Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Arginase 1 promotes hepatic lipogenesis by regulating ERK2/PPARγ signaling in a non-canonical manner
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 18 February 2026

Arginase 1 promotes hepatic lipogenesis by regulating ERK2/PPARγ signaling in a non-canonical manner

  • Mingyang Shao1,2 na1,
  • Xiaoyue Cao1,2 na1,
  • Yuwei Chen1,2,
  • Ziqi Zhu1,2,
  • Yuke Shu1,2,
  • Qing Tao1,2,
  • Qing Xu  ORCID: orcid.org/0009-0009-6885-93921,2,
  • Tingting Ma1,2,
  • Zhenru Wu1,2,
  • Menglin Chen1,2,
  • Yongjie Zhou2,3,
  • Rong Yao4,
  • Junhua Gong  ORCID: orcid.org/0009-0003-2245-90075,
  • Jiayin Yang  ORCID: orcid.org/0009-0002-7221-49322,3 &
  • …
  • Yujun Shi  ORCID: orcid.org/0000-0003-0494-60231,2 

Nature Communications , Article number:  (2026) Cite this article

  • 576 Accesses

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cell signalling
  • Metabolic syndrome
  • Non-alcoholic fatty liver disease
  • Obesity

Abstract

Obesity and related metabolic disorders, including metabolic dysfunction-associated steatohepatitis (MASLD), have reached epidemic proportions worldwide. We unveil a previously unknown moonlighting role for arginase 1 (Arg1) in facilitating hepatic lipogenesis. Male mice lacking hepatic Arg1 exhibit diminished lipid accumulation in both liver and adipocytes, an effect mirrored in genetically- or diet-induced obesity models following Arg1 inhibitor treatment. Mechanistically, Arg1 competes with RSK2 and Elk1 for binding to the substrate-binding pocket of extracellular signal-regulated kinase 2 (ERK2) via its S-shaped motif, thereby enhancing ERK2 ubiquitination and degradation and upregulating the AKT/mTOR/PPARγ and Elk1/c-Fos/PPARγ cascades, ultimately augmenting lipogenesis. Peptides designed to mimic the ERK2 substrate-binding pocket disrupt the Arg1-ERK2 interaction and improve metabolic profiles in obesity and MASLD models. Our findings implicate Arg1 regulates hepatic lipid metabolism via its physical interaction with ERK2, highlighting the Arg1-ERK2 interaction as a promising therapeutic target for obesity and related metabolic disorders in male mice.

Similar content being viewed by others

Diet-induced RKIP downregulation disrupts PC/PE-ER homeostasis to drive MASLD

Article Open access 12 December 2025

ARRB1 suppresses the activation of hepatic macrophages via modulating endoplasmic reticulum stress in lipopolysaccharide-induced acute liver injury

Article Open access 28 August 2021

USP2 promotes metabolic dysfunction-associated steatotic liver disease progression via stabilization of PPARγ

Article 24 September 2025

Data availability

mRNA-seq data generated in this study have been deposited at the National Center for Biotechnology Information (NCBI) GenBank (PRJNA1186374 [https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1186374] and PRJNA1186081. Microscopy data reported in this paper will be shared by the lead contact upon request. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD059821. Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request. Source data are provided in this paper.

References

  1. Younossi, Z. M. Non-alcoholic fatty liver disease–a global public health perspective. J. Hepatol. 70, 531–544 (2019).

    Google Scholar 

  2. Kim, M. S. et al. Association between adiposity and cardiovascular outcomes: an umbrella review and meta-analysis of observational and Mendelian randomization studies. Eur. Heart J. 42, 3388–3403 (2021).

    Google Scholar 

  3. Samms, R. J. & Kusminski, C. M. A Mechanistic Rationale for Incretin-Based Therapeutics in the Management of Obesity. Annu. Rev. Physiol. 87, 279–299 (2025).

    Google Scholar 

  4. Xu, J. et al. Hepatic CDP-diacylglycerol synthase 2 deficiency causes mitochondrial dysfunction and promotes rapid progression of NASH and fibrosis. Sci. Bull. 67, 299–314 (2022).

    Google Scholar 

  5. Rouillard, N. A. et al. Bariatric surgery reduces long-term mortality in patients with metabolic dysfunction-associated steatotic liver disease and cirrhosis. Clin. Mol. Hepatol. 31, 227–239 (2025).

    Google Scholar 

  6. Anstee, Q. M., Reeves, H. L., Kotsiliti, E., Govaere, O. & Heikenwalder, M. From NASH to HCC: current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol. 16, 411–428 (2019).

    Google Scholar 

  7. Harrison, S. A. et al. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 394, 2012–2024 (2019).

    Google Scholar 

  8. Mantovani, A., Byrne, C. D. & Targher, G. Efficacy of peroxisome proliferator-activated receptor agonists, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors for treatment of non-alcoholic fatty liver disease: a systematic review. Lancet Gastroenterol. Hepatol. 7, 367–378 (2022).

    Google Scholar 

  9. Brunner, K. T., Henneberg, C. J., Wilechansky, R. M., & Long, M. T. Nonalcoholic Fatty Liver Disease and Obesity Treatment. Curr. Obes. Rep. 8, 220–228 (2019).

    Google Scholar 

  10. Kim, O. Y. et al. Arginase I and the very low-density lipoprotein receptor are associated with phenotypic biomarkers for obesity. Nutrition 28, 635–639 (2012).

    Google Scholar 

  11. Therrell, B. L., Currier, R., Lapidus, D., Grimm, M. & Cederbaum, S. D. Newborn screening for hyperargininemia due to arginase 1 deficiency. Mol. Genet. Metab. 121, 308–313 (2017).

    Google Scholar 

  12. Jung, C., Figulla, H. R., Lichtenauer, M., Franz, M. & Pernow, J. Increased levels of circulating arginase I in overweight compared to normal weight adolescents. Pediatr. Diabetes 15, 51–56 (2014).

    Google Scholar 

  13. Bhatta, A. et al. Obesity-induced vascular dysfunction and arterial stiffening requires endothelial cell arginase 1. Cardiovasc. Res. 113, 1664–1676 (2017).

    Google Scholar 

  14. Ito, T. et al. Early obesity leads to increases in hepatic arginase I and related systemic changes in nitric oxide and L-arginine metabolism in mice. J. Physiol. Biochem. 74, 9–16 (2018).

    Google Scholar 

  15. Holbert, C. E., Cullen, M. T., Casero, R. A. Jr & Stewart, T. M. Polyamines in cancer: integrating organismal metabolism and antitumour immunity. Nat. Rev. Cancer 22, 467–480 (2022).

    Google Scholar 

  16. Xuan, M. et al. Polyamines: their significance for maintaining health and contributing to diseases. Cell Commun. Signal. 21, 348 (2023).

    Google Scholar 

  17. Monelli, E. et al. Angiocrine polyamine production regulates adiposity. Nat. Metab. 4, 327–343 (2022).

    Google Scholar 

  18. Sadasivan, S. K. et al. Exogenous administration of spermine improves glucose utilization and decreases bodyweight in mice. Eur. J. Pharmacol. 729, 94–99 (2014).

    Google Scholar 

  19. Hu, X., Li, Y., Cao, Y., Shi, F. & Shang, L. The role of nitric oxide synthase/ nitric oxide in infection-related cancers: Beyond antimicrobial activity. Biochim. Biophys. Acta Rev. Cancer 1879, 189156 (2024).

    Google Scholar 

  20. Clemente, S. et al. Arginase as a Potential Biomarker of Disease Progression: A Molecular Imaging Perspective. Int. J. Mol. Sci. 21, 5291 (2020).

    Google Scholar 

  21. Mabalirajan, U. et al. Beneficial effects of high dose of L-arginine on airway hyperresponsiveness and airway inflammation in a murine model of asthma. J. Allergy Clin. Immunol. 125, 626–635 (2010).

    Google Scholar 

  22. Kim, D. Y., Park, J. Y. & Gee, H. Y. Lactobacillus plantarum ameliorates NASH-related inflammation by upregulating L-arginine production. Exp. Mol. Med. 55, 2332–2345 (2023).

    Google Scholar 

  23. Savova, M. S., Mihaylova, L. V., Tews, D., Wabitsch, M. & Georgiev, M. I. Targeting PI3K/AKT signaling pathway in obesity. Biomed. Pharmacother. 159, 114244 (2023).

    Google Scholar 

  24. Kujiraoka, T. et al. Metabolic remodeling with hepatosteatosis induced vascular oxidative stress in hepatic ERK2 deficiency mice with high fat diets. Int. J. Mol. Sci. 23, 8521 (2022).

    Google Scholar 

  25. Wen, X. et al. Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 7, 298 (2022).

    Google Scholar 

  26. Allard, C., Miralpeix, C., López-Gambero, A. J. & Cota, D. mTORC1 in energy expenditure: consequences for obesity. Nat. Rev. Endocrinol. 20, 239–251 (2024).

    Google Scholar 

  27. Caron, A., Richard, D. & Laplante, M. The roles of mTOR complexes in lipid metabolism. Annu. Rev. Nutr. 35, 321–348 (2015).

    Google Scholar 

  28. Kassouf, T. & Sumara, G. Impact of conventional and Atypical MAPKs on the development of metabolic diseases. Biomolecules 10, 1256 (2020).

    Google Scholar 

  29. Bunch, H. et al. ERK2-topoisomerase II regulatory axis is important for gene activation in immediate early genes. Nat. Commun. 14, 8341 (2023).

    Google Scholar 

  30. Roskoski, R. Jr ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol. Res. 66, 105–143 (2012).

    Google Scholar 

  31. Lavoie, H., Gagnon, J. & Therrien, M. ERK signalling: a master regulator of cell behaviour, life and fate. Nat. Rev. Mol. Cell Biol. 21, 607–632 (2020).

    Google Scholar 

  32. Artunc, F. et al. The impact of insulin resistance on the kidney and vasculature. Nat. Rev. Nephrol. 12, 721–737 (2016).

    Google Scholar 

  33. Cai, W. et al. STAT6/Arg1 promotes microglia/macrophage efferocytosis and inflammation resolution in stroke mice. JCI Insight 4, e131355 (2019).

    Google Scholar 

  34. Liu, L. et al. Sirt1 ameliorates monosodium urate crystal-induced inflammation by altering macrophage polarization via the PI3K/Akt/STAT6 pathway. Rheumatology 58, 1674–1683 (2019).

    Google Scholar 

  35. Wang, Y., Nakajima, T., Gonzalez, F. J. & Tanaka, N. PPARs as metabolic regulators in the liver: lessons from liver-specific PPAR-null mice. Int. J. Mol. Sci. 21, 2061 (2020).

    Google Scholar 

  36. Zhao, Y., Tan, H., Zhang, X. & Zhu, J. Roles of peroxisome proliferator-activated receptors in hepatocellular carcinoma. J. Cell. Mol. Med. 28, e18042 (2024).

    Google Scholar 

  37. Gallardo-Soler, A. et al. Arginase Iinduction by modified lipoproteins in macrophages: a peroxisome proliferator-activated receptor-gamma/delta-mediated effect that links lipid metabolism and immunity. Mol. Endocrinol. 22, 1394–1402 (2008).

    Google Scholar 

  38. Qiu, Y. et al. The global perspective on peroxisome proliferator-activated receptor γ (PPARγ) in ectopic fat deposition: a review. Int. J. Biol. Macromol. 253, 127042 (2023).

    Google Scholar 

  39. Chen, H. et al. PPAR-γ Signaling in nonalcoholic fatty liver disease: pathogenesis and therapeutic targets. Pharmacol. Ther. 245, 108391 (2023).

    Google Scholar 

  40. Kim, N. N. et al. Probing erectile function: S-(2-boronoethyl)-L-cysteine binds to arginase as a transition state analogue and enhances smooth muscle relaxation in human penile corpus cavernosum. Biochemistry 40, 2678–2688 (2001).

    Google Scholar 

  41. Khaidar, A., Marx, M., Lubec, B. & Lubec, G. L-Arginine reduces heart collagen accumulation in the diabetic db/db mouse. Circulation 90, 479–483 (1994).

    Google Scholar 

  42. Huang, X., Liu, G., Guo, J. & Su, Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 14, 1483–1496 (2018).

    Google Scholar 

  43. Zhang, H. et al. Molecular cloning and characterization of a putative mitogen-activated protein kinase (Erk1/2) gene: involvement in mantle immunity of Pinctada fucata. Fish Shellfish Immunol 80, 63–70 (2018).

    Google Scholar 

  44. Qu, F. et al. A molluscan extracellular signal-regulated kinase is involved in host response to immune challenges in vivo and in vitro. Fish Shellfish Immunol. 62, 311–319 (2017).

    Google Scholar 

  45. Zhang, J., Zhou, B., Zheng, C. F. & Zhang, Z. Y. A bipartite mechanism for ERK2 recognition by its cognate regulators and substrates. J. Biol. Chem. 278, 29901–29912 (2003).

    Google Scholar 

  46. Tanoue, T. & Nishida, E. Docking interactions in the mitogen-activated protein kinase cascades. Pharmacol. Ther. 93, 193–202 (2002).

    Google Scholar 

  47. Bardwell, A. J., Abdollahi, M. & Bardwell, L. Docking sites on mitogen-activated protein kinase (MAPK) kinases, MAPK phosphatases and the Elk-1 transcription factor compete for MAPK binding and are crucial for enzymic activity. Biochem. J. 370, 1077–1085 (2003).

    Google Scholar 

  48. Adams, M. R., Jessup, W., Hailstones, D. & Celermajer, D. S. L-arginine reduces human monocyte adhesion to vascular endothelium and endothelial expression of cell adhesion molecules. Circulation 95, 662–668 (1997).

    Google Scholar 

  49. Harhouri, K. et al. MG132-induced progerin clearance is mediated by autophagy activation and splicing regulation. EMBO Mol. Med. 9, 1294–1313 (2017).

    Google Scholar 

  50. Sala-Gaston, J. et al. Regulation of MAPK signaling pathways by the large HERC ubiquitin ligases. Int. J. Mol. Sci. 24, 4906 (2023).

    Google Scholar 

  51. Wang, K. et al. UBR5 regulates proliferation and radiosensitivity in human laryngeal carcinoma via the p38/MAPK signaling pathway. Oncol. Rep. 44, 685–697 (2020).

    Google Scholar 

  52. Liu, Y. et al. TRIM21-mediated ubiquitination and phosphorylation of ERK1/2 promotes cell proliferation and drug resistance in pituitary adenomas. Neuro Oncol. 27, 727–742 (2025).

    Google Scholar 

  53. Lu, Z., Xu, S., Joazeiro, C., Cobb, M. H. & Hunter, T. The PHD domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2. Mol. Cell 9, 945–956 (2002).

    Google Scholar 

  54. Kanyo, Z. F., Scolnick, L. R., Ash, D. E. & Christianson, D. W. Structure of a unique binuclear manganese cluster in arginase. Nature 383, 554–557 (1996).

    Google Scholar 

  55. Khangulov, S. V., Sossong, T. M. Jr, Ash, D. E. & Dismukes, G. C. L. -arginine binding to liver arginase requires proton transfer to gateway residue His141 and coordination of the guanidinium group to the dimanganese(II,II) center. Biochemistry 37, 8539–8550 (1998).

    Google Scholar 

  56. García, D., Uribe, E., Lobos, M., Orellana, M. S. & Carvajal, N. Studies on the functional significance of a C-terminal S-shaped motif in human arginase type I: essentiality for cooperative effects. Arch. Biochem. Biophys. 481, 16–20 (2009).

    Google Scholar 

  57. Gao, K. et al. A synthetic peptide as an allosteric inhibitor of human arginase I and II. Mol. Biol. Rep. 48, 1959–1966 (2021).

    Google Scholar 

  58. Wang, X. et al. RARγ-C-Fos-PPARγ2 signaling rather than ROS generation is critical for all-trans retinoic acid-inhibited adipocyte differentiation. Biochimie 106, 121–130 (2014).

    Google Scholar 

  59. Jiao, S. et al. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 25, 166–180 (2014).

    Google Scholar 

  60. Guan, T., Li, J., Chen, C. & Liu, Y. Self-assembling peptide-based hydrogels for wound tissue repair. Adv. Sci. 9, e2104165 (2022).

    Google Scholar 

  61. Linker, S. M. et al. Lessons for oral bioavailability: how conformationally flexible cyclic peptides enter and cross lipid membranes. J. Med. Chem. 66, 2773–2788 (2023).

    Google Scholar 

  62. Kovalainen, M. et al. Novel delivery systems for improving the clinical use of peptides. Pharmacol. Rev. 67, 541–561 (2015).

    Google Scholar 

  63. Kalezic, A., Korac, A., Korac, B. & Jankovic, A. L-Arginine induces white adipose tissue browning—a new pharmaceutical alternative to cold. Pharmaceutics 14, 1368 (2022).

    Google Scholar 

  64. Wu, Z., Satterfield, M. C., Bazer, F. W. & Wu, G. Regulation of brown adipose tissue development and white fat reduction by L-arginine. Curr. Opin. Clin. Nutr. Metab. Care 15, 529–538 (2012).

    Google Scholar 

  65. Oliva, L., Alemany, M., Remesar, X. & Fernández-López, J. A. The food energy/protein ratio regulates the rat urea cycle but not total nitrogen losses. Nutrients 11, 316 (2019).

    Google Scholar 

  66. Krieg, S., Fernandes, S. I., Kolliopoulos, C., Liu, M. & Fendt, S. M. Metabolic signaling in cancer metastasis. Cancer Discov. 14, 934–952 (2024).

    Google Scholar 

  67. Xu, D. et al. The evolving landscape of noncanonical functions of metabolic enzymes in cancer and other pathologies. Cell Metab. 33, 33–50 (2021).

    Google Scholar 

  68. Frödin, M., Jensen, C. J., Merienne, K. & Gammeltoft, S. A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates PDK1. EMBO J. 19, 2924–2934 (2000).

    Google Scholar 

  69. Dimitri, C. A., Dowdle, W., MacKeigan, J. P., Blenis, J. & Murphy, L. O. Spatially separate docking sites on ERK2 regulate distinct signaling events in vivo. Curr. Biol. 15, 1319–1324 (2005).

    Google Scholar 

  70. Davis, R. J. Signal transduction by the JNK group of MAP kinases. Cell 103, 239–252 (2000).

    Google Scholar 

  71. Rodríguez, J. & Crespo, P. Working without kinase activity: phosphotransfer-independent functions of extracellular signal-regulated kinases. Sci. Signal. 4, re3 (2011).

    Google Scholar 

  72. Smith, J. A., Poteet-Smith, C. E., Malarkey, K. & Sturgill, T. W. Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo. J. Biol. Chem. 274, 2893–2898 (1999).

    Google Scholar 

  73. Arvind, R. et al. A mutation in the common docking domain of ERK2 in a human cancer cell line, which was associated with its constitutive phosphorylation. Int. J. Oncol. 27, 1499–1504 (2005).

    Google Scholar 

  74. Gonzalez, F. J., Jiang, C. & Patterson, A. D. An intestinal microbiota–farnesoid X receptor axis modulates metabolic disease. Gastroenterology 151, 845–859 (2016).

    Google Scholar 

  75. Dixon, E. D. et al. Inhibition of ATGL alleviates MASH via impaired PPARα signalling that favours hydrophilic bile acid composition in mice. J. Hepatol. 82, 658–675 (2025).

    Google Scholar 

  76. Wu, F., Zhang, Y. T., Teng, F., Li, H. H. & Guo, S. B. S100a8/a9 Contributes to sepsis-induced cardiomyopathy by activating ERK1/2-Drp1-mediated mitochondrial fission and respiratory dysfunction. Int. Immunopharmacol. 115, 109716 (2023).

    Google Scholar 

  77. Krepler et al. Personalized preclinical trials in BRAF inhibitor-resistant patient-derived xenograft models identify second-line combination therapies. Clin. Cancer Res. 22, 1592–1602 (2016).

    Google Scholar 

  78. Du, J. et al. CircNFIB Inhibits tumor growth and metastasis through suppressing MEK1/ERK signaling in intrahepatic cholangiocarcinoma. Mol. Cancer 21, 18 (2022).

    Google Scholar 

  79. Truong, B. et al. Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase Deficiency. Proc. Natl. Acad. Sci. USA 116, 21150–21159 (2019).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 82200649), the National Natural Science Foundation of China (Grant No. 82472241). We would also like to acknowledge the help of HUABIO and WZ Biosciences Inc. in providing peptides as well as virus strains. We are grateful to Shanghai Oe Biotech Co., Ltd., for providing sequencing services.

Author information

Author notes
  1. These authors contributed equally: Mingyang Shao, Xiaoyue Cao.

Authors and Affiliations

  1. Department of Pathology & Institute of Clinical Pathology, West China Hospital of Sichuan University, 37 Guoxue Alley, Chengdu, China

    Mingyang Shao, Xiaoyue Cao, Yuwei Chen, Ziqi Zhu, Yuke Shu, Qing Tao, Qing Xu, Tingting Ma, Zhenru Wu, Menglin Chen & Yujun Shi

  2. Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, China

    Mingyang Shao, Xiaoyue Cao, Yuwei Chen, Ziqi Zhu, Yuke Shu, Qing Tao, Qing Xu, Tingting Ma, Zhenru Wu, Menglin Chen, Yongjie Zhou, Jiayin Yang & Yujun Shi

  3. Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, 37 Guoxue Alley, Chengdu, China

    Yongjie Zhou & Jiayin Yang

  4. The Emergency Department, West China Hospital, Sichuan University, 37 Guoxue Alley, Wuhou, Chengdu, China

    Rong Yao

  5. Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, China

    Junhua Gong

Authors
  1. Mingyang Shao
    View author publications

    Search author on:PubMed Google Scholar

  2. Xiaoyue Cao
    View author publications

    Search author on:PubMed Google Scholar

  3. Yuwei Chen
    View author publications

    Search author on:PubMed Google Scholar

  4. Ziqi Zhu
    View author publications

    Search author on:PubMed Google Scholar

  5. Yuke Shu
    View author publications

    Search author on:PubMed Google Scholar

  6. Qing Tao
    View author publications

    Search author on:PubMed Google Scholar

  7. Qing Xu
    View author publications

    Search author on:PubMed Google Scholar

  8. Tingting Ma
    View author publications

    Search author on:PubMed Google Scholar

  9. Zhenru Wu
    View author publications

    Search author on:PubMed Google Scholar

  10. Menglin Chen
    View author publications

    Search author on:PubMed Google Scholar

  11. Yongjie Zhou
    View author publications

    Search author on:PubMed Google Scholar

  12. Rong Yao
    View author publications

    Search author on:PubMed Google Scholar

  13. Junhua Gong
    View author publications

    Search author on:PubMed Google Scholar

  14. Jiayin Yang
    View author publications

    Search author on:PubMed Google Scholar

  15. Yujun Shi
    View author publications

    Search author on:PubMed Google Scholar

Contributions

M.S. and X.C. conceived and designed the project. Y.C. performed mRNA-seq experiments and analysis. M.S., Z.Z., Y.S., Q.T., Q.X., T.M., Z.W., M.C., Y.Z., and R.Y. bred mice, performed mouse experiments, and analyzed the data. M.S., J.G., and J.Y. provided liver disease model setup, study design, and joint discussions on the results. Y.S. and M.S. interpreted the data and drafted and revised the manuscript.

Corresponding authors

Correspondence to Junhua Gong, Jiayin Yang or Yujun Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, M., Cao, X., Chen, Y. et al. Arginase 1 promotes hepatic lipogenesis by regulating ERK2/PPARγ signaling in a non-canonical manner. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69731-3

Download citation

  • Received: 19 December 2024

  • Accepted: 06 February 2026

  • Published: 18 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69731-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing