Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Voltage-controlled topological spin textures in the monolayer limit
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 19 February 2026

Voltage-controlled topological spin textures in the monolayer limit

  • Yangliu Wu1,2 na1,
  • Bo Peng  ORCID: orcid.org/0000-0001-9411-716X1,2 na1,
  • Zhaozhuo Zeng  ORCID: orcid.org/0000-0002-1955-35163 na1,
  • Chendi Yang4,
  • Haipeng Lu  ORCID: orcid.org/0009-0000-4800-28201,2,
  • Peiheng Zhou  ORCID: orcid.org/0000-0002-1905-77581,2,
  • Jianliang Xie1,2,
  • Difei Liang1,2,
  • Linbo Zhang  ORCID: orcid.org/0000-0002-5119-06981,2,
  • Peng Yan  ORCID: orcid.org/0000-0001-6369-28823,
  • Haizhong Guo  ORCID: orcid.org/0000-0002-6128-42255,6,
  • Renchao Che  ORCID: orcid.org/0000-0002-6583-71144 &
  • …
  • Longjiang Deng  ORCID: orcid.org/0000-0002-8137-61511,2 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ferromagnetism
  • Spintronics
  • Two-dimensional materials

Abstract

The physics of phase transitions in low-dimensional systems has long been a subject of significant research interest. Long-range magnetic order in the strict two-dimensional limit, whose discovery circumvented the Mermin-Wagner theorem, has rapidly emerged as a research focus. However, the demonstration of a non-trivial topological spin textures in two-dimensional limit has remained elusive. Here, we demonstrate the out-of-plane electric field breaks inversion symmetry while simultaneously modulating the electronic band structure, enabling electrically tunable spin-orbit interaction for creation and manipulation of topological spin textures in monolayer CrI3. The realization of ideal two-dimensional topological spin textures may offer not only an experimental testbed for probing the Berezinskii–Kosterlitz–Thouless mechanism, but also potential insights into unresolved quantum phenomena including superconductivity and superfluidity. Moreover, voltage-controlled spin-orbit interaction offers a novel pathway to engineer two-dimensional spin textures with tailored symmetries and topologies, while opening avenues for skyrmion-based next-generation information technologies.

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information, and have been deposited in the Figshare repository. Other data used in these experiments are available from the authors upon reasonable request. Source data are provided with this paper.

References

  1. Mermin, N. D. et al. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).

    Google Scholar 

  2. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Google Scholar 

  3. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Google Scholar 

  4. Kosterlitz, J. M. et al. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C. Solid State Phys. 6, 1181–1203 (1973).

    Google Scholar 

  5. José, J. V. et al. 40 years of BKT theory, (World Scientific, 2013).

  6. Li, X. et al. Topological Kerr effects in two-dimensional magnets with broken inversion symmetry. Nat. Phys. 20, 1145–1151 (2024).

    Google Scholar 

  7. Cai, M. et al. Topological magneto-optical effect from skyrmions in two-dimensional ferromagnets. ACS Nano 18, 20055–20064 (2024).

    Google Scholar 

  8. Soumyanarayanan, A. et al. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016).

    Google Scholar 

  9. Everschor-Sitte, K. et al. Topological magnetic and ferroelectric systems for reservoir computing. Nat. Rev. Phys. 6, 455–462 (2024).

    Google Scholar 

  10. Hasan, M. Z. et al. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Google Scholar 

  11. Qi, X. L. et al. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Google Scholar 

  12. Nagaosa, N. et al. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotech. 8, 899–911 (2013).

    Google Scholar 

  13. Kurumaji, T. et al. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet. Science 365, 914–918 (2019).

    Google Scholar 

  14. Tokura, Y. et al. Spin chirality, Berry phase, and anomalous Hall effect in a frustrated ferromagnet. Science 291, 2573–2576 (2001).

    Google Scholar 

  15. Birch, M. T. et al. Dynamic transition and Galilean relativity of current-driven skyrmions. Nature 633, 554–559 (2024).

    Google Scholar 

  16. Yoshimochi, H. et al. Multistep topological transitions among meron and skyrmion crystals in a centrosymmetric magnet. Nat. Phys. 20, 1001–1008 (2024).

    Google Scholar 

  17. Fert, A. et al. Skyrmions on the track. Nat. Nanotech. 8, 152–156 (2013).

    Google Scholar 

  18. Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

    Google Scholar 

  19. Song, K. M. et al. Skyrmion-based artificial synapses for neuromorphic computing. Nat. Electron. 3, 148–155 (2020).

    Google Scholar 

  20. Da Câmara Santa Clara Gomes, T. et al. Neuromorphic weighted sums with magnetic skyrmions. Nat. Electron. 8, 204–214 (2025).

    Google Scholar 

  21. Tsymbal, E. et al. Electric toggling of magnets. Nat. Mater. 11, 12–13 (2012).

    Google Scholar 

  22. Matsukura, F. et al. Control of magnetism by electric fields. Nat. Nanotech. 10, 209–220 (2015).

    Google Scholar 

  23. Hsu, J. et al. Electric-field-driven switching of individual magnetic skyrmions. Nat. Nanotech. 12, 123–126 (2017).

    Google Scholar 

  24. Rosch, A. et al. Electric control of skyrmions. Nat. Nanotech. 12, 103–104 (2017).

    Google Scholar 

  25. Chen, S. et al. All-electrical skyrmionic magnetic tunnel junction. Nature 627, 522–527 (2024).

    Google Scholar 

  26. Blatter, G. et al. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125 (1994).

    Google Scholar 

  27. Zwierlein, M. W. et al. Vortices and superfluidity in a strongly interacting Fermi gas. Nature 435, 1047–1051 (2005).

    Google Scholar 

  28. Bruno, P. et al. Topological Hall effect and Berry phase in magnetic nanostructures. Phys. Rev. Lett. 93, 096806 (2004).

    Google Scholar 

  29. Neubauer, A. et al. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).

    Google Scholar 

  30. Sorn, S. et al. Resonant optical topological Hall conductivity from skyrmions. Phys. Rev. B. 104, 134419 (2021).

    Google Scholar 

  31. Feng, W. et al. Topological magneto-optical effects and their quantization in noncoplanar antiferromagnets. Nat. Commun. 11, 118 (2020).

    Google Scholar 

  32. Yang, W. et al. A graphene Zener–Klein transistor cooled by a hyperbolic substrate. Nat. Nanotech. 13, 47–52 (2018).

    Google Scholar 

  33. Laturia, A. et al. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. npj 2D Mater. Appl. 2, 6 (2018).

    Google Scholar 

  34. Niu, Y. et al. Robust electric-field control of colossal exchange bias in CrI3 homotrilayer. Adv. Mater. 36, e2403066 (2024).

    Google Scholar 

  35. Huang, B. et al. Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI3. Nat. Nanotechnol. 15, 212–216 (2020).

    Google Scholar 

  36. Liu, Z. et al. Observation of nonreciprocal magnetophonon effect in nonencapsulated few-layered CrI3. Sci. Adv. 6, 7628 (2020).

    Google Scholar 

  37. Kim, H. et al. Determination of the infrared complex magnetoconductivity tensor in itinerant ferromagnets from Faraday and Kerr measurements. Phys. Rev. B 75, 214416 (2007).

    Google Scholar 

  38. Valdés Aguilar, R. et al. Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3. Phys. Rev. Lett. 108, 087403 (2012).

    Google Scholar 

  39. Sinova, J. et al. Infrared magneto-optical properties of (III, Mn) V ferromagnetic semiconductors. Phys. Rev. B 67, 235203 (2003).

    Google Scholar 

  40. Xu, C. et al. Topological spin texture in Janus monolayers of the chromium trihalides Cr (I, X)3. Phys. Rev. B. 101, 060404 (2020).

    Google Scholar 

  41. Dieny, B. et al. Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Rev. Mod. Phys. 89, 025008 (2017).

    Google Scholar 

  42. Kim, J. et al. Exploitable magnetic anisotropy of the two-dimensional magnet CrI3. Nano Lett. 20, 929–935 (2019).

    Google Scholar 

  43. Shao, Q. et al. Topological Hall effect at above room temperature in heterostructures composed of a magnetic insulator and a heavy metal. Nat. Electron. 2, 182–186 (2019).

    Google Scholar 

  44. Bogdanov, A. & Hubert, A. Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magn. Magn. Mater. 138, 255–269 (1994).

    Google Scholar 

  45. Soumyanarayanan, A. et al. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nat. Mater. 16, 898–904 (2017).

    Google Scholar 

  46. Behera, A. K. et al. Magnetic skyrmions in an atomic thin CrI3 monolayer. Appl. Phys. Lett. 23, 114 (2019).

    Google Scholar 

  47. Beck, R. A. et al. Defect-induced magnetic skyrmion in a two-dimensional chromium triiodide monolayer. JACS Au 1, 1362–1367 (2021).

    Google Scholar 

  48. Liu, J. et al. Analysis of electrical-field-dependent Dzyaloshinskii-Moriya interaction and magnetocrystalline anisotropy in a two-dimensional ferromagnetic monolayer. Phys. Rev. B. 1, 054416 (2018).

    Google Scholar 

  49. Lado, J. L. et al. On the origin of magnetic anisotropy in two-dimensional CrI3. 2D Mater 4, 035002 (2017).

    Google Scholar 

  50. Wang, D. et al. First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model. Phys. Rev. B. 47, 14932 (1993).

    Google Scholar 

  51. Chen, L. et al. Magnetic anisotropy in ferromagnetic CrI3. Phys. Rev. B. 101, 134418 (2020).

    Google Scholar 

  52. Taychatanapat, T. et al. Quantum Hall effect and Landau-level crossing of Dirac fermions in trilayer graphene. Nat. Phys. 7, 621–625 (2011).

    Google Scholar 

  53. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Google Scholar 

  54. Wu, Y. et al. Coexistence of ferroelectricity and antiferroelectricity in 2D van der Waals multiferroic. Nat. Commun. 15, 8616 (2024).

    Google Scholar 

  55. Natik, A. et al. Strain effects on the electronic, magnetic and optical properties of CrI3: an ab-initio investigation. Mater. Sci. Eng. B. 1, 116409 (2023).

    Google Scholar 

  56. Golla, D. et al. Optical thickness determination of hexagonal boron nitride flakes. Appl. Phys. Lett. 102, 161906 (2013).

    Google Scholar 

Download references

Acknowledgments

Longjiang Deng (L.J.D.) and Bo Peng (B.P.) acknowledge support from the National Science Foundation of China (52021001). B.P. acknowledges support from the Sichuan Provincial Outstanding Youth Science Foundation Project (2025NSFJQ0018) and the “Hundred Talents Program” Cultivation Project of UESTC (A1098531023601549). H.P.L. acknowledges support from the National Science Foundation of China (51972046). L.J.D. acknowledges support from Sichuan Provincial Science and Technology Department (Grant No. 99203070). P. Y was supported by the National Key R&D Program under Contract No. 2022YFA1402802 and the National Natural Science Foundation of China (NSFC) (Grants No. 12374103 and No. 12074057).

Author information

Author notes
  1. These authors contributed equally: Yangliu Wu, Bo Peng, Zhaozhuo Zeng.

Authors and Affiliations

  1. National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China

    Yangliu Wu, Bo Peng, Haipeng Lu, Peiheng Zhou, Jianliang Xie, Difei Liang, Linbo Zhang & Longjiang Deng

  2. Key Laboratory of Multi Spectral Absorbing Materials and Structures of Ministry of Education, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China

    Yangliu Wu, Bo Peng, Haipeng Lu, Peiheng Zhou, Jianliang Xie, Difei Liang, Linbo Zhang & Longjiang Deng

  3. School of Physics and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, China

    Zhaozhuo Zeng & Peng Yan

  4. Laboratory of Advanced Materials, Department of Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials(iChEM), Fudan University, Shanghai, China

    Chendi Yang & Renchao Che

  5. School of Physics, Zhengzhou University, Zhengzhou, P. R. China

    Haizhong Guo

  6. Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, China

    Haizhong Guo

Authors
  1. Yangliu Wu
    View author publications

    Search author on:PubMed Google Scholar

  2. Bo Peng
    View author publications

    Search author on:PubMed Google Scholar

  3. Zhaozhuo Zeng
    View author publications

    Search author on:PubMed Google Scholar

  4. Chendi Yang
    View author publications

    Search author on:PubMed Google Scholar

  5. Haipeng Lu
    View author publications

    Search author on:PubMed Google Scholar

  6. Peiheng Zhou
    View author publications

    Search author on:PubMed Google Scholar

  7. Jianliang Xie
    View author publications

    Search author on:PubMed Google Scholar

  8. Difei Liang
    View author publications

    Search author on:PubMed Google Scholar

  9. Linbo Zhang
    View author publications

    Search author on:PubMed Google Scholar

  10. Peng Yan
    View author publications

    Search author on:PubMed Google Scholar

  11. Haizhong Guo
    View author publications

    Search author on:PubMed Google Scholar

  12. Renchao Che
    View author publications

    Search author on:PubMed Google Scholar

  13. Longjiang Deng
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Bo Peng (B.P.) and Longjiang Deng (L.J.D.) conceived and designed the project, supervising all aspects. Y.L.W. prepared the samples and performed the RMCD measurements and Raman measurements assisted by B.P., and analyzed and interpreted the results assisted by C.D.Y., H.P.L., P.H.Z., J.L.X., D.F.L, L.B.Z., P.Y., H.Z.G., R.C.C., L.J.D., and B.P.. Z.Z.Z. and P.Y. performed the theory calculations. Y.L.W. and B.P. wrote the paper with input from all authors. All authors discussed the results.

Corresponding authors

Correspondence to Bo Peng, Peng Yan, Haizhong Guo, Renchao Che or Longjiang Deng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Jun-Bo Han and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Peng, B., Zeng, Z. et al. Voltage-controlled topological spin textures in the monolayer limit. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69800-7

Download citation

  • Received: 19 May 2025

  • Accepted: 10 February 2026

  • Published: 19 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69800-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing