Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Mixed-matrix membranes with molecular recognition windows for selective helium extraction from natural gas
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 19 February 2026

Mixed-matrix membranes with molecular recognition windows for selective helium extraction from natural gas

  • Wen He1,
  • Xiangzeng Wang2,
  • Jian Guan1,
  • Quansheng Liang2,
  • Ji Ma1,
  • Ying Liu2,
  • Hongjun Zhang  ORCID: orcid.org/0000-0002-4714-88093,
  • Chunwei Zhang2 &
  • …
  • Jiangtao Liu  ORCID: orcid.org/0000-0002-4569-71691 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Molecular self-assembly
  • Organic–inorganic nanostructures
  • Organic molecules in materials science

Abstract

Mixed-matrix membranes (MMMs) with high chain packing density by incorporating soluble macrocycle compounds represent a promising class of materials for gas separation. However, achieving the ultra-high selectivity (He/CH4 > 1000) for helium extraction from natural gas with ultra-low helium content remains a formidable challenge, especially for Matrimid membranes, which are commercially available but exhibit relatively low permeability and moderate selectivity. Herein, the cyclic Cyclen with specific intra-ring dimensions was incorporated into Matrimid as a pore-structure modifier to enhance the He/CH4 selectivity. The strong hydrogen bonding interactions between Cyclen and Matrimid chains induced a denser chain stacking and modulation of the interchain gap structures, which enables rapid mass transfer of small He gas molecules while hindering the diffusion of large CH4 gas molecules across the membrane, thereby significantly enhanced He/CH4 molecular sieving capacity. Molecular dynamics simulations indicate that the MMMs prepared using Cyclen as a filler exhibited tunable microporous and more efficient He transport channels. Notably, the He/CH4 selectivity reached up to an impressive value of 6788 after physical aging for 110 days, which outperformed almost all reported polymer-based membranes and was even comparable to that of some advanced carbon molecular sieve membranes.

Similar content being viewed by others

Hierarchically porous and single Zn atom-embedded carbon molecular sieves for H2 separations

Article Open access 07 July 2024

Ultra-selective molecular-sieving gas separation membranes enabled by multi-covalent-crosslinking of microporous polymer blends

Article Open access 22 October 2021

Boosting membrane carbon capture via multifaceted polyphenol-mediated soldering

Article Open access 27 March 2023

Data availability

The authors declare that all the data supporting the findings of this study are available within the article (and Supplementary Information files). Additional data are available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Nuttall, W. J., Clarke, R. H. & Glowacki, B. A. Stop squandering helium. Nature 485, 573–575 (2012).

    Google Scholar 

  2. Berganza, C. J. & Zhang, J. H. The role of helium gas in medicine. Med. Gas Res. 3, 1–7 (2013).

    Google Scholar 

  3. Li, K. H. et al. Microporosity effect of intrinsic microporous polyimide membranes on their helium enrichment performance after direct fluorination. J. Membr. Sci. 660, 120868 (2022).

    Google Scholar 

  4. Dai, Z. D. et al. Helium separation using membrane technology: recent advances and perspectives. Sep. Purif. Technol. 274, 119044 (2021).

    Google Scholar 

  5. Han, J. L. et al. Tuning the phase composition of metal-organic framework membranes for helium separation through incorporation of fullerenes. J. Am. Chem. Soc. 145, 14793–14801 (2023).

    Google Scholar 

  6. Scholes, C. A. & Ghosh, U. Helium separation through polymeric membranes: selectivity targets. J. Membr. Sci. 520, 221–230 (2016).

    Google Scholar 

  7. Antunes, R. et al. Experimental investigation of the ideal selectivity of MFI-ZSM-5 zeolite-type membranes for a first evaluation of the separation of hydrogen isotopologues from helium. Sep. Purif. Technol. 212, 767–773 (2019).

    Google Scholar 

  8. Zheng, P. J. et al. Ionization of Tröger’s base polymer of intrinsic microporosity for high-performance membrane-mediated helium recovery. J. Membr. Sci. 672, 121425 (2023).

    Google Scholar 

  9. Li, Z. Y. et al. Enhanced plasticization resistance of hollow fiber membranes for helium recovery from natural gas based on a novel thermally crosslinkable polyimide. J. Membr. Sci. 688, 122126 (2023).

    Google Scholar 

  10. Denning, S., Lucero, J., Koh, C. A. & Carreon, M. A. Chabazite zeolite SAPO-34 membranes for He/CH4 separation. ACS Mater. Lett. 1, 655–659 (2019).

    Google Scholar 

  11. Alders, M., Winterhalder, D. & Wessling, M. Helium recovery using membrane processes. Sep. Purif. Technol. 189, 433–440 (2017).

    Google Scholar 

  12. Jiao, Y. et al. Finely tuning the microporosity in phosphoric acid doped triptycene-containing polybenzimidazole membranes for highly permselective helium and hydrogen recovery. J. Membr. Sci. 672, 121474 (2023).

    Google Scholar 

  13. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    Google Scholar 

  14. Gin, D. L. & Noble, R. D. Designing the next generation of chemical separation membranes. Science 332, 674–676 (2011).

    Google Scholar 

  15. Ding, L. et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain. 3, 296–302 (2020).

    Google Scholar 

  16. Wang, M. D. et al. Ultrafast seawater desalination with covalent organic framework membranes. Nat. Sustain. 5, 518–526 (2022).

    Google Scholar 

  17. Zhang, H. Q. et al. High-performance spiro-branched polymeric membranes for sustainability applications. Nat. Sustain. 7, 910–919 (2024).

    Google Scholar 

  18. Ye, L. L., Li, H. & Xie, K. Sustainable ammonia production enabled by membrane reactor. Nat. Sustain. 5, 787–794 (2022).

    Google Scholar 

  19. Zhang, C. & Koros, W. J. Ultraselective carbon molecular sieve membranes with tailored synergistic sorption selective properties. Adv. Mater. 29, 1701631 (2017).

    Google Scholar 

  20. Yang, Z. Z. et al. Surpassing Robeson upper limit for CO2/N2 separation with fluorinated carbon molecular sieve membranes. Chem 6, 631–645 (2020).

    Google Scholar 

  21. Zhu, B. et al. Boosting membrane carbon capture via multifaceted polyphenol-mediated soldering. Nat. Commun. 14, 1697 (2023).

    Google Scholar 

  22. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Google Scholar 

  23. Lai, H. W. L. et al. Hydrocarbon ladder polymers with ultrahigh permselectivity for membrane gas separations. Science 375, 1390–1392 (2022).

    Google Scholar 

  24. Ma, X. H. et al. High-performance polymer molecular sieve membranes prepared by direct fluorination for efficient helium enrichment. J. Mater. Chem. A 9, 18313–18322 (2021).

    Google Scholar 

  25. Sunarso, J., Hashim, S. S., Lin, Y. S. & Liu, S. M. Membranes for helium recovery: an overview on the context, materials and future directions. Sep. Purif. Technol. 176, 335–383 (2017).

    Google Scholar 

  26. Peng, Y. et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    Google Scholar 

  27. Chung, T. S., Jiang, L. Y., Li, Y. & Kulprathipanja, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 32, 483–507 (2007).

    Google Scholar 

  28. Galizia, M. et al. 50th anniversary perspective: polymers and mixed matrix membranes for gas and vapor separation: a review and prospective opportunities. Macromolecules 50, 7809–7843 (2017).

    Google Scholar 

  29. Koros, W. J. & Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 16, 289–297 (2017).

    Google Scholar 

  30. Cheng, Y. D. et al. Mixed matrix membranes with surface functionalized metal-organic framework sieves for efficient propylene/propane separation. Adv. Mater. 35, 2300296 (2023.

    Google Scholar 

  31. Zhang, P. P. et al. Basic alkylamine functionalized PAF-1 hybrid membrane with high compatibility for superior CO2 separation from flue gas. Adv. Funct. Mater. 33, 2210091 (2023).

    Google Scholar 

  32. Tan, X. Y. et al. Truly combining the advantages of polymeric and zeolite membranes for gas separations. Science 378, 1189–1194 (2022).

    Google Scholar 

  33. Hu, L. Q. et al. Palladium-percolated networks enabled by low loadings of branched nanorods for enhanced H2 Separations. Adv. Mater. 35, 2301007 (2023).

    Google Scholar 

  34. Sabetghadam, A. et al. Metal organic framework crystals in mixed-matrix membranes: impact of the filler morphology on the gas separation performance. Adv. Funct. Mater. 26, 3154–3163 (2016).

    Google Scholar 

  35. Zhang, Y. H., Ma, L., Lv, Y. Q. & Tan, T. W. Facile manufacture of COF-based mixed matrix membranes for efficient CO2 separation. Chem. Eng. J. 430, 133001 (2022).

    Google Scholar 

  36. Chen, G. N. et al. Solid-solvent processing of ultrathin, highly loaded mixed-matrix membrane for gas separation. Science 381, 1350–1356 (2023).

    Google Scholar 

  37. Lee, T. H. et al. PolyMOF nanoparticles constructed from intrinsically microporous polymer ligand towards scalable composite membranes for CO2 separation. Nat. Commun. 14, 8330 (2023).

    Google Scholar 

  38. Zhang, P. P. et al. Anion substitution in porous aromatic frameworks: boosting molecular permeability and selectivity for membrane acetylene separation. Adv. Mater. 32, 1907449 (2020).

    Google Scholar 

  39. Ren, Y. X. et al. Coordination-driven structure reconstruction in polymer of intrinsic microporosity membranes for efficient propylene/propane separation. Innovation 3, 100334 (2022).

    Google Scholar 

  40. Chen, X. L. et al. Ultra-selective molecular-sieving gas separation membranes enabled by multi-covalent-crosslinking of microporous polymer blends. Nat. Commun. 12, 6140 (2021).

    Google Scholar 

  41. Dou, H. Z. et al. Analogous mixed matrix membranes with self-assembled interface pathways. Angew. Chem. Int. Ed. 60, 5864–5870 (2021).

    Google Scholar 

  42. Datta, S. J. et al. Rational design of mixed-matrix metal-organic framework membranes for molecular separations. Science 376, 1080–1087 (2022).

    Google Scholar 

  43. Knebel, A. et al. Solution processable metal-organic frameworks for mixed matrix membranes using porous liquids. Nat. Mater. 19, 1346–1353 (2020).

    Google Scholar 

  44. Ghalei, B. et al. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nat. Energy 2, 1–9 (2017).

    Google Scholar 

  45. Akbari, A., Karimi-Sabet, J. & Ghoreishi, S. M. Intensiffcation of helium separation from CH4 and N2 by size-reduced Cu-BTC particles in Matrimid matrix, separation and puriffcation. Technology 251, 117317 (2020).

    Google Scholar 

  46. Akbari, A., Karimi-Sabet, J. & Ghoreishi, S. M. Matrimid® 5218 based mixed matrix membranes containing metal organic frameworks (MOFs) for helium separation. Chem. Eng. Process. Process Intensif. 148, 107804 (2020).

    Google Scholar 

  47. Ali, A., Karimi-Sabet, J. & Ghoreishi, S. M. Polyimide based mixed matrix membranes incorporating Cu-BDC nanosheets for impressive helium separation. Sep. Purif. Technol. 253, 117430 (2020).

    Google Scholar 

  48. Dohade, M. Incorporation of carbon nanofibers into a Matrimid polymer matrix: effects on the gas permeability and selectivity properties. J. Appl. Polym. Sci. 135, 46019 (2018).

    Google Scholar 

  49. Chung, T. S., Chan, S. S., Wang, R., Lu, Z. H. & He, C. B. Characterization of permeability and sorption in Matrimid/C60 mixed matrix membranes. J. Membr. Sci. 211, 91–99 (2003).

    Google Scholar 

  50. He, W. et al. Membranes with molecular gatekeepers for efficient CO2 capture and H2 purification. ACS Appl. Mater. Interfaces 16, 21222–21232 (2024).

    Google Scholar 

  51. Wu, J., Liang, C. Z., Naderi, A. & Chung, T. S. Tunable supramolecular cavities molecularly homogenized in polymer membranes for ultraefficient precombustion CO2 capture. Adv. Mater. 34, 2105156 (2022).

    Google Scholar 

  52. Feng, F. et al. Synergistic dual-polymer blend membranes with molecularly mixed macrocyclic cavitands for efficient pre-combustion CO2 capture. Chem. Eng. J. 470, 144073 (2023).

    Google Scholar 

  53. Wu, J. & Chung, T. S. Supramolecular Polymer network membranes with molecular-sieving nanocavities for efficient pre-combustion CO2 capture. Small Methods 6, 2101288 (2022).

    Google Scholar 

  54. Wu, J., Japip, S. & Chung, T. S. Infiltrating molecular gatekeepers with coexisting molecular solubility and 3D-intrinsic porosity into a microporous polymer scaffold for gas separation. J. Mater. Chem. A 8, 6196–6209 (2020).

    Google Scholar 

  55. Liu, J. T. et al. Smart covalent organic networks (CONs) with “on-off-on” light-switchable pores for molecular separation. Sci. Adv. 6, eabb3188 (2020).

    Google Scholar 

  56. Meyer, M., Dahaoui-Gindrey, V., Lecomte, C. & Guilard, R. Conformations and coordination schemes of carboxylate and carbamoyl derivatives of the tetraazamacrocycles cyclen and cyclam, and the relation to their protonation states. Coord. Chem. Rev. 178, 1313–1405 (1998).

    Google Scholar 

  57. Zhang, L., Di, N. X., Wang, Z. & Zhao, S. Novel positively-charged polyamine nanofiltration membrane prepared by oligomer triggered interfacial polymerization for molecular separation. J. Membr. Sci. 688, 122129 (2023).

    Google Scholar 

  58. Yang, Y. Y. et al. Cyclen molecule manipulation for efficient and stable perovskite solar cells. J. Mater. Chem. A 12, 13212–13218 (2024).

    Google Scholar 

  59. Li, M. X. et al. Tailoring the pore size distribution of nanofiltration membranes via surfactants with different alkyl chain lengths: Towards efficient molecular separation. Sep. Purif. Technol. 339, 126494 (2024).

    Google Scholar 

  60. Bai, J. et al. Metallocene-anchor inducing oriented MOF membrane for helium separation. Nat. Commun. 16, 9451 (2025).

    Google Scholar 

  61. Fan, H. W. et al. MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nat. Commun. 12, 38 (2021).

    Google Scholar 

  62. Guan, J. et al. Metal-organic cages improving microporosity in polymeric membrane for superior CO2 capture. Sci. Adv. 11, eads0583 (2025).

    Google Scholar 

  63. Thompson, A. P. et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Google Scholar 

  64. Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Google Scholar 

  65. Feller, S. E., Pastor, R. W., Rojunckarin, A., Bogusz, S. & Brooks, B. R. Effect of electrostatic force truncation on interfacial and transport properties of water. J. Phys. Chem. 100, 17011–17020 (1996).

    Google Scholar 

  66. Nayir, N., Duin, A. C. T. V. & Erkoc, S. Development of a ReaxFF reactive force field for interstitial oxygen in germanium and its application to GeO2/Ge interfaces. J. Phys. Chem. C. 123, 1208–1218 (2018).

    Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the financial support provided by the National Key Research and Development Program of China (2025YFF0522700 [J.L.]), the National Natural Science Foundation of China (22478371 [J.L.]), and the Students’ Innovation and Entrepreneurship Foundation of USTC (XY2024C008 [W.H.], CY2025C002B [W.H.]). This work was partially carried out at the Instrument Center for Physical Science, University of Science and Technology of China.

Author information

Authors and Affiliations

  1. CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China

    Wen He, Jian Guan, Ji Ma & Jiangtao Liu

  2. Shanxi Yanchang Petroleum (Group) Co., Ltd., Xi’an, China

    Xiangzeng Wang, Quansheng Liang, Ying Liu & Chunwei Zhang

  3. State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, China

    Hongjun Zhang

Authors
  1. Wen He
    View author publications

    Search author on:PubMed Google Scholar

  2. Xiangzeng Wang
    View author publications

    Search author on:PubMed Google Scholar

  3. Jian Guan
    View author publications

    Search author on:PubMed Google Scholar

  4. Quansheng Liang
    View author publications

    Search author on:PubMed Google Scholar

  5. Ji Ma
    View author publications

    Search author on:PubMed Google Scholar

  6. Ying Liu
    View author publications

    Search author on:PubMed Google Scholar

  7. Hongjun Zhang
    View author publications

    Search author on:PubMed Google Scholar

  8. Chunwei Zhang
    View author publications

    Search author on:PubMed Google Scholar

  9. Jiangtao Liu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Wen He: Designed the research and conceived the idea, carried out laboratory research, wrote draft of manuscript. Xiangzeng Wang: Contributed to writing of theory section of manuscript. Jian Guan: Conducted the XPS measurements. Quansheng Liang: Helped with the graph drawing. Ji Ma: Conducted the SEM measurements. Ying Liu: Commented on the manuscript. Hongjun Zhang: Discussed the results and commented on the manuscript. Chunwei Zhang: Discussed the results. Jiangtao Liu: Optimized the research and conceived the idea, led the analysis, discussed the results and commented on the manuscript. All authors analyzed and discussed the results.

Corresponding author

Correspondence to Jiangtao Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Clara Casado-Coterillo, Jingwei Hou, Qilei Song, and the other, anonymous, reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Wang, X., Guan, J. et al. Mixed-matrix membranes with molecular recognition windows for selective helium extraction from natural gas. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69768-4

Download citation

  • Received: 20 August 2024

  • Accepted: 09 February 2026

  • Published: 19 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69768-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing