Abstract
Supersolid phases are quantum-entangled states of matter exhibiting the dual characteristics of superfluidity and solidity. Theory predicts that hard-core bosons on a triangular lattice can form such phases at half filling and near complete filling. Leveraging an exact mapping between bosons and spin-\(\frac{1}{2}\) degrees of freedom, here we show that these phases are realized in the triangular-lattice antiferromagnet K2Co(SeO3)2. At zero field, neutron diffraction reveals the development of quasi-two-dimensional \(\sqrt{3}\times \sqrt{3}\) magnetic order with Z3 translational symmetry breaking (solidity), though with reduced amplitude indicating strong quantum fluctuations. These fluctuations manifest as equidistant bands of continuum neutron scattering, where the lowest-energy mode is gapless at K \((\frac{1}{3}\frac{1}{3})\), consistent with broken U(1) spin rotational symmetry (superfluidity). For c-axis-oriented magnetic fields near saturation, we find a second phase consistent with a high-field supersolid. These two supersolids are separated by a pronounced 1/3 magnetization plateau phase that supports coherent spin waves, from which we determine the underlying spin Hamiltonian.
Similar content being viewed by others
Data availability
The numerical data underlying the magnetization, specific heat, and elastic neutron scattering figures have been deposited in the Figshare database and can be accessed at https://figshare.com/s/9771e9a4e5a2cac62fb8. Due to the large file sizes, the raw inelastic neutron scattering datasets are hosted in the ORNL database https://analysis.sns.govunder the experiment identifier IPTS-29655. Processed inelastic neutron scattering data and all other data that support the findings of this study are available from the corresponding authors upon request.
References
Ramirez, A. P., Hayashi, A., Cava, R. J., Siddharthan, R. & Shastry, B. Zero-point entropy in ‘spin ice’. Nature 399, 333–335 (1999).
Bramwell, S. T. & Gingras, M. J. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001).
Savary, L. & Balents, L. Coulombic quantum liquids in spin-1/2 pyrochlores. Phys. Rev. Lett. 108, 037202 (2012).
Lee, S., Onoda, S. & Balents, L. Generic quantum spin ice. Phys. Rev. B-Condens. Matter Mater. Phys. 86, 104412 (2012).
Gingras, M. J. & McClarty, P. A. Quantum spin ice: a search for gapless quantum spin liquids in pyrochlore magnets. Rep. Prog. Phys. 77, 056501 (2014).
Wannier, G. Antiferromagnetism. The triangular Ising net. Phys. Rev. 79, 357 (1950).
Jiang, H., Weng, M., Weng, Z., Sheng, D. & Balents, L. Supersolid order of frustrated hard-core bosons in a triangular lattice system. Phys. Rev. B 79, 020409 (2009).
Heidarian, D. & Paramekanti, A. Supersolidity in the triangular lattice spin-1/2 XXZ model: a variational perspective. Phys. Rev. Lett. 104, 015301 (2010).
Yamamoto, D., Marmorini, G. & Danshita, I. Quantum phase diagram of the triangular-lattice XXZ model in a magnetic field. Phys. Rev. Lett. 112, 127203 (2014).
Sellmann, D., Zhang, X.-F., Eggert, S. et al. Phase diagram of the antiferromagnetic XXZ model on the triangular lattice. Phys. Rev. B 91, 081104 (2015).
Thouless, D. The flow of a dense superfluid. Ann. Phys. 52, 403–427 (1969).
Andreev, A. & Lifshits, I. Quantum theory of defects in crystals. Zhur Eksper Teor. Fiz. 56, 2057–2068 (1969).
Chester, G. Speculations on Bose-Einstein condensation and quantum crystals. Phys. Rev. A 2, 256 (1970).
Leggett, A. J. Can a solid be “superfluid"? Phys. Rev. Lett. 25, 1543 (1970).
Kim, E. & Chan, M. H.-W. Probable observation of a supersolid helium phase. Nature 427, 225–227 (2004).
Boninsegni, M. & Prokof’ev, N. V. Colloquium: supersolids: What and where are they? Rev. Mod. Phys. 84, 759 (2012).
Li, J.-R. et al. A stripe phase with supersolid properties in spin–orbit-coupled bose-einstein condensates. Nature 543, 91–94 (2017).
Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87–90 (2017).
Melko, R. et al. Supersolid order from disorder: hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127207 (2005).
Wessel, S. & Troyer, M. Supersolid hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127205 (2005).
Boninsegni, M. & Prokof’ev, N. Supersolid phase of hard-core bosons on a triangular lattice. Phys. Rev. Lett. 95, 237204 (2005).
Heidarian, D. & Damle, K. Persistent supersolid phase of hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127206 (2005).
Wang, F., Pollmann, F. & Vishwanath, A. Extended supersolid phase of frustrated hard-core bosons on a triangular lattice. Phys. Rev. Lett. 102, 017203 (2009).
den Hertog, B. C. & Gingras, M. J. Dipolar interactions and origin of spin ice in Ising pyrochlore magnets. Phys. Rev. Lett. 84, 3430 (2000).
Syzranov, S. & Ramirez, A. Eminuscent phase in frustrated magnets: a challenge to quantum spin liquids. Nat. Commun. 13, 2993 (2022).
Villain, J., Bidaux, R., Carton, J.-P. & Conte, R. Order as an effect of disorder. J. de. Phys. 41, 1263–1272 (1980).
Henley, C. L. Ordering due to disorder in a frustrated vector antiferromagnet. Phys. Rev. Lett. 62, 2056 (1989).
Stone, M. B. et al. A comparison of four direct geometry time-of-flight spectrometers at the spallation neutron source. Rev. Sci. Instrum. 85, 045113 (2014).
Chamorro, J. R., McQueen, T. M. & Tran, T. T. Chemistry of quantum spin liquids. Chem. Rev. 121, 2898–2934 (2020).
Gardner, J. S., Gingras, M. J. & Greedan, J. E. Magnetic pyrochlore oxides. Rev. Mod. Phys. 82, 53–107 (2010).
Gao, B. et al. Experimental signatures of a three-dimensional quantum spin liquid in effective spin-1/2 Ce2Zr2O7 pyrochlore. Nat. Phys. 15, 1052–1057 (2019).
Gaudet, J. et al. Quantum spin ice dynamics in the dipole-octupole pyrochlore magnet Ce2Zr2O7. Phys. Rev. Lett. 122, 187201 (2019).
Tennant, D., Perring, T., Cowley, R. & Nagler, S. Unbound spinons in the S= 1/2 antiferromagnetic chain KCuF3. Phys. Rev. Lett. 70, 4003 (1993).
Lake, B., Tennant, D. A., Frost, C. D. & Nagler, S. E. Quantum criticality and universal scaling of a quantum antiferromagnet. Nat. Mater. 4, 329–334 (2005).
Mourigal, M. et al. Fractional spinon excitations in the quantum Heisenberg antiferromagnetic chain. Nat. Phys. 9, 435–441 (2013).
Ma, S., Broholm, C., Reich, D. H., Sternlieb, B. & Erwin, R. Dominance of long-lived excitations in the antiferromagnetic spin-1 chain NENP. Phys. Rev. Lett. 69, 3571 (1992).
Zaliznyak, I., Lee, S.-H. & Petrov, S. Continuum in the spin-excitation spectrum of a Haldane chain observed by neutron scattering in CsNiCl3. Phys. Rev. Lett. 87, 017202 (2001).
Liu, X. & Kee, H.-Y. Non-Kitaev versus Kitaev honeycomb cobaltates. Phys. Rev. B 107, 054420 (2023).
Xiang, J. et al. Giant magnetocaloric effect in spin supersolid candidate \({{{{\rm{Na}}}}}_{2}{{{\rm{BaCo}}}}{({{{{\rm{PO}}}}}_{4})}_{2}\). Nature 625, 270–275 (2024).
Popescu, T. et al. Zeeman split Kramers doublets in spin-supersolid candidate \({{{{\rm{Na}}}}}_{2}{{{\rm{BaCo}}}}{({{{{\rm{PO}}}}}_{4})}_{2}\). Phys. Rev. Lett. 134, 136703 (2025).
Sheng, J. et al. Continuum of spin excitations in an ordered magnet. Innovation 6, 100769 (2025).
Woodland, L., Okuma, R., Stewart, J. R., Balz, C. & Coldea, R. From continuum excitations to sharp magnons via transverse magnetic field in the spin-\(\frac{1}{2}\) ising-like triangular lattice antiferromagnet \({{{{\rm{na}}}}}_{2}{{{\rm{BaCo}}}}{({{{{\rm{PO}}}}}_{4})}_{2}\). Phys. Rev. B 112, 104413 (2025).
Zhong, R., Guo, S. & Cava, R. Frustrated magnetism in the layered triangular lattice materials \({{{{\rm{K}}}}}_{2}{{{\rm{Co}}}}{({{{{\rm{SeO}}}}}_{3})}_{2}\) and \({{{{\rm{Rb}}}}}_{2}{{{\rm{Co}}}}{({{{{\rm{SeO}}}}}_{3})}_{2}\). Phys. Rev. Mater. 4, 084406 (2020).
Noh, J. D. & Kim, D. Phase boundary and universality of the triangular lattice antiferromagnetic Ising model. Int. J. Mod. Phys. B 6, 2913–2924 (1992).
Wu, F.-Y. The Potts model. Rev. Mod. Phys. 54, 235 (1982).
Metcalf, B. Phase diagram of a nearest neighbor triangular antiferromagnet in an external field. Phys. Lett. A 45, 1–2 (1973).
Schick, M., Walker, J. & Wortis, M. Antiferromagnetic triangular Ising model. Phys. Lett. A 58, 479–480 (1976).
Sheng, J. et al. Two-dimensional quantum universality in the spin-1/2 triangular-lattice quantum antiferromagnet \({{{{\rm{Na}}}}}_{2}{{{\rm{BaCo}}}}{({{{{\rm{PO}}}}}_{4})}_{2}\). Proc. Natl. Acad. Sci. USA 119, e2211193119 (2022).
Gao, Y. et al. Spin supersolidity in nearly ideal easy-axis triangular quantum antiferromagnet \({{{{\rm{Na}}}}}_{2}{{{\rm{BaCo}}}}{({{{{\rm{PO}}}}}_{4})}_{2}\). npj Quantum Mater. 7, 89 (2022).
Miyashita, S. & Kawamura, H. Phase transitions of anisotropic Heisenberg antiferromagnets on the triangular lattice. J. Phys. Soc. Jpn. 54, 3385–3395 (1985).
Miyashita, S. Magnetic properties of Ising-like Heisenberg antiferromagnets on the triangular lattice. J. Phys. Soc. Jpn. 55, 3605–3617 (1986).
Sheng, Q. & Henley, C. L. Ordering due to disorder in a triangular Heisenberg antiferromagnet with exchange anisotropy. J. Phys. Condens. Matter 4, 2937 (1992).
Ulaga, M., Kokalj, J., Wietek, A., Zorko, A. & Prelovšek, P. Finite-temperature properties of the easy-axis Heisenberg model on frustrated lattices. Phys. Rev. B 109, 035110 (2024).
Toth, S. & Lake, B. Linear spin wave theory for single-q incommensurate magnetic structures. J. Phys. Condens. Matter 27, 166002 (2015).
Collins, M. & Petrenko, O. Review/synthèse: triangular antiferromagnets. Can. J. Phys. 75, 605–655 (1997).
Allan, G. & Betts, D. The temperature and frequency dependence of the inelastic neutron scattering from an Ising magnet. Can. J. Phys. 46, 799–802 (1968).
Muttalib, K. & Barry, J. Inelastic neutron scattering from a geometrically frustrated Ising antiferromagnet: Exact solutions. Phys. Rev. B 110, 024414 (2024).
Zhu, M. et al. Continuum excitations in a spin supersolid on a triangular lattice. Phys. Rev. Lett. 133, 186704 (2024).
Goldstone, J., Salam, A. & Weinberg, S. Broken symmetries. Phys. Rev. 127, 965 (1962).
Weinberg, S. Approximate symmetries and pseudo-goldstone bosons. Phys. Rev. Lett. 29, 1698 (1972).
Rau, J. G., McClarty, P. A. & Moessner, R. Pseudo-goldstone gaps and order-by-quantum disorder in frustrated magnets. Phys. Rev. Lett. 121, 237201 (2018).
Gao, Y. et al. Double magnon-roton excitations in the triangular-lattice spin supersolid. Phys. Rev. B 110, 214408 (2024).
Jia, H., Ma, B., Wang, Z. & Chen, G. Quantum spin supersolid as a precursory Dirac spin liquid in a triangular lattice antiferromagnet. Phys. Rev. Res. 6, 033031 (2024).
Zhu, M. et al. Wannier states and spin supersolid physics in the triangular antiferromagnet \({{{{\rm{K}}}}}_{2}{{{\rm{Co}}}}{({{{{\rm{SeO}}}}}_{3})}_{2}\). npj Quantum Mater. 10, 74 (2025).
Xu, Y., Hasik, J., Ponsioen, B. & Nevidomskyy, A. H. Simulating spin dynamics of supersolid states in a quantum Ising magnet. Phys. Rev. B 111, L060402 (2025).
Flores-Calderón, R., Moessner, R. & Pollmann, F. Unconventional spin dynamics and supersolid excitations in the triangular-lattice XXZ model. Phys. Rev. B 112, 184423 (2025).
Mauri, A. & Mila, F. Slow convergence of spin-wave expansion and magnon dispersion in the 1/3 plateau of the triangular XXZ antiferromagnet. Phys. Rev. B 111, L180402 (2025).
Ulaga, M., Kokalj, J., Tohyama, T. & Prelovšek, P. Easy-axis Heisenberg model on the triangular lattice: from a supersolid to a gapped solid. Phys. Rev. B 111, 174442 (2025).
Ulaga, M., Kokalj, J., Tohyama, T. & Prelovšek, P. The anisotropic Heisenberg model close to the Ising limit: triangular lattice vs. effective models. arXiv preprint arXiv:2510.12667 (2025).
Amaral, J. & Amaral, V. On estimating the magnetocaloric effect from magnetization measurements. J. Magn. Magn. Mater. 322, 1552–1557 (2010).
Cao, H. et al. Demand, a dimensional extreme magnetic neutron diffractometer at the high flux isotope reactor. Crystals 9, 5 (2018).
Clementi, E. & Roetti, C. Roothaan-hartree-fock atomic wavefunctions: basis functions and their coefficients for ground and certain excited states of neutral and ionized atoms, Z≤54. At. Data Nucl. Data tables 14, 177–478 (1974).
Tagay, Z., Romero III, R. & Armitage, N. High-precision measurements of terahertz polarization states with a fiber coupled time-domain THz spectrometer. Opt. Express 32, 15946–15954 (2024).
Momma, K. & Izumi, F. Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).
Acknowledgements
We gratefully acknowledge valuable discussions with Gang Chen, Cristian Batista, Yuan Gao, Andreas Läuchli, Wei Li, Changle Liu, Frédéric Mila, Roderich Moessner, Oleg Tchernyshyov, and Shu Zhang. Initial phases of this work were supported as part of the Institute for Quantum Matter, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0019331. Further neutron scattering work was supported by Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0024469. C.B. was supported by the Gordon and Betty Moore Foundation EPIQS program under GBMF9456. Y.H. and H.C. were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Early Career Research Program Award KC0402020. J.Z. acknowledges the support of the NSF CAREER grant DMR-1848349. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by the National Science Foundation Cooperative Agreement No. DMR-2128556*, the U.S. Department of Energy, and the State of Florida. This research used resources at the High Flux Isotope Reactor and Spallation Neutron Source, DOE Office of Science User Facilities operated by Oak Ridge National Laboratory. The beam time was allocated to HYSPEC and CNCS on proposal number IPTS-29655. The beam time was allocated to HB-3A on proposal number IPTS-31928.
Author information
Authors and Affiliations
Contributions
T.C., R.Z., and C.B. initiated this work. A.G., X.X., and R.C. prepared the samples. T.C., Y.C., Y.H., H.C., B.L.W., A.A.P., and D.M.P. carried out neutron scattering experiments. A.G., E.C., M.J., and M.L. measured high-field magnetization. L.S., Z.T., and N.P.A. performed THz measurements. T.C., A.G., J.Z., L.C., and C.B. wrote the manuscript with input from all coauthors.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Chen, T., Ghasemi, A., Zhang, J. et al. Phase diagram and spectroscopic signatures of a supersolid in the quantum ising magnet K2Co(SeO3)2. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69661-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-69661-0


