutron source. Rev. Sci. Instrum. 85, 045113 (2014).

  29. Chamorro, J. R., McQueen, T. M. & Tran, T. T. Chemistry of quantum spin liquids. Chem. Rev. 121, 2898–2934 (2020).

    Google Scholar 

  30. Gardner, J. S., Gingras, M. J. & Greedan, J. E. Magnetic pyrochlore oxides. Rev. Mod. Phys. 82, 53–107 (2010).

    Google Scholar 

  31. Gao, B. et al. Experimental signatures of a three-dimensional quantum spin liquid in effective spin-1/2 Ce2Zr2O7 pyrochlore. Nat. Phys. 15, 1052–1057 (2019).

    Google Scholar 

  32. Gaudet, J. et al. Quantum spin ice dynamics in the dipole-octupole pyrochlore magnet Ce2Zr2O7. Phys. Rev. Lett. 122, 187201 (2019).

    Google Scholar 

  33. Tennant, D., Perring, T., Cowley, R. & Nagler, S. Unbound spinons in the S= 1/2 antiferromagnetic chain KCuF3. Phys. Rev. Lett. 70, 4003 (1993).

    Google Scholar 

  34. Lake, B., Tennant, D. A., Frost, C. D. & Nagler, S. E. Quantum criticality and universal scaling of a quantum antiferromagnet. Nat. Mater. 4, 329–334 (2005).

    Google Scholar 

  35. Mourigal, M. et al. Fractional spinon excitations in the quantum Heisenberg antiferromagnetic chain. Nat. Phys. 9, 435–441 (2013).

    Google Scholar 

  36. Ma, S., Broholm, C., Reich, D. H., Sternlieb, B. & Erwin, R. Dominance of long-lived excitations in the antiferromagnetic spin-1 chain NENP. Phys. Rev. Lett. 69, 3571 (1992).

    Google Scholar 

  37. Zaliznyak, I., Lee, S.-H. & Petrov, S. Continuum in the spin-excitation spectrum of a Haldane chain observed by neutron scattering in CsNiCl3. Phys. Rev. Lett. 87, 017202 (2001).

    Google Scholar 

  38. Liu, X. & Kee, H.-Y. Non-Kitaev versus Kitaev honeycomb cobaltates. Phys. Rev. B 107, 054420 (2023).

    Google Scholar 

  39. Xiang, J. et al. Giant magnetocaloric effect in spin supersolid candidate \({{{{\rm{Na}}}}}_{2}{{{\rm{BaCo}}}}{({{{{\rm{PO}}}}}_{4})}_{2}\). Nature 625, 270–275 (2024).

    Google Scholar 

  40. Popescu, T. et al. Zeeman split Kramers doublets in spin-supersolid candidate \({{{{\rm{Na}}}}}_{2}{{{\rm{BaCo}}}}{({{{{\rm{PO}}}}}_{4})}_{2}\). Phys. Rev. Lett. 134, 136703 (2025).

    Google Scholar 

  41. Sheng, J. et al. Continuum of spin excitations in an ordered magnet. Innovation 6, 100769 (2025).

  42. Woodland, L., Okuma, R., Stewart, J. R., Balz, C. & Coldea, R. From continuum excitations to sharp magnons via transverse magnetic field in the spin-\(\frac{1}{2}\) ising-like triangular lattice antiferromagnet \({{{{\rm{na}}}}}_{2}{{{\rm{BaCo}}}}{({{{{\rm{PO}}}}}_{4})}_{2}\). Phys. Rev. B 112, 104413 (2025).

    Google Scholar 

  43. Zhong, R., Guo, S. & Cava, R. Frustrated magnetism in the layered triangular lattice materials \({{{{\rm{K}}}}}_{2}{{{\rm{Co}}}}{({{{{\rm{SeO}}}}}_{3})}_{2}\) and \({{{{\rm{Rb}}}}}_{2}{{{\rm{Co}}}}{({{{{\rm{SeO}}}}}_{3})}_{2}\). Phys. Rev. Mater. 4, 084406 (2020).

    Google Scholar 

  44. Noh, J. D. & Kim, D. Phase boundary and universality of the triangular lattice antiferromagnetic Ising model. Int. J. Mod. Phys. B 6, 2913–2924 (1992).

    Google Scholar 

  45. Wu, F.-Y. The Potts model. Rev. Mod. Phys. 54, 235 (1982).

    Google Scholar 

  46. Metcalf, B. Phase diagram of a nearest neighbor triangular antiferromagnet in an external field. Phys. Lett. A 45, 1–2 (1973).

    Google Scholar 

  47. Schick, M., Walker, J. & Wortis, M. Antiferromagnetic triangular Ising model. Phys. Lett. A 58, 479–480 (1976).

    Google Scholar 

  48. Sheng, J. et al. Two-dimensional quantum universality in the spin-1/2 triangular-lattice quantum antiferromagnet \({{{{\rm{Na}}}}}_{2}{{{\rm{BaCo}}}}{({{{{\rm{PO}}}}}_{4})}_{2}\). Proc. Natl. Acad. Sci. USA 119, e2211193119 (2022).

    Google Scholar 

  49. Gao, Y. et al. Spin supersolidity in nearly ideal easy-axis triangular quantum antiferromagnet \({{{{\rm{Na}}}}}_{2}{{{\rm{BaCo}}}}{({{{{\rm{PO}}}}}_{4})}_{2}\). npj Quantum Mater. 7, 89 (2022).

    Google Scholar 

  50. Miyashita, S. & Kawamura, H. Phase transitions of anisotropic Heisenberg antiferromagnets on the triangular lattice. J. Phys. Soc. Jpn. 54, 3385–3395 (1985).

    Google Scholar 

  51. Miyashita, S. Magnetic properties of Ising-like Heisenberg antiferromagnets on the triangular lattice. J. Phys. Soc. Jpn. 55, 3605–3617 (1986).

    Google Scholar 

  52. Sheng, Q. & Henley, C. L. Ordering due to disorder in a triangular Heisenberg antiferromagnet with exchange anisotropy. J. Phys. Condens. Matter 4, 2937 (1992).

    Google Scholar 

  53. Ulaga, M., Kokalj, J., Wietek, A., Zorko, A. & Prelovšek, P. Finite-temperature properties of the easy-axis Heisenberg model on frustrated lattices. Phys. Rev. B 109, 035110 (2024).

    Google Scholar 

  54. Toth, S. & Lake, B. Linear spin wave theory for single-q incommensurate magnetic structures. J. Phys. Condens. Matter 27, 166002 (2015).

    Google Scholar 

  55. Collins, M. & Petrenko, O. Review/synthèse: triangular antiferromagnets. Can. J. Phys. 75, 605–655 (1997).

    Google Scholar 

  56. Allan, G. & Betts, D. The temperature and frequency dependence of the inelastic neutron scattering from an Ising magnet. Can. J. Phys. 46, 799–802 (1968).

    Google Scholar 

  57. Muttalib, K. & Barry, J. Inelastic neutron scattering from a geometrically frustrated Ising antiferromagnet: Exact solutions. Phys. Rev. B 110, 024414 (2024).

    Google Scholar 

  58. Zhu, M. et al. Continuum excitations in a spin supersolid on a triangular lattice. Phys. Rev. Lett. 133, 186704 (2024).

    Google Scholar 

  59. Goldstone, J., Salam, A. & Weinberg, S. Broken symmetries. Phys. Rev. 127, 965 (1962).

    Google Scholar 

  60. Weinberg, S. Approximate symmetries and pseudo-goldstone bosons. Phys. Rev. Lett. 29, 1698 (1972).

    Google Scholar 

  61. Rau, J. G., McClarty, P. A. & Moessner, R. Pseudo-goldstone gaps and order-by-quantum disorder in frustrated magnets. Phys. Rev. Lett. 121, 237201 (2018).

    Google Scholar 

  62. Gao, Y. et al. Double magnon-roton excitations in the triangular-lattice spin supersolid. Phys. Rev. B 110, 214408 (2024).

    Google Scholar 

  63. Jia, H., Ma, B., Wang, Z. & Chen, G. Quantum spin supersolid as a precursory Dirac spin liquid in a triangular lattice antiferromagnet. Phys. Rev. Res. 6, 033031 (2024).

    Google Scholar 

  64. Zhu, M. et al. Wannier states and spin supersolid physics in the triangular antiferromagnet \({{{{\rm{K}}}}}_{2}{{{\rm{Co}}}}{({{{{\rm{SeO}}}}}_{3})}_{2}\). npj Quantum Mater. 10, 74 (2025).

    Google Scholar 

  65. Xu, Y., Hasik, J., Ponsioen, B. & Nevidomskyy, A. H. Simulating spin dynamics of supersolid states in a quantum Ising magnet. Phys. Rev. B 111, L060402 (2025).

    Google Scholar 

  66. Flores-Calderón, R., Moessner, R. & Pollmann, F. Unconventional spin dynamics and supersolid excitations in the triangular-lattice XXZ model. Phys. Rev. B 112, 184423 (2025).

  67. Mauri, A. & Mila, F. Slow convergence of spin-wave expansion and magnon dispersion in the 1/3 plateau of the triangular XXZ antiferromagnet. Phys. Rev. B 111, L180402 (2025).

    Google Scholar 

  68. Ulaga, M., Kokalj, J., Tohyama, T. & Prelovšek, P. Easy-axis Heisenberg model on the triangular lattice: from a supersolid to a gapped solid. Phys. Rev. B 111, 174442 (2025).

    Google Scholar 

  69. Ulaga, M., Kokalj, J., Tohyama, T. & Prelovšek, P. The anisotropic Heisenberg model close to the Ising limit: triangular lattice vs. effective models. arXiv preprint arXiv:2510.12667 (2025).

  70. Amaral, J. & Amaral, V. On estimating the magnetocaloric effect from magnetization measurements. J. Magn. Magn. Mater. 322, 1552–1557 (2010).

    Google Scholar 

  71. Cao, H. et al. Demand, a dimensional extreme magnetic neutron diffractometer at the high flux isotope reactor. Crystals 9, 5 (2018).

    Google Scholar 

  72. Clementi, E. & Roetti, C. Roothaan-hartree-fock atomic wavefunctions: basis functions and their coefficients for ground and certain excited states of neutral and ionized atoms, Z≤54. At. Data Nucl. Data tables 14, 177–478 (1974).

    Google Scholar 

  73. Tagay, Z., Romero III, R. & Armitage, N. High-precision measurements of terahertz polarization states with a fiber coupled time-domain THz spectrometer. Opt. Express 32, 15946–15954 (2024).

    Google Scholar 

  74. Momma, K. & Izumi, F. Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge valuable discussions with Gang Chen, Cristian Batista, Yuan Gao, Andreas Läuchli, Wei Li, Changle Liu, Frédéric Mila, Roderich Moessner, Oleg Tchernyshyov, and Shu Zhang. Initial phases of this work were supported as part of the Institute for Quantum Matter, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0019331. Further neutron scattering work was supported by Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0024469. C.B. was supported by the Gordon and Betty Moore Foundation EPIQS program under GBMF9456. Y.H. and H.C. were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Early Career Research Program Award KC0402020. J.Z. acknowledges the support of the NSF CAREER grant DMR-1848349. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by the National Science Foundation Cooperative Agreement No. DMR-2128556*, the U.S. Department of Energy, and the State of Florida. This research used resources at the High Flux Isotope Reactor and Spallation Neutron Source, DOE Office of Science User Facilities operated by Oak Ridge National Laboratory. The beam time was allocated to HYSPEC and CNCS on proposal number IPTS-29655. The beam time was allocated to HB-3A on proposal number IPTS-31928.

Author information

Author notes
  1. Marcelo Jaime

    Present address: Physikalisch-Technische Bundesanstalt, Braunschweig, Germany

  2. These authors contributed equally: Tong Chen, Alireza Ghasemi.

Authors and Affiliations

  1. William H. Miller III Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA

    Tong Chen, Alireza Ghasemi, Junyi Zhang, Liyu Shi, Zhenisbek Tagay, Youzhe Chen, N. P. Armitage & Collin Broholm

  2. Department of Physics and Astronomy, Rice University, Houston, TX, USA

    Lei Chen

  3. National High Magnetic Field Laboratory and Department of Physics, Florida State University, Tallahassee, FL, USA

    Eun Sang Choi

  4. National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM, USA

    Marcelo Jaime & Minseong Lee

  5. Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

    Yiqing Hao, Huibo Cao, Barry L. Winn, Andrey A. Podlesnyak & Daniel M. Pajerowski

  6. Tsung-Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China

    Ruidan Zhong

  7. Department of Chemistry, Princeton University, Princeton, NW, USA

    Ruidan Zhong, Xianghan Xu & Robert Cava

  8. NIST Center for Neutron Research, Gaithersburg, MD, USA

    Collin Broholm

  9. Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA

    Collin Broholm

Authors
  1. Tong Chen
    View author publications

    Search author on:PubMed Google Scholar

  2. Alireza Ghasemi
    View author publications

    Search author on:PubMed Google Scholar

  3. Junyi Zhang
    View author publications

    Search author on:PubMed Google Scholar

  4. Liyu Shi
    View author publications

    Search author on:PubMed Google Scholar

  5. Zhenisbek Tagay
    View author publications

    Search author on:PubMed Google Scholar

  6. Youzhe Chen
    View author publications

    Search author on:PubMed Google Scholar

  7. Lei Chen
    View author publications

    Search author on:PubMed Google Scholar

  8. Eun Sang Choi
    View author publications

    Search author on:PubMed Google Scholar

  9. Marcelo Jaime
    View author publications

    Search author on:PubMed Google Scholar

  10. Minseong Lee
    View author publications

    Search author on:PubMed Google Scholar

  11. Yiqing Hao
    View author publications

    Search author on:PubMed Google Scholar

  12. Huibo Cao
    View author publications

    Search author on:PubMed Google Scholar

  13. Barry L. Winn
    View author publications

    Search author on:PubMed Google Scholar

  14. Andrey A. Podlesnyak
    View author publications

    Search author on:PubMed Google Scholar

  15. Daniel M. Pajerowski
    View author publications

    Search author on:PubMed Google Scholar

  16. Ruidan Zhong
    View author publications

    Search author on:PubMed Google Scholar

  17. Xianghan Xu
    View author publications

    Search author on:PubMed Google Scholar

  18. N. P. Armitage
    View author publications

    Search author on:PubMed Google Scholar

  19. Robert Cava
    View author publications

    Search author on:PubMed Google Scholar

  20. Collin Broholm
    View author publications

    Search author on:PubMed Google Scholar

Contributions

T.C., R.Z., and C.B. initiated this work. A.G., X.X., and R.C. prepared the samples. T.C., Y.C., Y.H., H.C., B.L.W., A.A.P., and D.M.P. carried out neutron scattering experiments. A.G., E.C., M.J., and M.L. measured high-field magnetization. L.S., Z.T., and N.P.A. performed THz measurements. T.C., A.G., J.Z., L.C., and C.B. wrote the manuscript with input from all coauthors.

Corresponding authors

Correspondence to Tong Chen, Ruidan Zhong or Collin Broholm.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Ghasemi, A., Zhang, J. et al. Phase diagram and spectroscopic signatures of a supersolid in the quantum ising magnet K2Co(SeO3)2. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69661-0

Download citation

  • Received: 03 November 2025

  • Accepted: 05 February 2026

  • Published: 18 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69661-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing