Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Arc magma formation through the fluid-fluxed mélange melting in subduction zones
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 February 2026

Arc magma formation through the fluid-fluxed mélange melting in subduction zones

  • Wei Zhang1,
  • Yi-Xiang Chen  ORCID: orcid.org/0000-0003-4900-46381,
  • Rex N. Taylor2,
  • Ding-Sheng Jiang1 &
  • …
  • Fang Huang  ORCID: orcid.org/0000-0003-1885-33111 

Nature Communications , Article number:  (2026) Cite this article

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Geochemistry
  • Volcanology

Abstract

The transport of subducted slab materials to the overlying mantle plays a crucial role in arc magma formation. However, the contributions of aqueous fluids, hydrous melts, or mélange to the convective mantle remain controversial due to the lack of definitive fingerprints for these materials. Here, we report the Ba isotope composition of lavas from a typical cold-slab arc, the Izu arc, to resolve the recycled materials in the source of arc magmas. δ138/134Ba of the arc lavas show an across-arc decrease corresponding to increasing depth and positively correlates with both 87Sr/86Sr and 143Nd/144Nd. Across-arc variations of both δ138/134Ba and Ba/Th ratios support that high Ba/Th in the Izu and other arc magmas originated from slab-derived fluids rather than melts. Quantitative mixing modeling, involving contributions from mélange followed by slab-derived fluids in successive stages, provides a coherent explanation for Ba-Sr-Nd isotopic signatures observed in lavas from cold arcs. Our work reveals the combined role of slab-derived fluids and mélange diapir melting in arc magma formation.

Data availability

All the data have been provided in the text along with the supplementary information. Source data for the Figures are provided with this paper. Supplementary Data S1–S3 have been deposited in the figshare database under accession code (doi.org/10.6084/m9.figshare.30749000).

References

  1. Pearce, J. A. & Peate, D. W. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci. 23, 251–285 (1995).

    Google Scholar 

  2. Elliott, T., Plank, T., Zindler, A., White, W. & Bourdon, B. Element transport from slab to volcanic front at the Mariana arc. J. Geophys. Res. Solid Earth 102, 14991–15019 (1997).

    Google Scholar 

  3. Hawkesworth, C. J., Turner, S. P., McDermott, F., Peate, D. W. & van Calsteren, P. U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science 276, 551–555 (1997).

    Google Scholar 

  4. Freymuth, H., Ivko, B., Gill, J. B., Tamura, Y. & Elliott, T. Thorium isotope evidence for melting of the mafic oceanic crust beneath the Izu arc. Geochim. Cosmochim. Acta 186, 49–70 (2016).

    Google Scholar 

  5. Klaver, M. et al. Widespread slab melting in modern subduction zones. Earth Planet. Sci. Lett. 626, 118544 (2024).

    Google Scholar 

  6. Li, H., Hermann, J. & Zhang, L. Melting of subducted slab dictates trace element recycling in global arcs. Sci. Adv. 8, eabh2166 (2022).

    Google Scholar 

  7. Turner, S. J. & Langmuir, C. H. Sediment and ocean crust both melt at subduction zones. Earth Planet. Sci. Lett. 584, 117424 (2022).

    Google Scholar 

  8. Turner, S. J. & Langmuir, C. H. An alternative to the igneous crust fluid + sediment melt paradigm for arc lava geochemistry. Sci. Adv. 10, eadg6482 (2024).

    Google Scholar 

  9. Turner, S. J. & Langmuir, C. H. An evaluation of five models of arc volcanism. J. Petrol. 63, egac010 (2022).

    Google Scholar 

  10. Marschall, H. R. & Schumacher, J. C. Arc magmas sourced from mélange diapirs in subduction zones. Nat. Geosci. 5, 862–867 (2012).

    Google Scholar 

  11. Nielsen, S. G. & Marschall, H. R. Geochemical evidence for mélange melting in global arcs. Sci. Adv. 3, e1602402 (2017).

    Google Scholar 

  12. Qiao, X. et al. Magnesium and boron isotope evidence for the generation of arc magma through serpentinite-mélange melting. Natl. Sci. Rev. 12, nwae363 (2024).

    Google Scholar 

  13. Shu, Y. et al. Mélange dehydration and melting beneath South Sandwich Islands arc. Nat. Commun. 16, 1440 (2025).

    Google Scholar 

  14. Pearce, J. A., Stern, R. J., Bloomer, S. H. & Fryer, P. Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. Geochem. Geophys. Geosyst. 6, Q07006 (2005).

    Google Scholar 

  15. Hermann, J. & Rubatto, D. Accessory phase control on the trace element signature of sediment melts in subduction zones. Chem. Geol. 265, 512–526 (2009).

    Google Scholar 

  16. Syracuse, E. M., van Keken, P. E. & Abers, G. A. The global range of subduction zone thermal models. Phys. Earth Planet. Inter. 183, 73–90 (2010).

    Google Scholar 

  17. van Keken, P. E., Hacker, B. R., Syracuse, E. M. & Abers, G. A. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res. 116, B01401 (2011).

    Google Scholar 

  18. van Keken, P. E., Wada, I., Abers, G. A., Hacker, B. R. & Wang, K. Mafic high-pressure rocks are preferentially exhumed from warm subduction settings. Geochem. Geophys. Geosyst. 19, 2934–2961 (2018).

    Google Scholar 

  19. Xiao, Z. et al. First-principles calculations of equilibrium barium isotope fractionation among silicate minerals. Geochim. Cosmochim. Acta 360, 163–174 (2023).

    Google Scholar 

  20. Bai, R. et al. Barium isotopes in ocean island basalts as tracers of mantle processes. Geochim. Cosmochim. Acta 336, 436–447 (2022).

    Google Scholar 

  21. Nan, X. et al. Barium isotope compositions of altered oceanic crust from the IODP Site 1256 at the East Pacific rise. Chem. Geol. 641, 121778 (2023).

    Google Scholar 

  22. Nielsen, S. G. et al. Barium isotope evidence for pervasive sediment recycling in the upper mantle. Sci. Adv. 4, eaas8675 (2018).

    Google Scholar 

  23. Wu, F. et al. Barium isotope composition of depleted MORB mantle constrained by basalts from the South Mid-Atlantic Ridge (5–11°S) with implication for recycled components in the convecting upper mantle. Geochim. Cosmochim. Acta 340, 85–98 (2023).

    Google Scholar 

  24. Gu, X., Guo, S., Yu, H., Xu, J. & Huang, F. Behavior of barium isotopes during high-pressure metamorphism and fluid evolution. Earth Planet. Sci. Lett. 575, 117176 (2021).

    Google Scholar 

  25. Xu, J. et al. Barium isotope fractionation during slab dehydration: Records from an eclogite-quartz vein system in Dabie orogen. Geochim. Cosmochim. Acta 343, 272–285 (2023).

    Google Scholar 

  26. Bridgestock, L. et al. Controls on the barium isotope compositions of marine sediments. Earth Planet. Sci. Lett. 481, 101–110 (2018).

    Google Scholar 

  27. Nielsen, S. G. et al. Barium isotope systematics of subduction zones. Geochim. Cosmochim. Acta 275, 1–18 (2020).

    Google Scholar 

  28. Duan, H., Dong, Y., Yu, H., Wang, W. & Huang, F. The “lost” aqueous supercritical fluids recorded in highly refractory mantle peridotites. Earth Planet. Sci. Lett. 670, 119597 (2025).

    Google Scholar 

  29. Ishikawa, T. & Nakamura, E. Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes. Nature 370, 205–208 (1994).

    Google Scholar 

  30. Taylor, R. N. & Nesbitt, R. W. Isotopic characteristics of subduction fluids in an intra-oceanic setting, Izu–Bonin Arc, Japan. Earth Planet. Sci. Lett. 164, 79–98 (1998).

    Google Scholar 

  31. Hochstaedter, A. et al. Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab. Geochem. Geophys. Geosyst. 2, 2000GC000105 (2001).

    Google Scholar 

  32. Kimura, J. et al. Origin of cross-chain geochemical variation in Quaternary lavas from the northern Izu arc: Using a quantitative mass balance approach to identify mantle sources and mantle wedge processes. Geochem. Geophys. Geosyst. 11, Q10011 (2010).

    Google Scholar 

  33. Tollstrup, D. et al. Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab, revisited. Geochem. Geophys. Geosyst. 11, Q01X10 (2010).

    Google Scholar 

  34. Hauff, F., Hoernle, K. & Schmidt, A. Sr-Nd-Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): Implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system. Geochem. Geophys. Geosyst. 4, 2002GC000421 (2003).

    Google Scholar 

  35. Parendo, C. A., Jacobsen, S. B., Kimura, J. & Taylor, R. N. Across-arc variations in K-isotope ratios in lavas of the Izu arc: Evidence for progressive depletion of the slab in K and similarly mobile elements. Earth Planet. Sci. Lett. 578, 117291 (2022).

    Google Scholar 

  36. Plank, T., Kelley, K. A., Murray, R. W. & Stern, L. Q. Chemical composition of sediments subducting at the Izu-Bonin Trench. Geochem. Geophys. Geosyst. 8, Q04116 (2007).

    Google Scholar 

  37. Plank, T. The chemical composition of subducting sediments. Treatise Geochem. 4, 607–629 (2014).

  38. Salters, V. J. M. & Stracke, A. Composition of the depleted mantle. Geochem. Geophys. Geosyst. 5, 2003GC000597 (2004).

    Google Scholar 

  39. McLennan, S. M. Weathering and global denudation. J. Geol. 101, 295–303 (1993).

    Google Scholar 

  40. Nesbitt, H. & Young, G. M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–717 (1982).

    Google Scholar 

  41. Stern, R. J. et al. Subduction factory processes beneath the Guguan cross-chain, Mariana Arc: no role for sediments, are serpentinites important? Contrib. Mineral. Petrol. 151, 202–221 (2006).

    Google Scholar 

  42. Ishikawa, T. & Tera, F. Source, composition and distribution of the fluid in the Kurile mantle wedge: constraints from across-arc variations of B/Nb and B isotopes. Earth Planet. Sci. Lett. 152, 123–138 (1997).

    Google Scholar 

  43. Ishikawa, T., Tera, F. & Nakazawa, T. Boron isotope and trace element systematics of the three volcanic zones in the Kamchatka arc. Geochim. Cosmochim. Acta 65, 4523–4537 (2001).

    Google Scholar 

  44. Benton, L. D., Ryan, J. G. & Tera, F. Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana forearc. Earth Planet. Sci. Lett. 187, 273–282 (2001).

    Google Scholar 

  45. Li, H. et al. Slab dehydration and magmatism in the Kurile arc as a function of depth: An investigation based on B-Sr-Nd-Hf isotopes. Chem. Geol. 621, 121373 (2023).

    Google Scholar 

  46. Pabst, S. et al. The fate of subducted oceanic slabs in the shallow mantle: Insights from boron isotopes and light element composition of metasomatized blueschists from the Mariana forearc. Lithos 132-133, 162–179 (2012).

    Google Scholar 

  47. Ryan, J. G., Morris, J., Tera, F., Leeman, W. P. & Tsvetkov, A. Cross-arc geochemical variations in the Kurile arc as a function of slab depth. Science 270, 625–627 (1995).

    Google Scholar 

  48. Cheng, Y. S. et al. Barium isotope fingerprint for recycled ancient sediment in the source of EM1-type continental basalts. Geophys. Res. Lett. 52, e2024GL111960 (2025).

  49. Jiang, D. et al. Ba-Mg isotopic evidence from an OIB-type diabase for a big mantle wedge beneath East Asia in the Early Cretaceous. Chem. Geol. 646, 121917 (2024).

    Google Scholar 

  50. Wu, F., Turner, S. & Schaefer, B. F. Mélange versus fluid and melt enrichment of subarc mantle: A novel test using barium isotopes in the Tonga-Kermadec arc. Geology 48, 1053–1057 (2020).

    Google Scholar 

  51. Zhang, Y. et al. Deciphering contribution of recycled altered oceanic crust to arc magmas using Ba-Sr-Nd isotopes. J. Geophys. Res. Solid Earth 129, e2023JB028407 (2024).

    Google Scholar 

  52. Behn, M. D., Kelemen, P. B., Hirth, G., Hacker, B. R. & Massonne, H. Diapirs as the source of the sediment signature in arc lavas. Nat. Geosci. 4, 641–646 (2011).

    Google Scholar 

  53. Codillo, E. A. et al. The ascent of subduction zone mélanges: Experimental constraints on mélange rock densities and solidus temperatures. Earth Planet. Sci. Lett. 621, 118398 (2023).

    Google Scholar 

  54. Currie, C. A., Beaumont, C. & Huismans, R. S. The fate of subducted sediments: a case for backarc intrusion and underplating. Geology 35, 1111–1114 (2007).

    Google Scholar 

  55. Johnson, M. C. & Plank, T. Dehydration and melting experiments constrain the fate of subducted sediments. Geochem. Geophys. Geosyst. 1, 1007 (2000).

    Google Scholar 

  56. Grove, T., Chatterjee, N., Parman, S. & Medard, E. The influence of H2O on mantle wedge melting. Earth Planet. Sci. Lett. 249, 74–89 (2006).

    Google Scholar 

  57. Castro, A. & Gerya, T. V. Magmatic implications of mantle wedge plumes: Experimental study. Lithos 103, 138–148 (2008).

    Google Scholar 

  58. Gerya, T. V. & Yuen, D. A. Rayleigh–Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones. Earth Planet. Sci. Lett. 212, 47–62 (2003).

    Google Scholar 

  59. Hasenclever, J., Morgan, J., Hort, M. & Rüpke, L. H. 2D and 3D numerical models on compositionally buoyant diapirs in the mantle wedge. Earth Planet. Sci. Lett. 311, 53–68 (2011).

    Google Scholar 

  60. Rebaza, A. M., Holman, B. I., Mallik, A. & Cooperdock, E. H. Mechanisms of mass transfer in sediment-rich mélanges in modern subduction zones. J. Geophys. Res. Solid Earth 130, e2024JB030991 (2025).

    Google Scholar 

  61. Zhu, G. et al. Three-dimensional dynamics of hydrous thermal-chemical plumes in oceanic subduction zones. Geochem. Geophys. Geosyst. 10, GC002625 (2009).

    Google Scholar 

  62. Gerya, T. V., Connolly, J. A. D., Yuen, D. A., Gorczyk, W. & Capel, A. M. Seismic implications of mantle wedge plumes. Phys. Earth Planet. Inter. 156, 59–74 (2006).

    Google Scholar 

  63. Lin, C., Shih, M. & Lai, Y. Mantle wedge diapirs detected by a dense seismic array in Northern Taiwan. Sci. Rep. 11, 1561 (2021).

    Google Scholar 

  64. Sang, M. et al. Formation of the eclogites of the Atbashi complex, Kyrgyzstan, in a subduction zone mélange diapir. Commun. Earth Environ. 4, 434 (2023).

    Google Scholar 

  65. Nan, X. et al. High-precision barium isotope measurements by MC-ICP-MS. J. Anal. Spectrom. 3, 2307–2315 (2015).

    Google Scholar 

  66. Zeng, Z., Li, X., Liu, Y., Huang, F. & Yu, H. M. High-precision barium isotope measurements of carbonates by MC-ICP-MS. Geostand. Geoanal. Res. 43, 291–300 (2019).

    Google Scholar 

  67. Li, W. et al. Barium isotopic composition of the mantle: Constraints from carbonatites. Geochim. Cosmochim. Acta 278, 235–243 (2020).

    Google Scholar 

  68. Cheng, Y. et al. Rapid two-column separation method for determining barium isotopic compositions using MC-ICP-MS. At. Spectrosc. 43, 236–245 (2022).

    Google Scholar 

  69. Duan, H. et al. High-efficiency and high-precision analysis of barium isotope ratios achieved through in-tandem column purification and ICP optimization. J. Anal. At. Spectrom. 40, 3449–3462 (2025).

  70. Miyazaki, T., Kimura, J. & Chang, Q. Analysis of stable isotope ratios of Ba by double-spike standard-sample bracketing using multiple-collector inductively coupled plasma mass spectrometry. J. Anal. Spectrom. 29, 483–490 (2014).

    Google Scholar 

  71. Hayes, G. P. et al. Slab2, a comprehensive subduction zone geometry model. Science 362, 58–61 (2018).

    Google Scholar 

Download references

Acknowledgements

This study was supported by funds from the Major Research Plan of the National Natural Science Foundation of China (Grant No. 92562304) to F.H., National Natural Science Foundation of China (Grant No. 42403003) and China Postdoctoral Science Foundation (Grant No. 2023M743359) to W.Z., and National Natural Science Foundation of China (Grant No. 42273043) and Fundamental and Interdisciplinary Disciplines Breakthrough Plan of the Ministry of Education of China (No. JYB2025XDXM911) to Y.X.C. We sincerely thank Terry Plank and the Integrated Ocean Drilling Program (IODP) Leg 185 for providing the sediment samples used in this study.

Author information

Authors and Affiliations

  1. State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China

    Wei Zhang, Yi-Xiang Chen, Ding-Sheng Jiang & Fang Huang

  2. School of Ocean and Earth Science, University of Southampton, Southampton, UK

    Rex N. Taylor

Authors
  1. Wei Zhang
    View author publications

    Search author on:PubMed Google Scholar

  2. Yi-Xiang Chen
    View author publications

    Search author on:PubMed Google Scholar

  3. Rex N. Taylor
    View author publications

    Search author on:PubMed Google Scholar

  4. Ding-Sheng Jiang
    View author publications

    Search author on:PubMed Google Scholar

  5. Fang Huang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

F.H. and Y.X.C. conceived the idea and supervised the study. R.N.T. provided samples and contributed to the construction of the manuscript. W.Z. conducted the analytical work and wrote the draft with the input of F.H., Y.X.C., and D.S.J. All the authors contributed to the interpretation of data and the writing of the manuscript.

Corresponding authors

Correspondence to Yi-Xiang Chen or Fang Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Sune Nielsen and the other, anonymous, reviewer for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Chen, YX., Taylor, R.N. et al. Arc magma formation through the fluid-fluxed mélange melting in subduction zones. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69726-0

Download citation

  • Received: 25 July 2025

  • Accepted: 09 February 2026

  • Published: 21 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69726-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing