Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Rapid modulation of choice behavior by ultrasound on the human frontal eye fields
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 February 2026

Rapid modulation of choice behavior by ultrasound on the human frontal eye fields

  • S. Farboud  ORCID: orcid.org/0000-0003-2774-39071,
  • B. R. Kop  ORCID: orcid.org/0000-0001-7817-58451,2,
  • R. S. Koolschijn  ORCID: orcid.org/0000-0001-9553-42131,
  • S. L. Y. Walstra1,3,
  • J. P. Marques  ORCID: orcid.org/0000-0001-8157-88641,
  • A. Chetverikov  ORCID: orcid.org/0000-0003-2767-63101,4,
  • W. P. Medendorp  ORCID: orcid.org/0000-0001-9615-42201,
  • L. Verhagen  ORCID: orcid.org/0000-0003-3207-79291 na1 &
  • …
  • H. E. M. den Ouden  ORCID: orcid.org/0000-0001-7039-51301 na1 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Decision
  • Neural circuits
  • Saccades

Abstract

A fundamental challenge in neuroscience is establishing causal brain-function relationships with spatial and temporal precision. Transcranial ultrasonic stimulation offers a unique opportunity to modulate deep brain structures non-invasively with high spatial resolution, but temporally precise effects and their neurophysiological foundations have yet to be demonstrated in humans. Here, we develop a temporally precise ultrasound stimulation protocol targeting the frontal eye fields — a well-characterized circuit critical for saccadic eye movements. We demonstrate that ultrasonic stimulation induces robust excitatory behavioral effects. Importantly, individual differences in baseline GABAergic inhibitory tone predict response magnitude. These findings establish ultrasound stimulation as a reliable tool for chronometric circuit interrogation and highlight the importance of neurophysiological state in neuromodulation. This work bridges human and animal research, advancing targeted transcranial ultrasonic stimulation applications in neuroscience and clinical settings.

Data availability

The anonymized behavioral data generated in this study (trial-level tables), task timing logs, stimulation targets/coordinates, single-subject localizer peaks, and summary spectroscopy outputs with QC (i.e., the dataset required to reproduce the results reported in this paper) have been deposited in the Radboud University Data Repository under https://doi.org/10.34973/drtg-kq58. The raw MRI data are protected and are not available due to data privacy laws (GDPR) and the study’s ethics approval (CMO Oost-Nederland, CMO2022-15953). Source data are provided with this paper.

Code availability

All behavioral and fMRI task code and all analysis scripts are available at https://doi.org/10.34973/drtg-kq58.

References

  1. Murphy, K. R. et al. A practical guide to transcranial ultrasonic stimulation from the IFCN-endorsed ITRUSST consortium. Clin. Neurophysiol. 171, 192–226 (2025)

  2. Kubanek, J. et al. Remote, brain region-specific control of choice behavior with ultrasonic waves. Sci. Adv. 6, eaaz4193 (2020).

    Google Scholar 

  3. Menz, M. D., Oralkan, Ö, Khuri-Yakub, P. T. & Baccus, S. A. Precise neural stimulation in the retina using focused ultrasound. J. Neurosci. 33, 4550–4560 (2013).

    Google Scholar 

  4. Mohammadjavadi, M. et al. Elimination of peripheral auditory pathway activation does not affect motor responses from ultrasound neuromodulation. Brain Stimul. 12, 901–910 (2019).

    Google Scholar 

  5. Murphy, K. R. et al. A tool for monitoring cell type-specific focused ultrasound neuromodulation and control of chronic epilepsy. Proc. Natl. Acad. Sci. USA 119, e2206828119 (2022).

    Google Scholar 

  6. Yoo, S., Mittelstein, D. R., Hurt, R. C., Lacroix, J. & Shapiro, M. G. Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification. Nat. Commun. 13, 493 (2022).

    Google Scholar 

  7. Riis, T. S., Feldman, D. A., Losser, A. J., Okifuji, A. & Kubanek, J. Noninvasive targeted modulation of pain circuits with focused ultrasonic waves. PAIN https://doi.org/10.1097/j.pain.0000000000003322 (2022).

  8. Yaakub, S. N. et al. Transcranial focused ultrasound-mediated neurochemical and functional connectivity changes in deep cortical regions in humans. Nat. Commun. 14, 5318 (2023).

    Google Scholar 

  9. Kop, B. R. et al. Auditory confounds can drive online effects of transcranial ultrasonic stimulation in humans. eLife 12, RP88762 (2024).

    Google Scholar 

  10. Butler, C. R. et al. Transcranial ultrasound stimulation to human middle temporal complex improves visual motion detection and modulates electrophysiological responses. Brain Stimul. 15, 1236–1245 (2022).

    Google Scholar 

  11. Paus, T. Location and function of the human frontal eye-field: a selective review. Neuropsychologia 34, 475–483 (1996).

    Google Scholar 

  12. Vernet, M., Quentin, R., Chanes, L., Mitsumasu, A. & Valero-Cabré, A. Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations. Front. Integr. Neurosci. 8, 66 (2014).

    Google Scholar 

  13. Gaymard, B., Ploner, C. J., Rivaud-Péchoux, S. & Pierrot-Deseilligny, C. The frontal eye field is involved in spatial short-term memory but not in reflexive saccade inhibition. Exp. Brain Res. 129, 288–301 (1999).

    Google Scholar 

  14. Guitton, D., Buchtel, H. A. & Douglas, R. M. Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Exp. Brain Res. 58, 455–472 (1985).

    Google Scholar 

  15. Henik, A., Rafal, R. & Rhodes, D. Endogenously generated and visually guided saccades after lesions of the human frontal eye fields. J. Cogn. Neurosci. 6, 400–411 (1994).

    Google Scholar 

  16. Rivaud, S., Müri, R. M., Gaymard, B., Vermersch, A. I. & Pierrot-Deseilligny, C. Eye movement disorders after frontal eye field lesions in humans. Exp. Brain Res. 102, 110–120 (1994).

    Google Scholar 

  17. Grosbras, M.-H. & Paus, T. Transcranial magnetic stimulation of the human frontal eye field: effects on visual perception and attention. J. Cogn. Neurosci. 14, 1109–1120 (2002).

    Google Scholar 

  18. Grosbras, M.-H. & Paus, T. Transcranial magnetic stimulation of the human frontal eye field facilitates visual awareness. Eur. J. Neurosci. 18, 3121–3126 (2003).

    Google Scholar 

  19. Nagel, M. et al. Distributed representations of the ‘preparatory set’ in the frontal oculomotor system: a TMS study. BMC Neurosci. 9, 89 (2008).

    Google Scholar 

  20. Nyffeler, T. et al. Repetitive TMS over the human oculomotor cortex: comparison of 1-Hz and theta burst stimulation. Neurosci. Lett. 409, 57–60 (2006).

    Google Scholar 

  21. Ro, T., Henik, A., Machado, L. & Rafal, R. D. Transcranial magnetic stimulation of the prefrontal cortex delays contralateral endogenous saccades. J. Cogn. Neurosci. 9, 433–440 (1997).

    Google Scholar 

  22. Ro, T., Cheifet, S., Ingle, H., Shoup, R. & Rafal, R. Localization of the human frontal eye fields and motor hand area with transcranial magnetic stimulation and magnetic resonance imaging. Neuropsychologia 37, 225–231 (1999).

    Google Scholar 

  23. Ro, T., Farnè, A. & Chang, E. Locating the human frontal eye fields with transcranial magnetic stimulation. J. Clin. Exp. Neuropsychol. 24, 930–940 (2002).

    Google Scholar 

  24. Thickbroom, G. W., Stell, R. & Mastaglia, F. L. Transcranial magnetic stimulation of the human frontal eye field. J. Neurol. Sci. 144, 114–118 (1996).

    Google Scholar 

  25. Nandi, T., Kop, B. R., Butts Pauly, K., Stagg, C. J. & Verhagen, L. The relationship between parameters and effects in transcranial ultrasonic stimulation. Brain Stimul. 17, 1216–1228 (2024).

    Google Scholar 

  26. Guerra, A. et al. Gamma-transcranial alternating current stimulation and theta-burst stimulation: inter-subject variability and the role of BDNF. Clin. Neurophysiol. 131, 2691–2699 (2020).

    Google Scholar 

  27. Guerra, A., López-Alonso, V., Cheeran, B. & Suppa, A. Variability in non-invasive brain stimulation studies: reasons and results. Neurosci. Lett. 719, 133330 (2020).

    Google Scholar 

  28. López-Alonso, V., Cheeran, B., Río-Rodríguez, D. & Fernández-Del-Olmo, M. Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimul. 7, 372–380 (2014).

    Google Scholar 

  29. Pellegrini, M., Zoghi, M. & Jaberzadeh, S. Cluster analysis and subgrouping to investigate inter-individual variability to non-invasive brain stimulation: a systematic review. Rev. Neurosci. 29, 675–697 (2018).

    Google Scholar 

  30. Pellegrini, M., Zoghi, M. & Jaberzadeh, S. Biological and anatomical factors influencing interindividual variability to noninvasive brain stimulation of the primary motor cortex: a systematic review and meta-analysis. Rev. Neurosci. 29, 199–222 (2018).

    Google Scholar 

  31. Stagg, C. J., Bachtiar, V. & Johansen-Berg, H. The role of GABA in human motor learning. Curr. Biol. 21, 480–484 (2011).

    Google Scholar 

  32. Sumner, P., Edden, R. A. E., Bompas, A., Evans, C. J. & Singh, K. D. More GABA, less distraction: a neurochemical predictor of motor decision speed. Nat. Neurosci. 13, 825–827 (2010).

    Google Scholar 

  33. Barker, A. T., Jalinous, R. & Freeston, I. L. Non-invasive magnetic stimulation of human motor cortex. Lancet Lond. Engl. 1, 1106–1107 (1985).

    Google Scholar 

  34. Kammer, T. Phosphenes and transient scotomas induced by magnetic stimulation of the occipital lobe: their topographic relationship. Neuropsychologia 37, 191–198 (1998).

    Google Scholar 

  35. Murd, C., Luiga, I., Kreegipuu, K. & Bachmann, T. Scotomas induced by multiple, spatially invariant TMS pulses have stable size and subjective contrast. Int. J. Psychophysiol. 77, 157–165 (2010).

    Google Scholar 

  36. Darmani, G. et al. Non-invasive transcranial ultrasound stimulation for neuromodulation. Clin. Neurophysiol. 135, 51–73 (2022).

    Google Scholar 

  37. Mankowska, N. D. et al. Critical flicker fusion frequency: a narrative review. Medicina 57, 1096 (2021).

    Google Scholar 

  38. Foerster, F. R., Giersch, A. & Cleeremans, A. Spatial but not temporal orienting of attention enhances the temporal acuity of human peripheral vision. Commun. Psychol. 3, 116 (2025).

    Google Scholar 

  39. Braun, V., Blackmore, J., Cleveland, R. O. & Butler, C. R. Transcranial ultrasound stimulation in humans is associated with an auditory confound that can be effectively masked. Brain Stimul. 13, 1527–1534 (2020).

    Google Scholar 

  40. Guo, H. et al. Ultrasound produces extensive brain activation via a cochlear pathway. Neuron 98, 1020–1030.e4 (2018).

    Google Scholar 

  41. Johnstone, A. et al. A range of pulses commonly used for human transcranial ultrasound stimulation are clearly audible. Brain Stimul. 14, 1353–1355 (2021).

    Google Scholar 

  42. Sato, T., Shapiro, M. G. & Tsao, D. Y. Ultrasonic neuromodulation causes widespread cortical activation via an indirect auditory mechanism. Neuron 98, 1031–1041.e5 (2018).

    Google Scholar 

  43. Nakajima, K. et al. A causal role of anterior prefrontal-putamen circuit for response inhibition revealed by transcranial ultrasound stimulation in humans. Cell Rep. 40, 111197 (2022).

    Google Scholar 

  44. Moore, T. & Fallah, M. Control of eye movements and spatial attention. Proc. Natl. Acad. Sci. 98, 1273–1276 (2001).

    Google Scholar 

  45. Ruff, C. C. et al. Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr. Biol. 16, 1479–1488 (2006).

    Google Scholar 

  46. Moore, T. & Armstrong, K. M. Selective gating of visual signals by microstimulation of frontal cortex. Nature 421, 370–373 (2003).

    Google Scholar 

  47. Stelmach, L. B. & Herdman, C. M. Directed attention and perception of temporal order. J. Exp. Psychol. Hum. Percept. Perform. 17, 539–550 (1991).

    Google Scholar 

  48. Duecker, F. & Sack, A. T. Rethinking the role of sham TMS. Front. Psychol. 6, 210 (2015).

    Google Scholar 

  49. Jerusalem, A. et al. Electrophysiological-mechanical coupling in the neuronal membrane and its role in ultrasound neuromodulation and general anaesthesia. Acta Biomater. 97, 116–140 (2019).

    Google Scholar 

  50. Yu, K., Niu, X., Krook-Magnuson, E. & He, B. Intrinsic functional neuron-type selectivity of transcranial focused ultrasound neuromodulation. Nat. Commun. 12, 2519 (2021).

    Google Scholar 

  51. Heinen, K., Feredoes, E., Weiskopf, N., Ruff, C. C. & Driver, J. Direct evidence for attention-dependent influences of the frontal eye-fields on feature-responsive visual cortex. Cereb. Cortex N. Y. NY 24, 2815–2821 (2014).

    Google Scholar 

  52. Huang, Y.-Z. et al. Plasticity induced by non-invasive transcranial brain stimulation: A position paper. Clin. Neurophysiol. 128, 2318–2329 (2017).

    Google Scholar 

  53. Kamke, M. R. et al. Visual spatial attention has opposite effects on bidirectional plasticity in the human motor cortex. J. Neurosci. 34, 1475–1480 (2014).

    Google Scholar 

  54. Massimini, M. et al. Breakdown of cortical effective connectivity during sleep. Science 309, 2228–2232 (2005).

    Google Scholar 

  55. Siebner, H. R. et al. Transcranial magnetic stimulation of the brain: what is stimulated?—a consensus and critical position paper. Clin. Neurophysiol. 140, 59–97 (2022).

    Google Scholar 

  56. Kolasinski, J. et al. The dynamics of cortical GABA in human motor learning. J. Physiol. 597, 271–282 (2019.

    Google Scholar 

  57. McSorley, E., Haggard, P. & Walker, R. Time course of oculomotor inhibition revealed by saccade trajectory modulation. J. Neurophysiol. 96, 1420–1424 (2006).

    Google Scholar 

  58. Hutchison, R. M. et al. Functional connectivity of the frontal eye fields in humans and macaque monkeys investigated with resting-state fMRI. J. Neurophysiol. 107, 2463–2474 (2012).

    Google Scholar 

  59. Kagan, I., Iyer, A., Lindner, A. & Andersen, R. A. Space representation for eye movements is more contralateral in monkeys than in humans. Proc. Natl. Acad. Sci. 107, 7933–7938 (2010).

    Google Scholar 

  60. Silver, M. A. & Kastner, S. Topographic maps in human frontal and parietal cortex. Trends Cogn. Sci. 13, 488–495 (2009).

    Google Scholar 

  61. Bartolomeo, P. & Seidel Malkinson, T. Hemispheric lateralization of attention processes in the human brain. Curr. Opin. Psychol. 29, 90–96 (2019).

    Google Scholar 

  62. Cazzoli, D. et al. The role of the right frontal eye field in overt visual attention deployment as assessed by free visual exploration. Neuropsychologia 74, 37–41 (2015).

    Google Scholar 

  63. Hanning, N. M., Fernández, A. & Carrasco, M. Dissociable roles of human frontal eye fields and early visual cortex in presaccadic attention. Nat. Commun. 14, 5381 (2023).

    Google Scholar 

  64. Faul, F., Erdfelder, E., Buchner, A. & Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 41, 1149–1160 (2009).

    Google Scholar 

  65. Vossel, S., Geng, J. J. & Fink, G. R. Dorsal and ventral attention systems. Neuroscientist 20, 150–159 (2014).

    Google Scholar 

  66. Shulman, G. L. et al. Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal frontoparietal network. J. Neurosci. 30, 3640–3651 (2010).

    Google Scholar 

  67. Anderson, E. J. et al. Cortical network for gaze control in humans revealed using multimodal MRI. Cereb. Cortex 22, 765–775 (2012).

    Google Scholar 

  68. Johnstone, L. T., Karlsson, E. M. & Carey, D. P. Left-handers are less lateralized than right-handers for both left and right hemispheric functions. Cereb. Cortex 31, 3780–3787 (2021).

    Google Scholar 

  69. Tomasi, D. & Volkow, N. D. Associations between handedness and brain functional connectivity patterns in children. Nat. Commun. 15, 2355 (2024).

    Google Scholar 

  70. Pool, E.-M., Rehme, A. K., Fink, G. R., Eickhoff, S. B. & Grefkes, C. Handedness and effective connectivity of the motor system. NeuroImage 99, 451–460 (2014).

    Google Scholar 

  71. Serrien, D. J., Ivry, R. B. & Swinnen, S. P. Dynamics of hemispheric specialization and integration in the context of motor control. Nat. Rev. Neurosci. 7, 160–166 (2006).

    Google Scholar 

  72. Heilman, K. M. & Abell, T. V. D. Right hemisphere dominance for attention. Neurology 30, 327–327 (1980).

    Google Scholar 

  73. Sack, A. T. et al. Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods. J. Cogn. Neurosci. 21, 207–221 (2009).

    Google Scholar 

  74. Amiez, C., Kostopoulos, P., Champod, A.-S. & Petrides, M. Local morphology predicts functional organization of the dorsal premotor region in the human brain. J. Neurosci. 26, 2724–2731 (2006).

    Google Scholar 

  75. Gagnon, D., O’Driscoll, G. A., Petrides, M. & Pike, G. B. The effect of spatial and temporal information on saccades and neural activity in oculomotor structures. Brain 125, 123–139 (2002).

    Google Scholar 

  76. Tzourio-Mazoyer, N. et al. Between-hand difference in ipsilateral deactivation is associated with hand lateralization: fMRI mapping of 284 volunteers balanced for handedness. Front. Hum. Neurosci. 9, 5 (2015).

  77. Gruetter, R. Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn. Reson. Med. 29, 804–811 (1993).

    Google Scholar 

  78. Gruetter, R. & Tkác, I. Field mapping without reference scan using asymmetric echo-planar techniques. Magn. Reson. Med. 43, 319–323 (2000).

    Google Scholar 

  79. Yousry, T. A. et al. Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain J. Neurol. 120, 141–157 (1997).

    Google Scholar 

  80. Tkác, I., Starcuk, Z., Choi, I. Y. & Gruetter, R. In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn. Reson. Med. 41, 649–656 (1999).

    Google Scholar 

  81. Mescher, M., Tannus, A., Johnson, M. O. & Garwood, M. Solvent suppression using selective echo dephasing. J. Magn. Reson. A 123, 226–229 (1996).

    Google Scholar 

  82. Mescher, M., Merkle, H., Kirsch, J., Garwood, M. & Gruetter, R. Simultaneous in vivo spectral editing and water suppression. NMR Biomed. 11, 266–272 (1998).

    Google Scholar 

  83. Marjańska, M. et al. Brain dynamic neurochemical changes in dystonic patients: a magnetic resonance spectroscopy study. Mov. Disord. 28, 201–209 (2013).

    Google Scholar 

  84. Floyer-Lea, A., Wylezinska, M., Kincses, T. & Matthews, P. M. Rapid modulation of GABA concentration in human sensorimotor cortex during motor learning. J. Neurophysiol. 95, 1639–1644 (2006).

    Google Scholar 

  85. Maes, C. et al. Task-related modulation of sensorimotor GABA+ levels in association with brain activity and motor performance: a multimodal MRS–fMRI study in young and older adults. J. Neurosci. 42, 1119–1130 (2022).

    Google Scholar 

  86. Li, H. et al. MRS-assessed brain GABA modulation in response to task performance and learning. Behav. Brain Funct. 20, 22 (2024).

    Google Scholar 

  87. Porges, E. C., Jensen, G., Foster, B., Edden, R. A. & Puts, N. A. The trajectory of cortical GABA across the lifespan, an individual participant data meta-analysis of edited MRS studies. eLife 10, e62575 (2021).

    Google Scholar 

  88. Chen, C. et al. Activation induced changes in GABA: functional MRS at 7 T with MEGA-sLASER. NeuroImage 156, 207–213 (2017).

    Google Scholar 

  89. Schaller, B., Xin, L., O’Brien, K., Magill, A. W. & Gruetter, R. Are glutamate and lactate increases ubiquitous to physiological activation? A 1H functional MR spectroscopy study during motor activation in human brain at 7 Tesla. NeuroImage 93, 138–145 (2014).

    Google Scholar 

  90. Choi, M. H., Li, N., Popelka, G. & Butts Pauly, K. Development and validation of a computational method to predict unintended auditory brainstem response during transcranial ultrasound neuromodulation in mice. Brain Stimul. 16, 1362–1370 (2023).

    Google Scholar 

  91. Aubry, J.-F. et al. ITRUSST consensus on biophysical safety for transcranial ultrasound stimulation. Brain Stimulat. 18, 1896–1905 (2025).

  92. Peirce, J. et al. PsychoPy2: experiments in behavior made easy. Behav. Res. Methods 51, 195–203 (2019).

    Google Scholar 

  93. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  94. Fox, J., Weisberg, S. & Price, B. car: Companion to Applied Regression. 3.1-3, https://doi.org/10.32614/CRAN.package.car (2001).

  95. Fox, J. & Weisberg, S. An R Companion to Applied Regression, Third edition. Sage, Thousand Oaks CA. https://www.john-fox.ca/Companion/ (2019).

  96. Lenth, R. & Piaskowski, J. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 2.0.1, https://rvlenth.github.io/emmeans/ (2025).

  97. Cameron, I. G. M., Riddle, J. M. & D’Esposito, M. Dissociable roles of dorsolateral prefrontal cortex and frontal eye fields during saccadic eye movements. Front. Hum. Neurosci. 9, 613 (2015).

  98. Neggers, S. F. W. et al. A functional and structural investigation of the human fronto-basal volitional saccade network. PLoS ONE 7, e29517 (2012).

    Google Scholar 

  99. Edden, R. A. E., Puts, N. A. J., Harris, A. D., Barker, P. B. & Evans, C. J. Gannet: a batch-processing tool for the quantitative analysis of gamma-aminobutyric acid–edited MR spectroscopy spectra. J. Magn. Reson. Imaging JMRI 40, 1445–1452 (2014).

    Google Scholar 

  100. Gasparovic, C. et al. Use of tissue water as a concentration reference for proton spectroscopic imaging. Magn. Reson. Med. 55, 1219–1226 (2006).

Download references

Acknowledgements

This experiment was supported by the Dutch Research Council (NWO), awarding VIDI fellowships to L.V. (18919) and H.E.M.d.O. (452-17-016). We would like to acknowledge Edward J. Auerbach, Ph.D., and Małgorzata Marjańska, Ph.D. (Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, USA) for the development of the pulse sequences for the Siemens platform, which were provided by the University of Minnesota under a C2P agreement. Additionally, we thank Norbert Hermesdorf, Margely Cornelissen, Hubert Voogd, Sibrecht Bouwstra, Gerard van Oijen, and Pascal de Water from the technical support group at the Donders Centre for Cognition, Faculty of Social Sciences, Radboud University, for their excellent technical assistance and support throughout this study. Finally, we would also like to thank Marwan Engels (Donders Centre for Cognition, Radboud University) for his substantial role during data acquisition, and Sjoerd Meijer (Donders Centre for Cognitive Neuroimaging, Radboud University) for his contribution to preparing the ethics documentation and to setting up the laboratory infrastructure for this study.

Author information

Author notes
  1. These authors contributed equally: L. Verhagen, H. E. M. den Ouden.

Authors and Affiliations

  1. Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands

    S. Farboud, B. R. Kop, R. S. Koolschijn, S. L. Y. Walstra, J. P. Marques, A. Chetverikov, W. P. Medendorp, L. Verhagen & H. E. M. den Ouden

  2. School of Medicine, Stanford University, Stanford, CA, USA

    B. R. Kop

  3. Integrative Model-Based Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands

    S. L. Y. Walstra

  4. Department of Psychosocial Science, Faculty of Psychology, University of Bergen, Bergen, Norway

    A. Chetverikov

Authors
  1. S. Farboud
    View author publications

    Search author on:PubMed Google Scholar

  2. B. R. Kop
    View author publications

    Search author on:PubMed Google Scholar

  3. R. S. Koolschijn
    View author publications

    Search author on:PubMed Google Scholar

  4. S. L. Y. Walstra
    View author publications

    Search author on:PubMed Google Scholar

  5. J. P. Marques
    View author publications

    Search author on:PubMed Google Scholar

  6. A. Chetverikov
    View author publications

    Search author on:PubMed Google Scholar

  7. W. P. Medendorp
    View author publications

    Search author on:PubMed Google Scholar

  8. L. Verhagen
    View author publications

    Search author on:PubMed Google Scholar

  9. H. E. M. den Ouden
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.F., L.V. and H.E.M.d.O. conceptualized and designed the experiment; A.C., S.L.Y.W. and S.F. designed and programmed the behavioral and functional localizer tasks; S.F. and S.L.Y.W. collected the data; J.P.M. set up the fMRI and MRS sequences; S.F., L.V., and H.E.M.d.O. analyzed the behavioral, functional and spectroscopy data; B.R.K. contributed to behavioral data analysis; R.S.K. contributed to spectroscopy analysis; S.L.Y.W. contributed to fMRI analysis; S.F., L.V. and H.E.M.d.O. wrote the manuscript; B.R.K., R.S.K., W.P.M., J.P.M. and A.C. revised the manuscript.

Corresponding authors

Correspondence to S. Farboud or H. E. M. den Ouden.

Ethics declarations

Competing interests

L.V. declares no competing interests relevant to this study. L.V. is a board member of ITRUSST and the Brainbox Initiative. L.V. has received non-financial support from Image Guided Therapy SA (France), Sonic Concepts LLC (US), and Brainbox Ltd (UK), and consulting fees from Nudge LLC (US). All other authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Seiki Konishi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farboud, S., Kop, B.R., Koolschijn, R.S. et al. Rapid modulation of choice behavior by ultrasound on the human frontal eye fields. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69854-7

Download citation

  • Received: 10 April 2025

  • Accepted: 03 February 2026

  • Published: 20 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69854-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing