Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Cross-domain metabolic interactions link Methanobrevibacter smithii to colorectal cancer microbial ecosystems
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 February 2026

Cross-domain metabolic interactions link Methanobrevibacter smithii to colorectal cancer microbial ecosystems

  • Rokhsareh Mohammadzadeh1,
  • Alexander Mahnert  ORCID: orcid.org/0000-0001-7083-88941,
  • Tamara Zurabishvili1,
  • Lisa Wink1,
  • Christina Kumpitsch  ORCID: orcid.org/0000-0002-2077-28391,
  • Hansjoerg Habisch  ORCID: orcid.org/0000-0001-5537-506X2,
  • Jannik Sprengel  ORCID: orcid.org/0000-0002-4632-51643,4,
  • Klara Filek  ORCID: orcid.org/0000-0003-2518-44941,
  • Polona Mertelj1,
  • Dominique Pernitsch5,
  • Kerstin Hingerl5,
  • Marija Durdevic6,7,
  • Gregor Gorkiewicz  ORCID: orcid.org/0000-0003-1149-47826,8,
  • Christian Diener  ORCID: orcid.org/0000-0002-7476-08681,
  • Alexander Loy  ORCID: orcid.org/0000-0001-8923-58829,
  • Dagmar Kolb5,
  • Christoph Trautwein  ORCID: orcid.org/0000-0003-4672-63953,4,10,11,12,
  • Tobias Madl  ORCID: orcid.org/0000-0002-9725-52312,8 &
  • …
  • Christine Moissl-Eichinger  ORCID: orcid.org/0000-0001-6755-62631,8 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Archaea
  • Metagenomics

Abstract

The human gut is colonized by trillions of microbes that influence the health of their human host. Whereas many bacterial species have now been linked to a variety of different diseases, the involvement of Archaea, an evolutionarily distinct group of microbes, in human disease remains elusive. By analyzing 19 independent clinical studies, we demonstrate that associations between Archaea and human diseases are widespread yet highly heterogeneous, with a pronounced and consistent enrichment of Methanobrevibacter smithii in colorectal cancer (CRC) patients. Metabolic modelling and in vitro co-culture identified distinct mutualistic interactions of M. smithii with CRC-causing bacteria such as Fusobacterium nucleatum, including metabolic enhancement. Metabolomics further reveal archaeal-derived compounds with tumor-modulating properties. Together, our results provide mechanistic insights into how the human gut archaeome may participate in CRC-associated microbial networks through metabolic cooperation with bacteria.

Similar content being viewed by others

A catalogue of 1,167 genomes from the human gut archaeome

Article Open access 30 December 2021

Gut microbiome–driven colorectal cancer via immune, metabolic, neural, and endocrine axes reprogramming

Article Open access 23 January 2026

Multi-kingdom microbiota analyses identify bacterial–fungal interactions and biomarkers of colorectal cancer across cohorts

Article Open access 27 January 2022

Data availability

Raw sequencing data for stool samples All sequencing data analyzed in this study were obtained from previously published datasets and are publicly available from the European Nucleotide Archive (ENA) and the NCBI BioProject/SRA databases under the following accession numbers: PRJDB4176, PRJEB6070, PRJEB7774, PRJEB10878, PRJNA389927, PRJEB12449, PRJEB27928, PRJNA447983, PRJNA531273 and PRJNA397112, PRJNA400072, SRA045646 and SRA050230 [https://www.ncbi.nlm.nih.gov/sra/SRA050230], PRJEB32762, PRJEB47976, PRJNA798058, PRJEB29127, PRJNA834801, PRJNA743718, PRJEB53401, and PRJEB17784. The NMR raw data generated in this study are available in Zenodo at https://doi.org/10.5281/zenodo.16311518. The LC-MS raw data generated in this study are available in Zenodo at https://doi.org/10.5281/zenodo.16367666. All additional data generated and analyzed in this study, including Kraken2/Bracken outputs, gapseq outputs (including genome-scale metabolic models, gap-filled models, reaction and gene annotations, as well as pathway and transporter predictions), PyCoMo outputs (including flux variability analyses, metabolite secretion and uptake predictions, and community) are publicly available in our GitHub repository (https://github.com/CME-lab-research/archaeome-disease-profiling/). Source data are provided with this paper.

References

  1. Lecours, P. B. et al. Increased prevalence of Methanosphaera stadtmanae in inflammatory bowel diseases. PLoS ONE 9, e87734 (2014).

    Google Scholar 

  2. Romano, S. et al. Meta-analysis of the Parkinson’s disease gut microbiome suggests alterations linked to intestinal inflammation. NPJ Parkinson’s Dis. 7, 27 (2021).

    Google Scholar 

  3. Fumagalli, A. et al. Archaea methanogens are associated with cognitive performance through the shaping of gut microbiota, butyrate and histidine metabolism. Gut Microbes 17, 2455506 (2025).

  4. Jangi, S. et al. Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 7, 12015 (2016).

    Google Scholar 

  5. Scanlan, P. D., Shanahan, F. & Marchesi, J. R. Human methanogen diversity and incidence in healthy and diseased colonic groups using mcrA gene analysis. BMC Microbiol. 8, 79 (2008).

    Google Scholar 

  6. Helen, T. et al. Gut microbiota composition and relapse risk in pediatric MS: a pilot study. J. Neurol. Sci. 363, 153–157 (2016).

    Google Scholar 

  7. Bhute, S.S. et al. Gut microbial diversity assessment of indian type-2-diabetics reveals alterations in eubacteria, archaea, and eukaryotes. Front. Microbiol. 8, 214 (2017).

  8. Jia, L. et al. Metagenomic analysis characterizes stage-specific gut microbiota in Alzheimer’s disease. Mol. Psychiatry 30, 3951–3962 (2025).

  9. Kumpitsch, C. et al. Reduced B12 uptake and increased gastrointestinal formate are associated with archaeome-mediated breath methane emission in humans. Microbiome 9, 193 (2021).

    Google Scholar 

  10. Borrel, G., Brugère, J.-F., Gribaldo, S., Schmitz, R. A. & Moissl-Eichinger, C. The host-associated archaeome. Nat. Rev. Microbiol. 18, 622–636 (2020).

    Google Scholar 

  11. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43, 260–296 (1979).

    Google Scholar 

  12. Nkamga, V. D., Henrissat, B. & Drancourt, M. Archaea: essential inhabitants of the human digestive microbiota. Hum. Microbiome J. 3, 1–8 (2017).

    Google Scholar 

  13. Hoegenauer, C., Hammer, H. F., Mahnert, A. & Moissl-Eichinger, C. Methanogenic archaea in the human gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 19, 805–813 (2022).

    Google Scholar 

  14. Ruaud, A. et al. Syntrophy via interspecies H2 transfer between Christensenella and Methanobrevibacter underlies their global cooccurrence in the human gut. mBio 11, 10–1128 (2020).

  15. Baradaran Ghavami, S. et al. Alterations of the human gut Methanobrevibacter smithii as a biomarker for inflammatory bowel diseases. Microb. Pathog. 117, 285–289 (2018).

    Google Scholar 

  16. Schwiertz, A. et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18, 190–195 (2010).

    Google Scholar 

  17. Pimentel, M. et al. Methane production during lactulose breath test is associated with gastrointestinal disease presentation. Dig. Dis. Sci. 48, 86–92 (2003).

    Google Scholar 

  18. Laura, H. et al. Evaluating breath methane as a diagnostic test for constipation-predominant IBS. Dig. Dis. Sci. 55, 398–403 (2010).

    Google Scholar 

  19. Ghoshal, U., Shukla, R., Srivastava, D. & Ghoshal, C. U. Irritable bowel syndrome, particularly the constipation-predominant form, involves an increase in Methanobrevibacter smithii, which is associated with higher methane production. Gut Liver 10, 932–938 (2016).

    Google Scholar 

  20. Takakura, W. et al. A single fasting exhaled methane level correlates with fecal methanogen load, clinical symptoms and accurately detects intestinal methanogen overgrowth. Am. J. Gastroenterol. 117, 470–477 (2022).

    Google Scholar 

  21. Madigan, K. E., Bundy, R. & Weinberg, R. B. Distinctive clinical correlates of small intestinal bacterial overgrowth with methanogens. Clin. Gastroenterol. Hepatol. 20, 1598–1605 (2022).

    Google Scholar 

  22. Li, T. et al. Multi-cohort analysis reveals altered archaea in colorectal cancer fecal samples across populations. Gastroenterology 168, 525–538 (2025).

    Google Scholar 

  23. Sun, Y., Liu, Y., Pan, J., Wang, F. & Li, M. Perspectives on cultivation strategies of archaea. Microb. Ecol. 79, 770–784 (2020).

    Google Scholar 

  24. Mahnert, A., Blohs, M., Pausan, M.-R. & Moissl-Eichinger, C. The human archaeome: methodological pitfalls and knowledge gaps. Emerg. Top. Life Sci. 2, 469–482 (2018).

    Google Scholar 

  25. Zhou, X. et al. Gut microbiome of multiple sclerosis patients and paired household healthy controls reveal associations with disease risk and course. Cell 185, 3467–3486 (2022).

    Google Scholar 

  26. Woh, P. Y. et al. Reevaluation of the gastrointestinal methanogenic archaeome in multiple sclerosis and its association with treatment. Microbiol. Spectr. 13, e02183-24 (2025).

  27. Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293–305 (2018).

    Google Scholar 

  28. Wallen, Z. D. et al. Metagenomics of Parkinson’s disease implicates the gut microbiome in multiple disease mechanisms. Nat. Commun. 13, 6958 (2022).

    Google Scholar 

  29. de la Cuesta-Zuluaga, J. et al. Age- and sex-dependent patterns of gut microbial diversity in human adults. mSystems 4, 10–1128 (2019).

  30. Kuehnast, T. et al. Exploring the human archaeome: its relevance for health and disease, and its complex interplay with the human immune system. FEBS J. 292, 1316–1329 (2025).

    Google Scholar 

  31. Mohammadzadeh, R. et al. Age-related dynamics of predominant methanogenic archaea in the human gut microbiome. BMC Microbiol. 25, 193 (2025).

    Google Scholar 

  32. Jo, S. et al. Oral and gut dysbiosis leads to functional alterations in Parkinson’s disease. NPJ Parkinson’s Dis. 8, 87 (2022).

    Google Scholar 

  33. Yu, J. et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 66, 70–78 (2017).

    Google Scholar 

  34. Feng, Q. et al. Gut microbiome development along the colorectal adenoma–carcinoma sequence. Nat. Commun. 6, 6528 (2015).

    Google Scholar 

  35. Boktor, J. C. et al. Integrated multi-cohort analysis of the Parkinson’s disease gut metagenome. Mov. Disord. 38, 399–409 (2023).

    Google Scholar 

  36. Bedarf, J. R. et al. Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson’s disease patients. Genome Med. 9, 39 (2017).

    Google Scholar 

  37. Thomas, A. M. et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 25, 667–678 (2019).

    Google Scholar 

  38. Gupta, A. et al. Association of Flavonifractor plautii, a flavonoid-degrading bacterium, with the gut microbiome of colorectal cancer patients in India. mSystems 4, 10–1128 (2019).

  39. Laske, C. et al. Signature of Alzheimer’s disease in intestinal microbiome: results from the AlzBiom study. Front. Neurosci. 16, 792996 (2022).

  40. Ferreiro, A.L. et al. Gut microbiome composition may be an indicator of preclinical Alzheimer’s disease. Sci. Transl. Med. 15, eabo2984 (2023).

  41. Zeller, G. et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol. Syst. Biol. 10, 766 (2014).

  42. Wirbel, J. et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 25, 679–689 (2019).

    Google Scholar 

  43. Misiak, B. et al. Associations of gut microbiota alterations with clinical, metabolic, and immune-inflammatory characteristics of chronic schizophrenia. J. Psychiatr. Res. 171, 152–160 (2024).

    Google Scholar 

  44. Villette, R. et al. Integrated multi-omics highlights alterations of gut microbiome functions in prodromal and idiopathic Parkinson’s disease. Microbiome 13, 200 (2025).

  45. Yachida, S. et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25, 968–976 (2019).

    Google Scholar 

  46. Vogtmann, E. et al. Colorectal cancer and the human gut microbiome: reproducibility with whole-genome shotgun sequencing. PLOS ONE 11, e0155362 (2016).

    Google Scholar 

  47. Mira-Pascual, L. et al. Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. J. Gastroenterol. 50, 167–179 (2015).

    Google Scholar 

  48. Piccinno, G. et al. Pooled analysis of 3,741 stool metagenomes from 18 cohorts for cross-stage and strain-level reproducible microbial biomarkers of colorectal cancer. Nat. Med. 31, 1–14 (2025).

  49. Abdi, H., Kordi-Tamandani, D. M., Lagzian, M. & Bakhshipour, A. Archaeome in colorectal cancer: high abundance of methanogenic archaea in colorectal cancer patients. Int. J. Cancer Manag. 15, e117843 (2022).

  50. Predl, M., Mießkes, M., Rattei, T. & Zanghellini, J. PyCoMo: a Python package for community metabolic model creation and analysis. Bioinformatics 40, btae153 (2024).

  51. Maier, L. et al. Microbiota-derived hydrogen fuels Salmonella typhimurium invasion of the gut ecosystem. Cell Host Microbe 14, 641–651 (2013).

    Google Scholar 

  52. Spinelli, J. B. et al. Fumarate is a terminal electron acceptor in the mammalian electron transport chain. Science 374, 1227–1237 (2021).

    Google Scholar 

  53. King, A., Selak, M. A. & Gottlieb, E. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25, 4675–4682 (2006).

    Google Scholar 

  54. Samuel, S. B. et al. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc. Natl. Acad. Sci. USA 104, 10643–10648 (2007).

    Google Scholar 

  55. Jiang, S.-S. et al. Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer. Cell Host Microbe 31, 781–797 (2023).

    Google Scholar 

  56. Isar, J., Agarwal, L., Saran, S. & Saxena, R. K. Succinic acid production from Bacteroides fragilis: process optimization and scale up in a bioreactor. Anaerobe 12, 231–237 (2006).

    Google Scholar 

  57. Yu, J. et al. Effect and potential mechanism of oncometabolite succinate promotes distant metastasis of colorectal cancer by activating STAT3. BMC Gastroenterol. 24, 106 (2024).

    Google Scholar 

  58. Zhang, W. & Lang, R. Succinate metabolism: a promising therapeutic target for inflammation, ischemia/reperfusion injury and cancer. Front. Cell Dev. Biol. 11, 1266973 (2023).

  59. Takemoto, N., Tanaka, Y., Inui, M. & Yukawa, H. The physiological role of riboflavin transporter and involvement of FMN-riboswitch in its gene expression in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 98, 4159–4168 (2014).

    Google Scholar 

  60. Wang, H. et al. ¹H NMR-based metabolic profiling of human rectal cancer tissue. Mol. Cancer 12, 121 (2013).

    Google Scholar 

  61. Shen, X. et al. Asparagine, colorectal cancer, and the role of sex, genes, microbes, and diet: a narrative review. Front. Mol. Biosci. 9, 958666 (2022).

  62. Mao, Z. et al. Prediagnostic serum glyceraldehyde-derived advanced glycation end products and mortality among colorectal cancer patients. Int. J. Cancer 152, 2257–2268 (2023).

    Google Scholar 

  63. Liu, Y., Lau, H.C.-H. & Yu, J. Microbial metabolites in colorectal tumorigenesis and cancer therapy. Gut Microbes 15, 2203968 (2023).

  64. Avuthu, N. & Guda, C. Meta-analysis of altered gut microbiota reveals microbial and metabolic biomarkers for colorectal cancer. Microbiol. Spectr. 10, e00013–e00022 (2022).

  65. Xie, Z. et al. Metabolomic analysis of gut metabolites in patients with colorectal cancer: association with disease development and outcome. Oncol. Lett. 26, 358 (2023).

    Google Scholar 

  66. Gao, R. et al. Integrated analysis of colorectal cancer reveals cross-cohort gut microbial signatures and associated serum metabolites. Gastroenterology 163, 1024–1037 (2022).

    Google Scholar 

  67. Xu, S. et al. Intestinal microbiota affects the progression of colorectal cancer by participating in the host intestinal arginine catabolism. Cell Rep. 44, 115370 (2025).

    Google Scholar 

  68. Slater, L. C., Fonseca-Pereira, D. & Garrett, W. S. Colorectal cancer: the facts in the case of the microbiota. J. Clin. Investig. 132, e155101 (2022).

  69. Duller et al. Targeted isolation of Methanobrevibacter strains from fecal samples expands the cultivated human archaeome. Nat. Commun. 15, 7593 (2024).

    Google Scholar 

  70. Feng, T. et al. The arginine metabolism and its deprivation in cancer therapy. Cancer Lett. 620, 217680 (2025).

    Google Scholar 

  71. Wu, G., Meininger, C.J., McNeal, C.J., Bazer, F.W. & Rhoads, J.M. Role of L-arginine in nitric oxide synthesis and health in humans 167–187 (Springer, 2021).

  72. Lamaudière, M. T. F., Arasaradnam, R., Weedall, G. D. & Morozov, I. Y. The colorectal cancer microbiota alter their transcriptome to adapt to the acidity, reactive oxygen species, and metabolite availability of gut microenvironments. mSphere 8, e00627-22 (2023).

  73. Naes, S., Ab-Rahim, S., Mazlan, M., Hashim, N. A. A. & Abdul Rahman, A. Increased ENT2 expression and its association with altered purine metabolism in cell lines derived from different stages of colorectal cancer. Exp. Ther. Med. 25, 212 (2023).

    Google Scholar 

  74. Grondin, J. A. & Khan, W. I. Emerging roles of gut serotonin in regulation of immune response, microbiota composition and intestinal inflammation. J. Can. Assoc. Gastroenterol. 7, 88–96 (2024).

    Google Scholar 

  75. Venkateswaran, N. et al. Tryptophan fuels MYC-dependent liver tumorigenesis through indole 3-pyruvate synthesis. Nat. Commun. 15, 4266 (2024).

    Google Scholar 

  76. Xiaojing, L., Binbin, Z., Yiyang, H. & Yu, Z. New insights into gut-bacteria-derived indole and its derivatives in intestinal and liver diseases. Front. Pharmacol. 12, 769501 (2021).

  77. Li, Q. et al. Gut barrier dysfunction and bacterial lipopolysaccharides in colorectal cancer. J. Gastrointest. Surg. 27, 1466–1472 (2023).

    Google Scholar 

  78. Chen, Y. et al. γ-linolenic acid derived from Lactobacillus plantarum MM89 induces ferroptosis in colorectal cancer. Food Funct. 16, 1760–1771 (2025).

    Google Scholar 

  79. Fyrst, H. et al. Natural sphingadienes inhibit Akt-dependent signaling and prevent intestinal tumorigenesis. Cancer Res. 69, 9457–9464 (2009).

    Google Scholar 

  80. Niehaus, E.-M. et al. Apicidin F: characterization and genetic manipulation of a new secondary metabolite gene cluster in the rice pathogen Fusarium fujikuroi. PLoS ONE 9, e103336 (2014).

    Google Scholar 

  81. Ueda, T., Takai, N., Nishida, M., Nasu, K. & Narahara, H. Apicidin, a novel histone deacetylase inhibitor, has profound anti-growth activity in human endometrial and ovarian cancer cells. Int. J. Mol. Med. 19, 301–308 (2007).

  82. Mueller, A.-L. et al. Bacteria-mediated modulatory strategies for colorectal cancer treatment. Biomedicines 10, 832 (2022).

    Google Scholar 

  83. Song, S., Vuai, M. S. & Zhong, M. The role of bacteria in cancer therapy–enemies in the past, but allies at present. Infect. Agents Cancer 13, 9 (2018).

    Google Scholar 

  84. Candeliere, F., Sola, L., Raimondi, S., Rossi, M. & Amaretti, A. Good and bad dispositions between archaea and bacteria in the human gut: new insights from metagenomic survey and co-occurrence analysis. Synth. Syst. Biotechnol. 9, 88–98 (2024).

    Google Scholar 

  85. Mohammadzadeh, R., Mahnert, A., Duller, S. & Moissl-Eichinger, C. Archaeal key-residents within the human microbiome: characteristics, interactions and involvement in health and disease. Curr. Opin. Microbiol. 67, 102146 (2022).

    Google Scholar 

  86. Pimentel, M. et al. Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G1089–G1095 (2006).

    Google Scholar 

  87. Staller, K. et al. Chronic constipation as a risk factor for colorectal cancer: results from a nationwide, case-control study. Clin. Gastroenterol. Hepatol. 20, 1867–1876 (2022).

    Google Scholar 

  88. Tito, R. Y. & Raes, J. Gut archaeal biomarkers in colorectal cancer prediction: a tale of opportunity and prudence. Gastroenterology 168, 457–458 (2025).

    Google Scholar 

  89. Sieber, J. R., McInerney, M. J. & Gunsalus, R. P. Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu. Rev. Microbiol 66, 429–452 (2012).

    Google Scholar 

  90. Campbell, A., Gdanetz, K., Schmidt, A.W. & Schmidt, T.M. H2 generated by fermentation in the human gut microbiome influences metabolism and competitive fitness of gut butyrate producers. Microbiome 11, 133 (2023).

  91. Coker, O. O., Wu, W. K. K., Wong, S. H., Sung, J. J. Y. & Yu, J. Altered gut archaea composition and interaction with bacteria are associated with colorectal cancer. Gastroenterology 159, 1459–1470 (2020).

    Google Scholar 

  92. Cai, M., Kandalai, S., Tang, X. & Zheng, Q. Contributions of human-associated archaeal metabolites to tumor microenvironment and carcinogenesis. Microbiol. Spectr. 10, e02367-21 (2022).

  93. Zengin, Ö.D. & Aydin, S. The hidden influence of methanogens in the gut microbiota. in Methanogens-Unique Prokaryotes (IntechOpen, 2025).

  94. Hannigan, G.D., Duhaime, M.B., Ruffin, M.T., Koumpouras, C.C. & Schloss, P.D. Diagnostic potential and interactive dynamics of the colorectal cancer virome. mBio 9, 10–1128 (2018).

  95. Ye, H. S., Siddle, J. K., Park, J. D. & Sabeti, C. P. Benchmarking metagenomics tools for taxonomic classification. Cell 178, 779–794 (2019).

    Google Scholar 

  96. Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014).

    Google Scholar 

  97. Chibani, C. M. et al. A catalogue of 1,167 genomes from the human gut archaeome. Nat. Microbiol. 7, 48–61 (2021).

    Google Scholar 

  98. Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).

    Google Scholar 

  99. Ma, S.Y. et al. Population structure discovery in meta-analyzed microbial communities and inflammatory bowel disease using MMUPHin. Genome Biology 23, 208 (2022).

  100. Zimmermann, J., Kaleta, C. & Waschina, S. gapseq: informed prediction of bacterial metabolic pathways and reconstruction of accurate metabolic models. Genome Biol. 22, 81 (2021).

    Google Scholar 

  101. De Bernardini, N. et al. pan-Draft: automated reconstruction of species-representative metabolic models from multiple genomes. Genome Biol. 25, 280 (2024).

    Google Scholar 

  102. Predl, M., Gandolf, K., Hofer, M. & Rattei, T. ScyNet: visualizing interactions in community metabolic models. Bioinform. Adv. 4, vbae104 (2024).

  103. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Google Scholar 

  104. Lindsey, R. L., Garcia-Toledo, L., Fasulo, D., Gladney, L. M. & Strockbine, N. Multiplex polymerase chain reaction for identification of Escherichia coli, Escherichia albertii and Escherichia fergusonii. J. Microbiol. Methods 140, 1–4 (2017).

    Google Scholar 

  105. Dahal, R. H., Choi, Y.-J., Kim, S. & Kim, J. Differentiation of Escherichia fergusonii and Escherichia coli isolated from patients with inflammatory bowel disease/ischemic colitis and their antimicrobial susceptibility patterns. Antibiotics 12, 154 (2023).

    Google Scholar 

  106. Weinberger, V. et al. Expanding the cultivable human archaeome: Methanobrevibacter intestini sp. nov. and strain Methanobrevibacter smithii ‘GRAZ-2’ from human faeces. Int. J. Syst. Evol. Microbiol. 75, 006751 (2025).

  107. Ney, B. et al. The methanogenic redox cofactor F420 is widely synthesized by aerobic soil bacteria. ISME J. 11, 125–137 (2017).

    Google Scholar 

  108. Nadkarni, M. A., Martin, F. E., Jacques, N. A. & Hunter, N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148, 257–266 (2002).

    Google Scholar 

  109. Probst, A. J., Auerbach, A. K. & Moissl-Eichinger, C. Archaea on human skin. PLoS ONE 8, e65388 (2013).

    Google Scholar 

  110. Hales, B. A. et al. Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl. Environ. Microbiol. 62, 668–675 (1996).

    Google Scholar 

  111. Lloyd, W. S. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).

    Google Scholar 

  112. Duvallet, C., Gibbons, S. M., Gurry, T., Irizarry, R. A. & Alm, E. J. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat. Commun. 8, 1784 (2017).

    Google Scholar 

  113. Wickham, H. ggplot2: Elegant graphics for data analysis. https://ggplot2.tidyverse.org (Springer-Verlag New York, 2016).

  114. Shuangbin, X. et al. Use ggbreak to effectively utilize plotting space to deal with large datasets and outliers. Front. Genet. 12, 774846 (2021).

Download references

Acknowledgements

This research was funded in whole or in part by the Austrian Science Fund (FWF) [10.55776/P32697 (given to C.M.E.), excellence cluster “Microbiomes Drive Planetary Health” 10.55776/CoE7 (C.M.E., C.D., and G.G), and SFB ImmunoMetabolism 10.55776/F8300 (C.M.E.)]. C.M.E. has received funding from the European Research Council (ERC) under the Horizon Europe research and innovation programme (Project ID 101199346, ERC-2024-ADG). T.M. is grateful to the Austrian Science Fund (FWF) for excellence cluster 10.55776/COE14, grants DOI 10.55776/P28854, 10.55776/I3792, 10.55776/DOC130, and 10.55776/W1226, the Austrian Research Promotion Agency (FFG) grants 864690 and 870454; the Integrative Metabolism Research Center Graz; the Austrian Infrastructure Program 2016/2017; the Styrian Government (Zukunftsfonds, doc.fund program); the City of Graz; and BioTechMed-Graz (flagship project). This project was funded in part by the FFG and the European Union (EFRE) under grant 912192. T.M. and H.H. acknowledge the Center for Medical Research for laboratory access. C.T. reports a research grant by Bruker Switzerland AG. For open access purposes, the author has applied a CC BY public copyright license to any author-accepted manuscript version arising from this submission. We gratefully acknowledge the computational resources provided by the MedBioNode at the Medical University of Graz, funded by the Austrian Federal Ministry of Education, Science, and Research through the Hochschulrat-Struktur Mittel 2016 grant within BioTechMed Graz. We also thank the ZMF Core Facility Computational Bioanalytics team at the Medical University of Graz for their support. We thank Claire Lamb for assistance with the provision of the Bacteroides fragilis strain. We thank Charlotte Neumann for her help in creating some illustrations for this study. R.M. was supported by the local PhD program MolMed.

Author information

Authors and Affiliations

  1. Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria

    Rokhsareh Mohammadzadeh, Alexander Mahnert, Tamara Zurabishvili, Lisa Wink, Christina Kumpitsch, Klara Filek, Polona Mertelj, Christian Diener & Christine Moissl-Eichinger

  2. Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria

    Hansjoerg Habisch & Tobias Madl

  3. Core Facility Metabolomics, Medical Faculty University of Tübingen, Tübingen, Germany

    Jannik Sprengel & Christoph Trautwein

  4. M3 Research Center for Malignome, Metabolome & Microbiome, Medical Faculty University of Tübingen, Tübingen, Germany

    Jannik Sprengel & Christoph Trautwein

  5. Core Facility Ultrastructure Analysis, Medical University of Graz, Graz, Austria

    Dominique Pernitsch, Kerstin Hingerl & Dagmar Kolb

  6. Institute of Pathology, Medical University of Graz, Graz, Austria

    Marija Durdevic & Gregor Gorkiewicz

  7. Core Facility Computational Bioanalytics, Center for Medical Research, Medical University of Graz, Graz, Austria

    Marija Durdevic

  8. BioTechMed, Graz, Austria

    Gregor Gorkiewicz, Tobias Madl & Christine Moissl-Eichinger

  9. Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria

    Alexander Loy

  10. Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, Tübingen, Germany

    Christoph Trautwein

  11. Cluster of Excellence CMFI (EXC 2124) “Controlling Microbes to Fight Infections”, Eberhard Karls University of Tübingen, Tübingen, Germany

    Christoph Trautwein

  12. Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany

    Christoph Trautwein

Authors
  1. Rokhsareh Mohammadzadeh
    View author publications

    Search author on:PubMed Google Scholar

  2. Alexander Mahnert
    View author publications

    Search author on:PubMed Google Scholar

  3. Tamara Zurabishvili
    View author publications

    Search author on:PubMed Google Scholar

  4. Lisa Wink
    View author publications

    Search author on:PubMed Google Scholar

  5. Christina Kumpitsch
    View author publications

    Search author on:PubMed Google Scholar

  6. Hansjoerg Habisch
    View author publications

    Search author on:PubMed Google Scholar

  7. Jannik Sprengel
    View author publications

    Search author on:PubMed Google Scholar

  8. Klara Filek
    View author publications

    Search author on:PubMed Google Scholar

  9. Polona Mertelj
    View author publications

    Search author on:PubMed Google Scholar

  10. Dominique Pernitsch
    View author publications

    Search author on:PubMed Google Scholar

  11. Kerstin Hingerl
    View author publications

    Search author on:PubMed Google Scholar

  12. Marija Durdevic
    View author publications

    Search author on:PubMed Google Scholar

  13. Gregor Gorkiewicz
    View author publications

    Search author on:PubMed Google Scholar

  14. Christian Diener
    View author publications

    Search author on:PubMed Google Scholar

  15. Alexander Loy
    View author publications

    Search author on:PubMed Google Scholar

  16. Dagmar Kolb
    View author publications

    Search author on:PubMed Google Scholar

  17. Christoph Trautwein
    View author publications

    Search author on:PubMed Google Scholar

  18. Tobias Madl
    View author publications

    Search author on:PubMed Google Scholar

  19. Christine Moissl-Eichinger
    View author publications

    Search author on:PubMed Google Scholar

Contributions

R.M. designed the study, collected data, performed bioinformatics, data analysis, plotting, and drafted the manuscript. A.M. co-designed the study. T.Z. and L.W. performed sample cultivation. C.K. performed qPCR. K.F. assisted with plot preparation. P.M. performed E. coli isolation and confirmation. H.H. and T.M. performed NMR metabolomics. J.S. and C.T. performed MS metabolomics. D.P., K.H., and D.K. performed SEM. M.D performed the machine learning analysis. C.D. helped with data analysis. G.G. and A.L. assisted with sample preparation. G.G., C.T., C.D., and A.L. commented on and revised the manuscript. C.M-E. designed and supervised the study, and drafted and revised the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Christine Moissl-Eichinger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Sabina La Rosa and the other anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Supplementary Data 6

Supplementary Data 7

Supplementary Data 8

Supplementary Data 9

Supplementary Data 10

Supplementary Data 11

Supplementary Data 12

Supplementary Data 13

Reporting Summary

Transparent Peer Review File

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh, R., Mahnert, A., Zurabishvili, T. et al. Cross-domain metabolic interactions link Methanobrevibacter smithii to colorectal cancer microbial ecosystems. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69711-7

Download citation

  • Received: 09 July 2025

  • Accepted: 04 February 2026

  • Published: 20 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69711-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology