Abstract
A fundamental challenge in neuroscience is establishing causal brain-function relationships with spatial and temporal precision. Transcranial ultrasonic stimulation offers a unique opportunity to modulate deep brain structures non-invasively with high spatial resolution, but temporally precise effects and their neurophysiological foundations have yet to be demonstrated in humans. Here, we develop a temporally precise ultrasound stimulation protocol targeting the frontal eye fields — a well-characterized circuit critical for saccadic eye movements. We demonstrate that ultrasonic stimulation induces robust excitatory behavioral effects. Importantly, individual differences in baseline GABAergic inhibitory tone predict response magnitude. These findings establish ultrasound stimulation as a reliable tool for chronometric circuit interrogation and highlight the importance of neurophysiological state in neuromodulation. This work bridges human and animal research, advancing targeted transcranial ultrasonic stimulation applications in neuroscience and clinical settings.
Data availability
The anonymized behavioral data generated in this study (trial-level tables), task timing logs, stimulation targets/coordinates, single-subject localizer peaks, and summary spectroscopy outputs with QC (i.e., the dataset required to reproduce the results reported in this paper) have been deposited in the Radboud University Data Repository under https://doi.org/10.34973/drtg-kq58. The raw MRI data are protected and are not available due to data privacy laws (GDPR) and the study’s ethics approval (CMO Oost-Nederland, CMO2022-15953). Source data are provided with this paper.
Code availability
All behavioral and fMRI task code and all analysis scripts are available at https://doi.org/10.34973/drtg-kq58.
References
Murphy, K. R. et al. A practical guide to transcranial ultrasonic stimulation from the IFCN-endorsed ITRUSST consortium. Clin. Neurophysiol. 171, 192–226 (2025)
Kubanek, J. et al. Remote, brain region-specific control of choice behavior with ultrasonic waves. Sci. Adv. 6, eaaz4193 (2020).
Menz, M. D., Oralkan, Ö, Khuri-Yakub, P. T. & Baccus, S. A. Precise neural stimulation in the retina using focused ultrasound. J. Neurosci. 33, 4550–4560 (2013).
Mohammadjavadi, M. et al. Elimination of peripheral auditory pathway activation does not affect motor responses from ultrasound neuromodulation. Brain Stimul. 12, 901–910 (2019).
Murphy, K. R. et al. A tool for monitoring cell type-specific focused ultrasound neuromodulation and control of chronic epilepsy. Proc. Natl. Acad. Sci. USA 119, e2206828119 (2022).
Yoo, S., Mittelstein, D. R., Hurt, R. C., Lacroix, J. & Shapiro, M. G. Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification. Nat. Commun. 13, 493 (2022).
Riis, T. S., Feldman, D. A., Losser, A. J., Okifuji, A. & Kubanek, J. Noninvasive targeted modulation of pain circuits with focused ultrasonic waves. PAIN https://doi.org/10.1097/j.pain.0000000000003322 (2022).
Yaakub, S. N. et al. Transcranial focused ultrasound-mediated neurochemical and functional connectivity changes in deep cortical regions in humans. Nat. Commun. 14, 5318 (2023).
Kop, B. R. et al. Auditory confounds can drive online effects of transcranial ultrasonic stimulation in humans. eLife 12, RP88762 (2024).
Butler, C. R. et al. Transcranial ultrasound stimulation to human middle temporal complex improves visual motion detection and modulates electrophysiological responses. Brain Stimul. 15, 1236–1245 (2022).
Paus, T. Location and function of the human frontal eye-field: a selective review. Neuropsychologia 34, 475–483 (1996).
Vernet, M., Quentin, R., Chanes, L., Mitsumasu, A. & Valero-Cabré, A. Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations. Front. Integr. Neurosci. 8, 66 (2014).
Gaymard, B., Ploner, C. J., Rivaud-Péchoux, S. & Pierrot-Deseilligny, C. The frontal eye field is involved in spatial short-term memory but not in reflexive saccade inhibition. Exp. Brain Res. 129, 288–301 (1999).
Guitton, D., Buchtel, H. A. & Douglas, R. M. Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Exp. Brain Res. 58, 455–472 (1985).
Henik, A., Rafal, R. & Rhodes, D. Endogenously generated and visually guided saccades after lesions of the human frontal eye fields. J. Cogn. Neurosci. 6, 400–411 (1994).
Rivaud, S., Müri, R. M., Gaymard, B., Vermersch, A. I. & Pierrot-Deseilligny, C. Eye movement disorders after frontal eye field lesions in humans. Exp. Brain Res. 102, 110–120 (1994).
Grosbras, M.-H. & Paus, T. Transcranial magnetic stimulation of the human frontal eye field: effects on visual perception and attention. J. Cogn. Neurosci. 14, 1109–1120 (2002).
Grosbras, M.-H. & Paus, T. Transcranial magnetic stimulation of the human frontal eye field facilitates visual awareness. Eur. J. Neurosci. 18, 3121–3126 (2003).
Nagel, M. et al. Distributed representations of the ‘preparatory set’ in the frontal oculomotor system: a TMS study. BMC Neurosci. 9, 89 (2008).
Nyffeler, T. et al. Repetitive TMS over the human oculomotor cortex: comparison of 1-Hz and theta burst stimulation. Neurosci. Lett. 409, 57–60 (2006).
Ro, T., Henik, A., Machado, L. & Rafal, R. D. Transcranial magnetic stimulation of the prefrontal cortex delays contralateral endogenous saccades. J. Cogn. Neurosci. 9, 433–440 (1997).
Ro, T., Cheifet, S., Ingle, H., Shoup, R. & Rafal, R. Localization of the human frontal eye fields and motor hand area with transcranial magnetic stimulation and magnetic resonance imaging. Neuropsychologia 37, 225–231 (1999).
Ro, T., Farnè, A. & Chang, E. Locating the human frontal eye fields with transcranial magnetic stimulation. J. Clin. Exp. Neuropsychol. 24, 930–940 (2002).
Thickbroom, G. W., Stell, R. & Mastaglia, F. L. Transcranial magnetic stimulation of the human frontal eye field. J. Neurol. Sci. 144, 114–118 (1996).
Nandi, T., Kop, B. R., Butts Pauly, K., Stagg, C. J. & Verhagen, L. The relationship between parameters and effects in transcranial ultrasonic stimulation. Brain Stimul. 17, 1216–1228 (2024).
Guerra, A. et al. Gamma-transcranial alternating current stimulation and theta-burst stimulation: inter-subject variability and the role of BDNF. Clin. Neurophysiol. 131, 2691–2699 (2020).
Guerra, A., López-Alonso, V., Cheeran, B. & Suppa, A. Variability in non-invasive brain stimulation studies: reasons and results. Neurosci. Lett. 719, 133330 (2020).
López-Alonso, V., Cheeran, B., Río-Rodríguez, D. & Fernández-Del-Olmo, M. Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimul. 7, 372–380 (2014).
Pellegrini, M., Zoghi, M. & Jaberzadeh, S. Cluster analysis and subgrouping to investigate inter-individual variability to non-invasive brain stimulation: a systematic review. Rev. Neurosci. 29, 675–697 (2018).
Pellegrini, M., Zoghi, M. & Jaberzadeh, S. Biological and anatomical factors influencing interindividual variability to noninvasive brain stimulation of the primary motor cortex: a systematic review and meta-analysis. Rev. Neurosci. 29, 199–222 (2018).
Stagg, C. J., Bachtiar, V. & Johansen-Berg, H. The role of GABA in human motor learning. Curr. Biol. 21, 480–484 (2011).
Sumner, P., Edden, R. A. E., Bompas, A., Evans, C. J. & Singh, K. D. More GABA, less distraction: a neurochemical predictor of motor decision speed. Nat. Neurosci. 13, 825–827 (2010).
Barker, A. T., Jalinous, R. & Freeston, I. L. Non-invasive magnetic stimulation of human motor cortex. Lancet Lond. Engl. 1, 1106–1107 (1985).
Kammer, T. Phosphenes and transient scotomas induced by magnetic stimulation of the occipital lobe: their topographic relationship. Neuropsychologia 37, 191–198 (1998).
Murd, C., Luiga, I., Kreegipuu, K. & Bachmann, T. Scotomas induced by multiple, spatially invariant TMS pulses have stable size and subjective contrast. Int. J. Psychophysiol. 77, 157–165 (2010).
Darmani, G. et al. Non-invasive transcranial ultrasound stimulation for neuromodulation. Clin. Neurophysiol. 135, 51–73 (2022).
Mankowska, N. D. et al. Critical flicker fusion frequency: a narrative review. Medicina 57, 1096 (2021).
Foerster, F. R., Giersch, A. & Cleeremans, A. Spatial but not temporal orienting of attention enhances the temporal acuity of human peripheral vision. Commun. Psychol. 3, 116 (2025).
Braun, V., Blackmore, J., Cleveland, R. O. & Butler, C. R. Transcranial ultrasound stimulation in humans is associated with an auditory confound that can be effectively masked. Brain Stimul. 13, 1527–1534 (2020).
Guo, H. et al. Ultrasound produces extensive brain activation via a cochlear pathway. Neuron 98, 1020–1030.e4 (2018).
Johnstone, A. et al. A range of pulses commonly used for human transcranial ultrasound stimulation are clearly audible. Brain Stimul. 14, 1353–1355 (2021).
Sato, T., Shapiro, M. G. & Tsao, D. Y. Ultrasonic neuromodulation causes widespread cortical activation via an indirect auditory mechanism. Neuron 98, 1031–1041.e5 (2018).
Nakajima, K. et al. A causal role of anterior prefrontal-putamen circuit for response inhibition revealed by transcranial ultrasound stimulation in humans. Cell Rep. 40, 111197 (2022).
Moore, T. & Fallah, M. Control of eye movements and spatial attention. Proc. Natl. Acad. Sci. 98, 1273–1276 (2001).
Ruff, C. C. et al. Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr. Biol. 16, 1479–1488 (2006).
Moore, T. & Armstrong, K. M. Selective gating of visual signals by microstimulation of frontal cortex. Nature 421, 370–373 (2003).
Stelmach, L. B. & Herdman, C. M. Directed attention and perception of temporal order. J. Exp. Psychol. Hum. Percept. Perform. 17, 539–550 (1991).
Duecker, F. & Sack, A. T. Rethinking the role of sham TMS. Front. Psychol. 6, 210 (2015).
Jerusalem, A. et al. Electrophysiological-mechanical coupling in the neuronal membrane and its role in ultrasound neuromodulation and general anaesthesia. Acta Biomater. 97, 116–140 (2019).
Yu, K., Niu, X., Krook-Magnuson, E. & He, B. Intrinsic functional neuron-type selectivity of transcranial focused ultrasound neuromodulation. Nat. Commun. 12, 2519 (2021).
Heinen, K., Feredoes, E., Weiskopf, N., Ruff, C. C. & Driver, J. Direct evidence for attention-dependent influences of the frontal eye-fields on feature-responsive visual cortex. Cereb. Cortex N. Y. NY 24, 2815–2821 (2014).
Huang, Y.-Z. et al. Plasticity induced by non-invasive transcranial brain stimulation: A position paper. Clin. Neurophysiol. 128, 2318–2329 (2017).
Kamke, M. R. et al. Visual spatial attention has opposite effects on bidirectional plasticity in the human motor cortex. J. Neurosci. 34, 1475–1480 (2014).
Massimini, M. et al. Breakdown of cortical effective connectivity during sleep. Science 309, 2228–2232 (2005).
Siebner, H. R. et al. Transcranial magnetic stimulation of the brain: what is stimulated?—a consensus and critical position paper. Clin. Neurophysiol. 140, 59–97 (2022).
Kolasinski, J. et al. The dynamics of cortical GABA in human motor learning. J. Physiol. 597, 271–282 (2019.
McSorley, E., Haggard, P. & Walker, R. Time course of oculomotor inhibition revealed by saccade trajectory modulation. J. Neurophysiol. 96, 1420–1424 (2006).
Hutchison, R. M. et al. Functional connectivity of the frontal eye fields in humans and macaque monkeys investigated with resting-state fMRI. J. Neurophysiol. 107, 2463–2474 (2012).
Kagan, I., Iyer, A., Lindner, A. & Andersen, R. A. Space representation for eye movements is more contralateral in monkeys than in humans. Proc. Natl. Acad. Sci. 107, 7933–7938 (2010).
Silver, M. A. & Kastner, S. Topographic maps in human frontal and parietal cortex. Trends Cogn. Sci. 13, 488–495 (2009).
Bartolomeo, P. & Seidel Malkinson, T. Hemispheric lateralization of attention processes in the human brain. Curr. Opin. Psychol. 29, 90–96 (2019).
Cazzoli, D. et al. The role of the right frontal eye field in overt visual attention deployment as assessed by free visual exploration. Neuropsychologia 74, 37–41 (2015).
Hanning, N. M., Fernández, A. & Carrasco, M. Dissociable roles of human frontal eye fields and early visual cortex in presaccadic attention. Nat. Commun. 14, 5381 (2023).
Faul, F., Erdfelder, E., Buchner, A. & Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 41, 1149–1160 (2009).
Vossel, S., Geng, J. J. & Fink, G. R. Dorsal and ventral attention systems. Neuroscientist 20, 150–159 (2014).
Shulman, G. L. et al. Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal frontoparietal network. J. Neurosci. 30, 3640–3651 (2010).
Anderson, E. J. et al. Cortical network for gaze control in humans revealed using multimodal MRI. Cereb. Cortex 22, 765–775 (2012).
Johnstone, L. T., Karlsson, E. M. & Carey, D. P. Left-handers are less lateralized than right-handers for both left and right hemispheric functions. Cereb. Cortex 31, 3780–3787 (2021).
Tomasi, D. & Volkow, N. D. Associations between handedness and brain functional connectivity patterns in children. Nat. Commun. 15, 2355 (2024).
Pool, E.-M., Rehme, A. K., Fink, G. R., Eickhoff, S. B. & Grefkes, C. Handedness and effective connectivity of the motor system. NeuroImage 99, 451–460 (2014).
Serrien, D. J., Ivry, R. B. & Swinnen, S. P. Dynamics of hemispheric specialization and integration in the context of motor control. Nat. Rev. Neurosci. 7, 160–166 (2006).
Heilman, K. M. & Abell, T. V. D. Right hemisphere dominance for attention. Neurology 30, 327–327 (1980).
Sack, A. T. et al. Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods. J. Cogn. Neurosci. 21, 207–221 (2009).
Amiez, C., Kostopoulos, P., Champod, A.-S. & Petrides, M. Local morphology predicts functional organization of the dorsal premotor region in the human brain. J. Neurosci. 26, 2724–2731 (2006).
Gagnon, D., O’Driscoll, G. A., Petrides, M. & Pike, G. B. The effect of spatial and temporal information on saccades and neural activity in oculomotor structures. Brain 125, 123–139 (2002).
Tzourio-Mazoyer, N. et al. Between-hand difference in ipsilateral deactivation is associated with hand lateralization: fMRI mapping of 284 volunteers balanced for handedness. Front. Hum. Neurosci. 9, 5 (2015).
Gruetter, R. Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn. Reson. Med. 29, 804–811 (1993).
Gruetter, R. & Tkác, I. Field mapping without reference scan using asymmetric echo-planar techniques. Magn. Reson. Med. 43, 319–323 (2000).
Yousry, T. A. et al. Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain J. Neurol. 120, 141–157 (1997).
Tkác, I., Starcuk, Z., Choi, I. Y. & Gruetter, R. In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn. Reson. Med. 41, 649–656 (1999).
Mescher, M., Tannus, A., Johnson, M. O. & Garwood, M. Solvent suppression using selective echo dephasing. J. Magn. Reson. A 123, 226–229 (1996).
Mescher, M., Merkle, H., Kirsch, J., Garwood, M. & Gruetter, R. Simultaneous in vivo spectral editing and water suppression. NMR Biomed. 11, 266–272 (1998).
Marjańska, M. et al. Brain dynamic neurochemical changes in dystonic patients: a magnetic resonance spectroscopy study. Mov. Disord. 28, 201–209 (2013).
Floyer-Lea, A., Wylezinska, M., Kincses, T. & Matthews, P. M. Rapid modulation of GABA concentration in human sensorimotor cortex during motor learning. J. Neurophysiol. 95, 1639–1644 (2006).
Maes, C. et al. Task-related modulation of sensorimotor GABA+ levels in association with brain activity and motor performance: a multimodal MRS–fMRI study in young and older adults. J. Neurosci. 42, 1119–1130 (2022).
Li, H. et al. MRS-assessed brain GABA modulation in response to task performance and learning. Behav. Brain Funct. 20, 22 (2024).
Porges, E. C., Jensen, G., Foster, B., Edden, R. A. & Puts, N. A. The trajectory of cortical GABA across the lifespan, an individual participant data meta-analysis of edited MRS studies. eLife 10, e62575 (2021).
Chen, C. et al. Activation induced changes in GABA: functional MRS at 7 T with MEGA-sLASER. NeuroImage 156, 207–213 (2017).
Schaller, B., Xin, L., O’Brien, K., Magill, A. W. & Gruetter, R. Are glutamate and lactate increases ubiquitous to physiological activation? A 1H functional MR spectroscopy study during motor activation in human brain at 7 Tesla. NeuroImage 93, 138–145 (2014).
Choi, M. H., Li, N., Popelka, G. & Butts Pauly, K. Development and validation of a computational method to predict unintended auditory brainstem response during transcranial ultrasound neuromodulation in mice. Brain Stimul. 16, 1362–1370 (2023).
Aubry, J.-F. et al. ITRUSST consensus on biophysical safety for transcranial ultrasound stimulation. Brain Stimulat. 18, 1896–1905 (2025).
Peirce, J. et al. PsychoPy2: experiments in behavior made easy. Behav. Res. Methods 51, 195–203 (2019).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Fox, J., Weisberg, S. & Price, B. car: Companion to Applied Regression. 3.1-3, https://doi.org/10.32614/CRAN.package.car (2001).
Fox, J. & Weisberg, S. An R Companion to Applied Regression, Third edition. Sage, Thousand Oaks CA. https://www.john-fox.ca/Companion/ (2019).
Lenth, R. & Piaskowski, J. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 2.0.1, https://rvlenth.github.io/emmeans/ (2025).
Cameron, I. G. M., Riddle, J. M. & D’Esposito, M. Dissociable roles of dorsolateral prefrontal cortex and frontal eye fields during saccadic eye movements. Front. Hum. Neurosci. 9, 613 (2015).
Neggers, S. F. W. et al. A functional and structural investigation of the human fronto-basal volitional saccade network. PLoS ONE 7, e29517 (2012).
Edden, R. A. E., Puts, N. A. J., Harris, A. D., Barker, P. B. & Evans, C. J. Gannet: a batch-processing tool for the quantitative analysis of gamma-aminobutyric acid–edited MR spectroscopy spectra. J. Magn. Reson. Imaging JMRI 40, 1445–1452 (2014).
Gasparovic, C. et al. Use of tissue water as a concentration reference for proton spectroscopic imaging. Magn. Reson. Med. 55, 1219–1226 (2006).
Acknowledgements
This experiment was supported by the Dutch Research Council (NWO), awarding VIDI fellowships to L.V. (18919) and H.E.M.d.O. (452-17-016). We would like to acknowledge Edward J. Auerbach, Ph.D., and Małgorzata Marjańska, Ph.D. (Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, USA) for the development of the pulse sequences for the Siemens platform, which were provided by the University of Minnesota under a C2P agreement. Additionally, we thank Norbert Hermesdorf, Margely Cornelissen, Hubert Voogd, Sibrecht Bouwstra, Gerard van Oijen, and Pascal de Water from the technical support group at the Donders Centre for Cognition, Faculty of Social Sciences, Radboud University, for their excellent technical assistance and support throughout this study. Finally, we would also like to thank Marwan Engels (Donders Centre for Cognition, Radboud University) for his substantial role during data acquisition, and Sjoerd Meijer (Donders Centre for Cognitive Neuroimaging, Radboud University) for his contribution to preparing the ethics documentation and to setting up the laboratory infrastructure for this study.
Author information
Authors and Affiliations
Contributions
S.F., L.V. and H.E.M.d.O. conceptualized and designed the experiment; A.C., S.L.Y.W. and S.F. designed and programmed the behavioral and functional localizer tasks; S.F. and S.L.Y.W. collected the data; J.P.M. set up the fMRI and MRS sequences; S.F., L.V., and H.E.M.d.O. analyzed the behavioral, functional and spectroscopy data; B.R.K. contributed to behavioral data analysis; R.S.K. contributed to spectroscopy analysis; S.L.Y.W. contributed to fMRI analysis; S.F., L.V. and H.E.M.d.O. wrote the manuscript; B.R.K., R.S.K., W.P.M., J.P.M. and A.C. revised the manuscript.
Corresponding authors
Ethics declarations
Competing interests
L.V. declares no competing interests relevant to this study. L.V. is a board member of ITRUSST and the Brainbox Initiative. L.V. has received non-financial support from Image Guided Therapy SA (France), Sonic Concepts LLC (US), and Brainbox Ltd (UK), and consulting fees from Nudge LLC (US). All other authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Seiki Konishi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Farboud, S., Kop, B.R., Koolschijn, R.S. et al. Rapid modulation of choice behavior by ultrasound on the human frontal eye fields. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69854-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-69854-7