Abstract
The transport of subducted slab materials to the overlying mantle plays a crucial role in arc magma formation. However, the contributions of aqueous fluids, hydrous melts, or mélange to the convective mantle remain controversial due to the lack of definitive fingerprints for these materials. Here, we report the Ba isotope composition of lavas from a typical cold-slab arc, the Izu arc, to resolve the recycled materials in the source of arc magmas. δ138/134Ba of the arc lavas show an across-arc decrease corresponding to increasing depth and positively correlates with both 87Sr/86Sr and 143Nd/144Nd. Across-arc variations of both δ138/134Ba and Ba/Th ratios support that high Ba/Th in the Izu and other arc magmas originated from slab-derived fluids rather than melts. Quantitative mixing modeling, involving contributions from mélange followed by slab-derived fluids in successive stages, provides a coherent explanation for Ba-Sr-Nd isotopic signatures observed in lavas from cold arcs. Our work reveals the combined role of slab-derived fluids and mélange diapir melting in arc magma formation.
References
Pearce, J. A. & Peate, D. W. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci. 23, 251–285 (1995).
Elliott, T., Plank, T., Zindler, A., White, W. & Bourdon, B. Element transport from slab to volcanic front at the Mariana arc. J. Geophys. Res. Solid Earth 102, 14991–15019 (1997).
Hawkesworth, C. J., Turner, S. P., McDermott, F., Peate, D. W. & van Calsteren, P. U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science 276, 551–555 (1997).
Freymuth, H., Ivko, B., Gill, J. B., Tamura, Y. & Elliott, T. Thorium isotope evidence for melting of the mafic oceanic crust beneath the Izu arc. Geochim. Cosmochim. Acta 186, 49–70 (2016).
Klaver, M. et al. Widespread slab melting in modern subduction zones. Earth Planet. Sci. Lett. 626, 118544 (2024).
Li, H., Hermann, J. & Zhang, L. Melting of subducted slab dictates trace element recycling in global arcs. Sci. Adv. 8, eabh2166 (2022).
Turner, S. J. & Langmuir, C. H. Sediment and ocean crust both melt at subduction zones. Earth Planet. Sci. Lett. 584, 117424 (2022).
Turner, S. J. & Langmuir, C. H. An alternative to the igneous crust fluid + sediment melt paradigm for arc lava geochemistry. Sci. Adv. 10, eadg6482 (2024).
Turner, S. J. & Langmuir, C. H. An evaluation of five models of arc volcanism. J. Petrol. 63, egac010 (2022).
Marschall, H. R. & Schumacher, J. C. Arc magmas sourced from mélange diapirs in subduction zones. Nat. Geosci. 5, 862–867 (2012).
Nielsen, S. G. & Marschall, H. R. Geochemical evidence for mélange melting in global arcs. Sci. Adv. 3, e1602402 (2017).
Qiao, X. et al. Magnesium and boron isotope evidence for the generation of arc magma through serpentinite-mélange melting. Natl. Sci. Rev. 12, nwae363 (2024).
Shu, Y. et al. Mélange dehydration and melting beneath South Sandwich Islands arc. Nat. Commun. 16, 1440 (2025).
Pearce, J. A., Stern, R. J., Bloomer, S. H. & Fryer, P. Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. Geochem. Geophys. Geosyst. 6, Q07006 (2005).
Hermann, J. & Rubatto, D. Accessory phase control on the trace element signature of sediment melts in subduction zones. Chem. Geol. 265, 512–526 (2009).
Syracuse, E. M., van Keken, P. E. & Abers, G. A. The global range of subduction zone thermal models. Phys. Earth Planet. Inter. 183, 73–90 (2010).
van Keken, P. E., Hacker, B. R., Syracuse, E. M. & Abers, G. A. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res. 116, B01401 (2011).
van Keken, P. E., Wada, I., Abers, G. A., Hacker, B. R. & Wang, K. Mafic high-pressure rocks are preferentially exhumed from warm subduction settings. Geochem. Geophys. Geosyst. 19, 2934–2961 (2018).
Xiao, Z. et al. First-principles calculations of equilibrium barium isotope fractionation among silicate minerals. Geochim. Cosmochim. Acta 360, 163–174 (2023).
Bai, R. et al. Barium isotopes in ocean island basalts as tracers of mantle processes. Geochim. Cosmochim. Acta 336, 436–447 (2022).
Nan, X. et al. Barium isotope compositions of altered oceanic crust from the IODP Site 1256 at the East Pacific rise. Chem. Geol. 641, 121778 (2023).
Nielsen, S. G. et al. Barium isotope evidence for pervasive sediment recycling in the upper mantle. Sci. Adv. 4, eaas8675 (2018).
Wu, F. et al. Barium isotope composition of depleted MORB mantle constrained by basalts from the South Mid-Atlantic Ridge (5–11°S) with implication for recycled components in the convecting upper mantle. Geochim. Cosmochim. Acta 340, 85–98 (2023).
Gu, X., Guo, S., Yu, H., Xu, J. & Huang, F. Behavior of barium isotopes during high-pressure metamorphism and fluid evolution. Earth Planet. Sci. Lett. 575, 117176 (2021).
Xu, J. et al. Barium isotope fractionation during slab dehydration: Records from an eclogite-quartz vein system in Dabie orogen. Geochim. Cosmochim. Acta 343, 272–285 (2023).
Bridgestock, L. et al. Controls on the barium isotope compositions of marine sediments. Earth Planet. Sci. Lett. 481, 101–110 (2018).
Nielsen, S. G. et al. Barium isotope systematics of subduction zones. Geochim. Cosmochim. Acta 275, 1–18 (2020).
Duan, H., Dong, Y., Yu, H., Wang, W. & Huang, F. The “lost” aqueous supercritical fluids recorded in highly refractory mantle peridotites. Earth Planet. Sci. Lett. 670, 119597 (2025).
Ishikawa, T. & Nakamura, E. Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes. Nature 370, 205–208 (1994).
Taylor, R. N. & Nesbitt, R. W. Isotopic characteristics of subduction fluids in an intra-oceanic setting, Izu–Bonin Arc, Japan. Earth Planet. Sci. Lett. 164, 79–98 (1998).
Hochstaedter, A. et al. Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab. Geochem. Geophys. Geosyst. 2, 2000GC000105 (2001).
Kimura, J. et al. Origin of cross-chain geochemical variation in Quaternary lavas from the northern Izu arc: Using a quantitative mass balance approach to identify mantle sources and mantle wedge processes. Geochem. Geophys. Geosyst. 11, Q10011 (2010).
Tollstrup, D. et al. Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab, revisited. Geochem. Geophys. Geosyst. 11, Q01X10 (2010).
Hauff, F., Hoernle, K. & Schmidt, A. Sr-Nd-Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): Implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system. Geochem. Geophys. Geosyst. 4, 2002GC000421 (2003).
Parendo, C. A., Jacobsen, S. B., Kimura, J. & Taylor, R. N. Across-arc variations in K-isotope ratios in lavas of the Izu arc: Evidence for progressive depletion of the slab in K and similarly mobile elements. Earth Planet. Sci. Lett. 578, 117291 (2022).
Plank, T., Kelley, K. A., Murray, R. W. & Stern, L. Q. Chemical composition of sediments subducting at the Izu-Bonin Trench. Geochem. Geophys. Geosyst. 8, Q04116 (2007).
Plank, T. The chemical composition of subducting sediments. Treatise Geochem. 4, 607–629 (2014).
Salters, V. J. M. & Stracke, A. Composition of the depleted mantle. Geochem. Geophys. Geosyst. 5, 2003GC000597 (2004).
McLennan, S. M. Weathering and global denudation. J. Geol. 101, 295–303 (1993).
Nesbitt, H. & Young, G. M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–717 (1982).
Stern, R. J. et al. Subduction factory processes beneath the Guguan cross-chain, Mariana Arc: no role for sediments, are serpentinites important? Contrib. Mineral. Petrol. 151, 202–221 (2006).
Ishikawa, T. & Tera, F. Source, composition and distribution of the fluid in the Kurile mantle wedge: constraints from across-arc variations of B/Nb and B isotopes. Earth Planet. Sci. Lett. 152, 123–138 (1997).
Ishikawa, T., Tera, F. & Nakazawa, T. Boron isotope and trace element systematics of the three volcanic zones in the Kamchatka arc. Geochim. Cosmochim. Acta 65, 4523–4537 (2001).
Benton, L. D., Ryan, J. G. & Tera, F. Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana forearc. Earth Planet. Sci. Lett. 187, 273–282 (2001).
Li, H. et al. Slab dehydration and magmatism in the Kurile arc as a function of depth: An investigation based on B-Sr-Nd-Hf isotopes. Chem. Geol. 621, 121373 (2023).
Pabst, S. et al. The fate of subducted oceanic slabs in the shallow mantle: Insights from boron isotopes and light element composition of metasomatized blueschists from the Mariana forearc. Lithos 132-133, 162–179 (2012).
Ryan, J. G., Morris, J., Tera, F., Leeman, W. P. & Tsvetkov, A. Cross-arc geochemical variations in the Kurile arc as a function of slab depth. Science 270, 625–627 (1995).
Cheng, Y. S. et al. Barium isotope fingerprint for recycled ancient sediment in the source of EM1-type continental basalts. Geophys. Res. Lett. 52, e2024GL111960 (2025).
Jiang, D. et al. Ba-Mg isotopic evidence from an OIB-type diabase for a big mantle wedge beneath East Asia in the Early Cretaceous. Chem. Geol. 646, 121917 (2024).
Wu, F., Turner, S. & Schaefer, B. F. Mélange versus fluid and melt enrichment of subarc mantle: A novel test using barium isotopes in the Tonga-Kermadec arc. Geology 48, 1053–1057 (2020).
Zhang, Y. et al. Deciphering contribution of recycled altered oceanic crust to arc magmas using Ba-Sr-Nd isotopes. J. Geophys. Res. Solid Earth 129, e2023JB028407 (2024).
Behn, M. D., Kelemen, P. B., Hirth, G., Hacker, B. R. & Massonne, H. Diapirs as the source of the sediment signature in arc lavas. Nat. Geosci. 4, 641–646 (2011).
Codillo, E. A. et al. The ascent of subduction zone mélanges: Experimental constraints on mélange rock densities and solidus temperatures. Earth Planet. Sci. Lett. 621, 118398 (2023).
Currie, C. A., Beaumont, C. & Huismans, R. S. The fate of subducted sediments: a case for backarc intrusion and underplating. Geology 35, 1111–1114 (2007).
Johnson, M. C. & Plank, T. Dehydration and melting experiments constrain the fate of subducted sediments. Geochem. Geophys. Geosyst. 1, 1007 (2000).
Grove, T., Chatterjee, N., Parman, S. & Medard, E. The influence of H2O on mantle wedge melting. Earth Planet. Sci. Lett. 249, 74–89 (2006).
Castro, A. & Gerya, T. V. Magmatic implications of mantle wedge plumes: Experimental study. Lithos 103, 138–148 (2008).
Gerya, T. V. & Yuen, D. A. Rayleigh–Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones. Earth Planet. Sci. Lett. 212, 47–62 (2003).
Hasenclever, J., Morgan, J., Hort, M. & Rüpke, L. H. 2D and 3D numerical models on compositionally buoyant diapirs in the mantle wedge. Earth Planet. Sci. Lett. 311, 53–68 (2011).
Rebaza, A. M., Holman, B. I., Mallik, A. & Cooperdock, E. H. Mechanisms of mass transfer in sediment-rich mélanges in modern subduction zones. J. Geophys. Res. Solid Earth 130, e2024JB030991 (2025).
Zhu, G. et al. Three-dimensional dynamics of hydrous thermal-chemical plumes in oceanic subduction zones. Geochem. Geophys. Geosyst. 10, GC002625 (2009).
Gerya, T. V., Connolly, J. A. D., Yuen, D. A., Gorczyk, W. & Capel, A. M. Seismic implications of mantle wedge plumes. Phys. Earth Planet. Inter. 156, 59–74 (2006).
Lin, C., Shih, M. & Lai, Y. Mantle wedge diapirs detected by a dense seismic array in Northern Taiwan. Sci. Rep. 11, 1561 (2021).
Sang, M. et al. Formation of the eclogites of the Atbashi complex, Kyrgyzstan, in a subduction zone mélange diapir. Commun. Earth Environ. 4, 434 (2023).
Nan, X. et al. High-precision barium isotope measurements by MC-ICP-MS. J. Anal. Spectrom. 3, 2307–2315 (2015).
Zeng, Z., Li, X., Liu, Y., Huang, F. & Yu, H. M. High-precision barium isotope measurements of carbonates by MC-ICP-MS. Geostand. Geoanal. Res. 43, 291–300 (2019).
Li, W. et al. Barium isotopic composition of the mantle: Constraints from carbonatites. Geochim. Cosmochim. Acta 278, 235–243 (2020).
Cheng, Y. et al. Rapid two-column separation method for determining barium isotopic compositions using MC-ICP-MS. At. Spectrosc. 43, 236–245 (2022).
Duan, H. et al. High-efficiency and high-precision analysis of barium isotope ratios achieved through in-tandem column purification and ICP optimization. J. Anal. At. Spectrom. 40, 3449–3462 (2025).
Miyazaki, T., Kimura, J. & Chang, Q. Analysis of stable isotope ratios of Ba by double-spike standard-sample bracketing using multiple-collector inductively coupled plasma mass spectrometry. J. Anal. Spectrom. 29, 483–490 (2014).
Hayes, G. P. et al. Slab2, a comprehensive subduction zone geometry model. Science 362, 58–61 (2018).
Acknowledgements
This study was supported by funds from the Major Research Plan of the National Natural Science Foundation of China (Grant No. 92562304) to F.H., National Natural Science Foundation of China (Grant No. 42403003) and China Postdoctoral Science Foundation (Grant No. 2023M743359) to W.Z., and National Natural Science Foundation of China (Grant No. 42273043) and Fundamental and Interdisciplinary Disciplines Breakthrough Plan of the Ministry of Education of China (No. JYB2025XDXM911) to Y.X.C. We sincerely thank Terry Plank and the Integrated Ocean Drilling Program (IODP) Leg 185 for providing the sediment samples used in this study.
Author information
Authors and Affiliations
Contributions
F.H. and Y.X.C. conceived the idea and supervised the study. R.N.T. provided samples and contributed to the construction of the manuscript. W.Z. conducted the analytical work and wrote the draft with the input of F.H., Y.X.C., and D.S.J. All the authors contributed to the interpretation of data and the writing of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Sune Nielsen and the other, anonymous, reviewer for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Zhang, W., Chen, YX., Taylor, R.N. et al. Arc magma formation through the fluid-fluxed mélange melting in subduction zones. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69726-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-69726-0