Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Mast-cell derived nerve growth factor drives ILC2 pro-tumoral functions in bladder cancer
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 February 2026

Mast-cell derived nerve growth factor drives ILC2 pro-tumoral functions in bladder cancer

  • Maryline Falquet  ORCID: orcid.org/0000-0002-5940-85831,2,3,4,5,
  • Hajar El Ahanidi1,2,3,4,5 na1,
  • Alejandra Gomez-Cadena1,2,3,4,5 na1,
  • Ziyang Su1,2,3,4,5,
  • Anthony Cornu  ORCID: orcid.org/0009-0005-2477-00201,2,3,4,5 nAff22,
  • Tania Wyss  ORCID: orcid.org/0000-0003-2641-08956,
  • Burak Kizil1,3,4,5,
  • Robert Pick  ORCID: orcid.org/0000-0001-9785-84811,3,4,5,
  • Katayoun Falamaki7,
  • Pratyaksha Wirapati  ORCID: orcid.org/0000-0002-0327-46861,
  • Benedetta Fiordi1,2,3,4,5,
  • Isis Senoner1,
  • Daniela Claudia Maresca  ORCID: orcid.org/0009-0008-4221-63758,
  • Neil Kallal  ORCID: orcid.org/0009-0001-4299-26991,3,5,
  • Danaé Guedj  ORCID: orcid.org/0009-0004-2539-64321,2,3,4,5,
  • Mario Kreutzfeldt  ORCID: orcid.org/0000-0003-0335-27331,9,
  • Jean-Christophe Tille9,
  • Marine M. Leblond2,10,
  • Katarzyna Michaud11,
  • Silvia Pesce12,13,
  • Simona Candiani13,14,
  • Korneliusz Golebski15,
  • Julien Dagher16,
  • Melinda Charrier17,
  • Caroline Pressacco Brossier18,
  • Elisabeth Grobet-Jeandin18,
  • Romina Marone  ORCID: orcid.org/0000-0003-1474-168919,20,
  • Stéphanie Hugues1,3,5,
  • Lukas T. Jeker  ORCID: orcid.org/0000-0002-3359-879619,20,
  • Grégory Verdeil  ORCID: orcid.org/0000-0001-9445-84742,10,
  • Doron Merkler  ORCID: orcid.org/0000-0002-0247-20071,3,5,
  • Emanuela Marcenaro  ORCID: orcid.org/0000-0003-4103-756612,13,
  • Christoph Scheiermann  ORCID: orcid.org/0000-0002-9212-09951,3,4,5,
  • Mohammed Attaleb21,
  • Daniel Benamran18,
  • Petros Tsantoulis  ORCID: orcid.org/0000-0003-3613-66825,6,17,
  • Giuseppe Ercolano  ORCID: orcid.org/0000-0001-6026-25888 na2,
  • Sara Trabanelli  ORCID: orcid.org/0000-0001-8648-13241,2,3,4,5 na2 &
  • …
  • Camilla Jandus  ORCID: orcid.org/0000-0002-7405-57471,2,3,4,5 na2 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cancer microenvironment
  • Immunosurveillance
  • Lymphocytes

Abstract

Innate lymphoid cells type 2 (ILC2s) are key regulators of tissue homeostasis and inflammation. In cancer, ILC2s can exhibit pro-tumoral functions by increasing the myeloid derived suppressor cells (MDSC)/T-cell ratio. Nevertheless, the upstream ILC2 triggers remain poorly defined. Here, we identify nerve growth factor (NGF) as the driver of ILC2 pro-tumoral functions in patients with bladder cancer. We show that ILC2s express the NGF receptor TrkA and respond to NGF by secreting type-2 cytokines. In the tumor microenvironment, NGF-producing mast cells accumulate and activate ILC2s to induce regulatory T cells (Tregs), ultimately fostering tumor growth. In patients, NGF levels inversely correlate with survival in ILC2-rich tumors, underscoring the clinical significance of this axis. In vivo administration of a selective TrkA inhibitor improves survival in orthotopic tumor-bearing female mice and sensitizes them to immune checkpoint blockade (ICB). Overall, we identify NGF as an ILC2 activator that shapes pro-tumoral ILC2 functions. The blockade of TrkA+ ILC2s might represent a targetable strategy to improve survival, particularly in ICB-resistant patients.

Similar content being viewed by others

Cytotoxic innate lymphoid cells sense cancer cell-expressed interleukin-15 to suppress human and murine malignancies

Article 26 May 2022

Innate lymphoid cells and cancer

Article 28 February 2022

Disulfidptosis related immune genes drive prognostic model development and tumor microenvironment characterization in bladder urothelial carcinoma

Article Open access 08 March 2025

Data availability

The RNAseq data of human ILC2s generated in this study have been deposited in NCBI’s Gene Expression Omnibus database under the GEO accession number GSE311046. The TCGA Bladder Urothelial Carcinoma (BLCA) RNA sequencing dataset is available from the National Institutes of Health’s (NIH) dbGaP (Database of Genotypes and Phenotypes) database under accession number phs000178 [https://portal.gdc.cancer.gov/projects/TCGA-BLCA]. Microarray gene expression datasets are available from the National Center for Biotechnology Information (NCBI)‘s GEO database under accession numbers GSE31684 and GSE48075. - Human ILCs: ArrayExpress accession E-MTAB-8494 (bulk RNA sequencing data) [https://www.ebi.ac.uk/biostudies/ArrayExpress/studies/E-MTAB-8494], GSE112591 (bulk RNA sequencing data) [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112591], GSE150050 (single-cell RNA sequencing, Smart-Seq2 protocol) [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150050] The remaining data are available within the article, Supplementary information or Source Data file and/or from the corresponding author upon request. Source data are provided with this paper.

References

  1. Saginala, K. et al. Epidemiology of Bladder Cancer. Med. Sci. (Basel) 8, https://doi.org/10.3390/medsci8010015 (2020).

  2. Zlotta, A. R., Fleshner, N. E. & Jewett, M. A. The management of BCG failure in non-muscle-invasive bladder cancer: an update. Can. Urol. Assoc. J. 3, S199–S205 (2009).

    Google Scholar 

  3. Lopez-Beltran, A. et al. Immune checkpoint inhibitors for the treatment of bladder cancer. Cancers (Basel) 13, https://doi.org/10.3390/cancers13010131 (2021).

  4. Shi, S., Ma, T. & Xi, Y. Characterization of the immune cell infiltration landscape in bladder cancer to aid immunotherapy. Arch. Biochem Biophys. 708, 108950 (2021).

    Google Scholar 

  5. Kang, H. W., Kim, W.-J. & Yun, S. J. The role of the tumor microenvironment in bladder cancer development and progression. Transl. Cancer Res. S 744, S758 (2017).

    Google Scholar 

  6. Chevalier, M. F. et al. ILC2-modulated T cell-to-MDSC balance is associated with bladder cancer recurrence. J. Clin. Invest. 127, 2916–2929 (2017).

    Google Scholar 

  7. Spits, H. & Mjosberg, J. Heterogeneity of type 2 innate lymphoid cells. Nat. Rev. Immunol. 22, 701–712 (2022).

    Google Scholar 

  8. Halim, T. Y. et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40, 425–435 (2014).

    Google Scholar 

  9. Bernink, J. H., Germar, K. & Spits, H. The role of ILC2 in pathology of type 2 inflammatory diseases. Curr. Opin. Immunol. 31, 115–120 (2014).

    Google Scholar 

  10. Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).

    Google Scholar 

  11. Ebbo, M., Crinier, A., Vely, F. & Vivier, E. Innate lymphoid cells: major players in inflammatory diseases. Nat. Rev. Immunol. 17, 665–678 (2017).

    Google Scholar 

  12. Simoni, Y. & Newell, E. W. Dissecting human ILC heterogeneity: more than just three subsets. Immunology 153, 297–303 (2018).

    Google Scholar 

  13. Mjosberg, J. & Spits, H. Human innate lymphoid cells. J. Allergy Clin. Immunol. 138, 1265–1276 (2016).

    Google Scholar 

  14. Bahhar, I. et al. The IL-25/ILC2 axis promotes lung cancer with a concomitant accumulation of immune-suppressive cells in tumors in humans and mice. Front Immunol. 14, 1244437 (2023).

    Google Scholar 

  15. Trabanelli, S. et al. Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2-MDSC axis. Nat. Commun. 8, 593 (2017).

    Google Scholar 

  16. Wu, L. et al. Mesenchymal PGD(2) activates an ILC2-Treg axis to promote proliferation of normal and malignant HSPCs. Leukemia 34, 3028–3041 (2020).

    Google Scholar 

  17. Schuijs, M. J. et al. ILC2-driven innate immune checkpoint mechanism antagonizes NK cell antimetastatic function in the lung. Nat. Immunol. 21, 998–1009 (2020).

    Google Scholar 

  18. Ercolano, G. et al. PPARɣ drives IL-33-dependent ILC2 pro-tumoral functions. Nat. Commun. 12, 2538 (2021).

    Google Scholar 

  19. Xu, X. et al. Group-2 innate lymphoid cells promote HCC progression through CXCL2-neutrophil-induced immunosuppression. Hepatology 74, 2526–2543 (2021).

    Google Scholar 

  20. Maresca, D. C. et al. Circulating innate lymphoid cells are dysregulated in patients with prostate cancer. Cell Mol. Biol. Lett. 30, 48 (2025).

    Google Scholar 

  21. Moral, J. A. et al. ILC2s amplify PD-1 blockade by activating tissue-specific cancer immunity. Nature 579, 130–135 (2020).

    Google Scholar 

  22. Jacquelot, N. et al. Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma. Nat. Immunol. 22, 851–864 (2021).

    Google Scholar 

  23. Qi, J. et al. Single-cell transcriptomic landscape reveals tumor specific innate lymphoid cells associated with colorectal cancer progression. Cell Rep. Med. 2, 100353 (2021).

    Google Scholar 

  24. Wen, J. et al. Group 2 innate lymphoid cells boost CD8(+) T-cell activation in anti-tumor immune responses. Oncoimmunology 12, 2243112 (2023).

    Google Scholar 

  25. Amisaki, M. et al. IL-33-activated ILC2s induce tertiary lymphoid structures in pancreatic cancer. Nature 638, 1076–1084 (2025).

    Google Scholar 

  26. Olguin-Martinez, E., Ruiz-Medina, B. E. & Licona-Limon, P. Tissue-specific molecular markers and heterogeneity in type 2 innate lymphoid Cells. Front Immunol. 12, 757967 (2021).

    Google Scholar 

  27. Yano, H. & Artis, D. Neuronal regulation of innate lymphoid cell responses. Curr. Opin. Immunol. 76, 102205 (2022).

    Google Scholar 

  28. Klose, C. S. & Artis, D. Neuronal regulation of innate lymphoid cells. Curr. Opin. Immunol. 56, 94–99 (2019).

    Google Scholar 

  29. Cardoso, F. et al. Neuro-mesenchymal units control ILC2 and obesity via a brain-adipose circuit. Nature 597, 410–414 (2021).

    Google Scholar 

  30. Yin, Z., Zhou, Y., Turnquist, H. R. & Liu, Q. Neuro-epithelial-ILC2 crosstalk in barrier tissues. Trends Immunol. 43, 901–916 (2022).

    Google Scholar 

  31. Liu, H. T. & Kuo, H. C. Intravesical botulinum toxin A injections plus hydrodistension can reduce nerve growth factor production and control bladder pain in interstitial cystitis. Urology 70, 463–468 (2007).

    Google Scholar 

  32. Bjorling, D. E. et al. Intravesical Escherichia coli lipopolysaccharide stimulates an increase in bladder nerve growth factor. BJU Int. 87, 697–702 (2001).

    Google Scholar 

  33. Jacobs, B. L. et al. Increased nerve growth factor in neurogenic overactive bladder and interstitial cystitis patients. Can. J. Urol. 17, 4989–4994 (2010).

    Google Scholar 

  34. Griffin, N., Faulkner, S., Jobling, P. & Hondermarck, H. Targeting neurotrophin signaling in cancer: the renaissance. Pharm. Res. 135, 12–17 (2018).

    Google Scholar 

  35. Meldolesi, J. Neurotrophin trk receptors: new targets for cancer therapy. Rev. Physiol. Biochem Pharm. 174, 67–79 (2018).

    Google Scholar 

  36. Yin, T. et al. Breaking NGF-TrkA immunosuppression in melanoma sensitizes immunotherapy for durable memory T cell protection. Nat. Immunol. 25, 268–281 (2024).

    Google Scholar 

  37. Cancer Genome Atlas & Research, N. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

    Google Scholar 

  38. Riester, M. et al. Combination of a novel gene expression signature with a clinical nomogram improves the prediction of survival in high-risk bladder cancer. Clin. Cancer Res. 18, 1323–1333 (2012).

    Google Scholar 

  39. Choi, W. et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25, 152–165 (2014).

    Google Scholar 

  40. Meakin, S. O. & Shooter, E. M. The nerve growth factor family of receptors. Trends Neurosci. 15, 323–331 (1992).

    Google Scholar 

  41. Ochodnicky, P., Cruz, C. D., Yoshimura, N. & Cruz, F. Neurotrophins as regulators of urinary bladder function. Nat. Rev. Urol. 9, 628–637 (2012).

    Google Scholar 

  42. Quatrini, L., Vivier, E. & Ugolini, S. Neuroendocrine regulation of innate lymphoid cells. Immunol. Rev. 286, 120–136 (2018).

    Google Scholar 

  43. Ercolano, G. et al. Distinct and shared gene expression for human innate versus adaptive helper lymphoid cells. J. Leukoc. Biol. 108, 723–737 (2020).

    Google Scholar 

  44. Li, S. et al. Gene expression signatures of circulating human type 1, 2, and 3 innate lymphoid cells. J. Allergy Clin. Immunol. 143, 2321–2325 (2019).

    Google Scholar 

  45. Mazzurana, L. et al. Tissue-specific transcriptional imprinting and heterogeneity in human innate lymphoid cells revealed by full-length single-cell RNA-sequencing. Cell Res. 31, 554–568 (2021).

    Google Scholar 

  46. Moretta, A. et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Rev. Immunol. 19, 197–223 (2001).

    Google Scholar 

  47. Wu, R., Li, K., Yuan, M. & Luo, K. Q. Nerve growth factor receptor increases the tumor growth and metastatic potential of triple-negative breast cancer cells. Oncogene 40, 2165–2181 (2021).

    Google Scholar 

  48. Molloy, N. H., Read, D. E. & Gorman, A. M. Nerve growth factor in cancer cell death and survival. Cancers (Basel) 3, 510–530 (2011).

    Google Scholar 

  49. Surace, L. et al. Dichotomous metabolic networks govern human ILC2 proliferation and function. Nat. Immunol. 22, 1367–1374 (2021).

    Google Scholar 

  50. Leon, A. et al. Mast cells synthesize, store, and release nerve growth factor. Proc. Natl. Acad. Sci. USA. 91, 3739–3743 (1994).

    Google Scholar 

  51. Nilsson, G. et al. Human mast cells express functional TrkA and are a source of nerve growth factor. Eur. J. Immunol. 27, 2295–2301 (1997).

    Google Scholar 

  52. Chen, F., Zhang, G., Cao, Y., Hessner, M. J. & See, W. A. MB49 murine urothelial carcinoma: molecular and phenotypic comparison to human cell lines as a model of the direct tumor response to bacillus Calmette-Guerin. J. Urol. 182, 2932–2937 (2009).

    Google Scholar 

  53. Oliphant, C. J. et al. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41, 283–295 (2014).

    Google Scholar 

  54. Schneider, C. et al. Tissue-resident group 2 innate lymphoid cells differentiate by layered ontogeny and in situ perinatal priming. Immunity 50, 1425–1438 e1425 (2019).

    Google Scholar 

  55. Vocanson, M. et al. Inducible costimulator (ICOS) is a marker for highly suppressive antigen-specific T cells sharing features of TH17/TH1 and regulatory T cells. J. Allergy Clin. Immunol. 126, 280–289 (2010).

    Google Scholar 

  56. Halim, T. Y. F. et al. Tissue-restricted adaptive type 2 immunity is orchestrated by expression of the costimulatory molecule OX40L on group 2 innate lymphoid cells. Immunity 48, 1195–1207 e1196 (2018).

    Google Scholar 

  57. Molofsky, A. B. et al. Interleukin-33 and interferon-gamma counter-regulate group 2 innate lymphoid cell activation during immune perturbation. Immunity 43, 161–174 (2015).

    Google Scholar 

  58. Skapenko, A., Kalden, J. R., Lipsky, P. E. & Schulze-Koops, H. The IL-4 receptor alpha-chain-binding cytokines, IL-4 and IL-13, induce forkhead box P3-expressing CD25+CD4+ regulatory T cells from CD25-CD4+ precursors. J. Immunol. 175, 6107–6116 (2005).

    Google Scholar 

  59. Singh, R. et al. TRAF4-mediated ubiquitination of NGF receptor TrkA regulates prostate cancer metastasis. J. Clin. Invest. 128, 3129–3143 (2018).

    Google Scholar 

  60. Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 (2018).

    Google Scholar 

  61. Vizzard, M. A. Changes in urinary bladder neurotrophic factor mRNA and NGF protein following urinary bladder dysfunction. Exp. Neurol. 161, 273–284 (2000).

    Google Scholar 

  62. Fowler, C. J., Griffiths, D. & de Groat, W. C. The neural control of micturition. Nat. Rev. Neurosci. 9, 453–466 (2008).

    Google Scholar 

  63. Ricardo-Gonzalez, R. R. et al. Tissue signals imprint ILC2 identity with anticipatory function. Nat. Immunol. 19, 1093–1099 (2018).

    Google Scholar 

  64. Stabile, A. M. et al. Long term effects of cigarette smoke extract or nicotine on nerve growth factor and its receptors in a bronchial epithelial cell line. Toxicol. Vitr. 53, 29–36 (2018).

    Google Scholar 

  65. Freedman, N. D., Silverman, D. T., Hollenbeck, A. R., Schatzkin, A. & Abnet, C. C. Association between smoking and risk of bladder cancer among men and women. JAMA 306, 737–745 (2011).

    Google Scholar 

  66. Alam, A. et al. Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer. Cancer Cell 40, 153–167 e111 (2022).

    Google Scholar 

  67. O’Keefe, R. N. et al. A tuft cell - ILC2 signaling circuit provides therapeutic targets to inhibit gastric metaplasia and tumor development. Nat. Commun. 14, 6872 (2023).

    Google Scholar 

  68. Bonini, S., Rasi, G., Bracci-Laudiero, M. L., Procoli, A. & Aloe, L. Nerve growth factor: neurotrophin or cytokine? Int Arch. Allergy Immunol. 131, 80–84 (2003).

    Google Scholar 

  69. Aloe, L., Rocco, M. L., Balzamino, B. O. & Micera, A. Nerve growth factor: role in growth, differentiation and controlling cancer cell development. J. Exp. Clin. Cancer Res. 35, 116 (2016).

    Google Scholar 

  70. Di Donato, M. et al. Targeting the nerve growth factor signaling impairs the proliferative and migratory phenotype of triple-negative breast cancer cells. Front Cell Dev. Biol. 9, 676568 (2021).

    Google Scholar 

  71. Adriaenssens, E. et al. Nerve growth factor is a potential therapeutic target in breast cancer. Cancer Res. 68, 346–351 (2008).

    Google Scholar 

  72. Di Donato, M., Cernera, G., Migliaccio, A. & Castoria, G. Nerve Growth Factor Induces Proliferation and Aggressiveness In Prostate Cancer Cells. Cancers (Basel) 11, https://doi.org/10.3390/cancers11060784 (2019).

  73. Ratner, V. Mast cell activation syndrome. Transl. Androl. Urol. 4, 587–588 (2015).

    Google Scholar 

  74. Kritas, S. K. et al. Nerve growth factor interactions with mast cells. Int J. Immunopathol. Pharm. 27, 15–19 (2014).

    Google Scholar 

  75. Kurashima, Y. et al. Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nat. Commun. 3, 1034 (2012).

    Google Scholar 

  76. Komi, D. E. A. & Redegeld, F. A. Role of mast cells in shaping the tumor microenvironment. Clin. Rev. Allergy Immunol. 58, 313–325 (2020).

    Google Scholar 

  77. Lowe, D., Fletcher, C. D. & Gower, R. L. Tumour-associated eosinophilia in the bladder. J. Clin. Pathol. 37, 500–502 (1984).

    Google Scholar 

  78. Popov, H., Donev, I. S. & Ghenev, P. Quantitative analysis of tumor-associated tissue Eosinophilia in recurring bladder cancer. Cureus 10, e3279 (2018).

    Google Scholar 

  79. Chen, Q. et al. ICOS signal facilitates Foxp3 transcription to favor suppressive function of regulatory T cells. Int. J. Med. Sci. 15, 666–673 (2018).

    Google Scholar 

  80. Morita, H. et al. An interleukin-33-mast cell-interleukin-2 axis suppresses papain-induced allergic inflammation by promoting regulatory T cell numbers. Immunity 43, 175–186 (2015).

    Google Scholar 

  81. Haist, M., Stege, H., Grabbe, S. & Bros, M. The functional crosstalk between myeloid-derived suppressor cells and regulatory T cells within the immunosuppressive tumor microenvironment. Cancers (Basel) 13, https://doi.org/10.3390/cancers13020210 (2021).

  82. Fallegger, A. et al. TGF-beta production by eosinophils drives the expansion of peripherally induced neuropilin(-) RORgammat(+) regulatory T-cells during bacterial and allergen challenge. Mucosal Immunol. 15, 504–514 (2022).

    Google Scholar 

  83. Wang, T., Yu, D. & Lamb, M. L. Trk kinase inhibitors as new treatments for cancer and pain. Expert Opin. Ther. Pat. 19, 305–319 (2009).

    Google Scholar 

  84. Jiang, T. et al. Development of small-molecule tropomyosin receptor kinase (TRK) inhibitors for NTRK fusion cancers. Acta Pharm. Sin. B 11, 355–372 (2021).

    Google Scholar 

  85. Rouanne, M. et al. Development of immunotherapy in bladder cancer: present and future on targeting PD(L)1 and CTLA-4 pathways. World J. Urol. 36, 1727–1740 (2018).

    Google Scholar 

  86. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Google Scholar 

  87. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 e3529 (2021).

    Google Scholar 

  88. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).

    Google Scholar 

  89. Colaprico, A. et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 44, e71 (2016).

    Google Scholar 

  90. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Google Scholar 

  91. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Google Scholar 

  92. Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009).

    Google Scholar 

  93. Sternberg, S. R. Biomedical image processing. Computer 16, 22–34 (1983).

    Google Scholar 

Download references

Acknowledgements

We thank patients and healthy donors for participating in this study. We thank the genomic and flow cytometry facilities of the Universities of Lausanne and Geneva for their excellent technical assistance. We thank Prof Tim Halim (University of Cambridge, CRUK Cambridge Institute, Cambridge, UK) for the insightful discussions on the project and Prof Andrew Mackenzie (MRC Laboratory of molecule biology, Cambridge, UK) for providing the ILC2KO animals. We thank Nataniele Piol (MD), Anatomia Patologica Universitaria, IRCCS Ospedale Policlinico San Martino, Genova, Italy who kindly provided us some of the bladder cancer patient sections. This work was supported by the Ludwig Institute for Cancer Research, by grants from Swiss National Science Foundation (PRIMA PR00P3_179727), the IDEAL grant from Debiopharm, the INNOGap grant from UNIGE, a generous donor, advised by Carigest SA to C.J., the Fond’Action contre le cancer grant to H.E.A., AIRC grant (Fondazione AIRC IG 2021, Id. 26037) to E.M. and AIRC grant (Fondazione AIRC MFAG 2021, Id. 26002) to G.E., the Swiss Cancer League (KLS-4836-08-2019) to C.S., the Geneva Cancer League (2106) to C.S., the EU ITN (813284, INTEGRATA) to C.S., and the Swiss National Science Foundation MD-PhD fellowship to D.G.; B.F is supported by a PhD fellowship from the ISREC Foundation. L.T.J. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 818806).

Author information

Author notes
  1. Anthony Cornu

    Present address: Human Islet Isolation Facility, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK

  2. These authors contributed equally: Hajar El Ahanidi, Alejandra Gomez-Cadena.

  3. These authors jointly supervised this work: Giuseppe Ercolano, Sara Trabanelli, Camilla Jandus.

Authors and Affiliations

  1. Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland

    Maryline Falquet, Hajar El Ahanidi, Alejandra Gomez-Cadena, Ziyang Su, Anthony Cornu, Burak Kizil, Robert Pick, Pratyaksha Wirapati, Benedetta Fiordi, Isis Senoner, Neil Kallal, Danaé Guedj, Mario Kreutzfeldt, Stéphanie Hugues, Doron Merkler, Christoph Scheiermann, Sara Trabanelli & Camilla Jandus

  2. Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland

    Maryline Falquet, Hajar El Ahanidi, Alejandra Gomez-Cadena, Ziyang Su, Anthony Cornu, Benedetta Fiordi, Danaé Guedj, Marine M. Leblond, Grégory Verdeil, Sara Trabanelli & Camilla Jandus

  3. Geneva Center for Inflammation Research, Geneva, Switzerland

    Maryline Falquet, Hajar El Ahanidi, Alejandra Gomez-Cadena, Ziyang Su, Anthony Cornu, Burak Kizil, Robert Pick, Benedetta Fiordi, Neil Kallal, Danaé Guedj, Stéphanie Hugues, Doron Merkler, Christoph Scheiermann, Sara Trabanelli & Camilla Jandus

  4. Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland

    Maryline Falquet, Hajar El Ahanidi, Alejandra Gomez-Cadena, Ziyang Su, Anthony Cornu, Burak Kizil, Robert Pick, Benedetta Fiordi, Danaé Guedj, Christoph Scheiermann, Sara Trabanelli & Camilla Jandus

  5. Translational Research Centre in Onco-Hematology (CRTOH), Geneva, Switzerland

    Maryline Falquet, Hajar El Ahanidi, Alejandra Gomez-Cadena, Ziyang Su, Anthony Cornu, Burak Kizil, Robert Pick, Benedetta Fiordi, Neil Kallal, Danaé Guedj, Stéphanie Hugues, Doron Merkler, Christoph Scheiermann, Petros Tsantoulis, Sara Trabanelli & Camilla Jandus

  6. Translational Data Science Facility, AGORA Cancer Research Center, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland

    Tania Wyss & Petros Tsantoulis

  7. Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland

    Katayoun Falamaki

  8. Department of Pharmacy, University Federico II of Naples Italy, Naples, Italy

    Daniela Claudia Maresca & Giuseppe Ercolano

  9. Department of Diagnostics, Division of Clinical Pathology, University Hospital of Geneva, Geneva, Switzerland

    Mario Kreutzfeldt & Jean-Christophe Tille

  10. Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland

    Marine M. Leblond & Grégory Verdeil

  11. University Centre of Legal Medicine Lausanne-Geneva, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland

    Katarzyna Michaud

  12. Department of Experimental Medicine, University of Genova, Genova, Italy

    Silvia Pesce & Emanuela Marcenaro

  13. RCCS Azienda Ospedaliera Metropolitana, Genova, Italy

    Silvia Pesce, Simona Candiani & Emanuela Marcenaro

  14. Department of Earth, Environment and Life Sciences, University of Genova, Genova, Italy

    Simona Candiani

  15. Department of Otorhinolaryngology and Head and Neck Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands

    Korneliusz Golebski

  16. Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland

    Julien Dagher

  17. Department of Oncology, Precision Oncology Service, University Hospital of Geneva, Geneva, Switzerland

    Melinda Charrier & Petros Tsantoulis

  18. Division of Urology, Geneva University Hospitals, Geneva, Switzerland

    Caroline Pressacco Brossier, Elisabeth Grobet-Jeandin & Daniel Benamran

  19. Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland

    Romina Marone & Lukas T. Jeker

  20. Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland

    Romina Marone & Lukas T. Jeker

  21. Centre National de l’Energie, des Sciences et Techniques nucléaires (CNESTEN), Rabat, Morocco

    Mohammed Attaleb

Authors
  1. Maryline Falquet
    View author publications

    Search author on:PubMed Google Scholar

  2. Hajar El Ahanidi
    View author publications

    Search author on:PubMed Google Scholar

  3. Alejandra Gomez-Cadena
    View author publications

    Search author on:PubMed Google Scholar

  4. Ziyang Su
    View author publications

    Search author on:PubMed Google Scholar

  5. Anthony Cornu
    View author publications

    Search author on:PubMed Google Scholar

  6. Tania Wyss
    View author publications

    Search author on:PubMed Google Scholar

  7. Burak Kizil
    View author publications

    Search author on:PubMed Google Scholar

  8. Robert Pick
    View author publications

    Search author on:PubMed Google Scholar

  9. Katayoun Falamaki
    View author publications

    Search author on:PubMed Google Scholar

  10. Pratyaksha Wirapati
    View author publications

    Search author on:PubMed Google Scholar

  11. Benedetta Fiordi
    View author publications

    Search author on:PubMed Google Scholar

  12. Isis Senoner
    View author publications

    Search author on:PubMed Google Scholar

  13. Daniela Claudia Maresca
    View author publications

    Search author on:PubMed Google Scholar

  14. Neil Kallal
    View author publications

    Search author on:PubMed Google Scholar

  15. Danaé Guedj
    View author publications

    Search author on:PubMed Google Scholar

  16. Mario Kreutzfeldt
    View author publications

    Search author on:PubMed Google Scholar

  17. Jean-Christophe Tille
    View author publications

    Search author on:PubMed Google Scholar

  18. Marine M. Leblond
    View author publications

    Search author on:PubMed Google Scholar

  19. Katarzyna Michaud
    View author publications

    Search author on:PubMed Google Scholar

  20. Silvia Pesce
    View author publications

    Search author on:PubMed Google Scholar

  21. Simona Candiani
    View author publications

    Search author on:PubMed Google Scholar

  22. Korneliusz Golebski
    View author publications

    Search author on:PubMed Google Scholar

  23. Julien Dagher
    View author publications

    Search author on:PubMed Google Scholar

  24. Melinda Charrier
    View author publications

    Search author on:PubMed Google Scholar

  25. Caroline Pressacco Brossier
    View author publications

    Search author on:PubMed Google Scholar

  26. Elisabeth Grobet-Jeandin
    View author publications

    Search author on:PubMed Google Scholar

  27. Romina Marone
    View author publications

    Search author on:PubMed Google Scholar

  28. Stéphanie Hugues
    View author publications

    Search author on:PubMed Google Scholar

  29. Lukas T. Jeker
    View author publications

    Search author on:PubMed Google Scholar

  30. Grégory Verdeil
    View author publications

    Search author on:PubMed Google Scholar

  31. Doron Merkler
    View author publications

    Search author on:PubMed Google Scholar

  32. Emanuela Marcenaro
    View author publications

    Search author on:PubMed Google Scholar

  33. Christoph Scheiermann
    View author publications

    Search author on:PubMed Google Scholar

  34. Mohammed Attaleb
    View author publications

    Search author on:PubMed Google Scholar

  35. Daniel Benamran
    View author publications

    Search author on:PubMed Google Scholar

  36. Petros Tsantoulis
    View author publications

    Search author on:PubMed Google Scholar

  37. Giuseppe Ercolano
    View author publications

    Search author on:PubMed Google Scholar

  38. Sara Trabanelli
    View author publications

    Search author on:PubMed Google Scholar

  39. Camilla Jandus
    View author publications

    Search author on:PubMed Google Scholar

Contributions

M.F., G.E., S.T. and C.J. conceived the project. M.F., H.E.A., A.G-C., Z.S., A.C., T.W., B.K., R.P., K.F., P.W., B.F., I.S., N.K., D.G., D.C.M., S.P., S.C., G.E., S.T. and C.J. performed experiments and data analyses. M.K., R.M., S.H., L.J., E.M., C.S. and P.T. assisted in data analyses and interpretation. J-C.T., M.M.L., K.M., K.G., J.D., M.C., C.P.B., E.G-J., G.V., D.M., M.A. and D.B. provided study material. M.F., G.E., S.T. and C.J. wrote the manuscript. All authors interpreted the data and contributed valuable feedback for the improvement of the manuscript.

Corresponding author

Correspondence to Camilla Jandus.

Ethics declarations

Competing interests

L.T.J. co-founder, holding equity of Cimeio Therapeutics AG (Cimeio). Cimeio board member. Sponsored research agreement with Cimeio. Inventor on granted patents and patent applications related to immune cell engineering and antibodies. Received speaker fees from Novartis. Paid consultant for Kyowa Kirin. No competing interests directly affecting this study. The other authors declare no conflicts of interest.

Peer review

Peer review information

Nature Communications thanks Elena Jachetti, Neelam Mukherjee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falquet, M., El Ahanidi, H., Gomez-Cadena, A. et al. Mast-cell derived nerve growth factor drives ILC2 pro-tumoral functions in bladder cancer. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69841-y

Download citation

  • Received: 19 February 2024

  • Accepted: 11 February 2026

  • Published: 21 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69841-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer