Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Immunometabolic determinants of long-term response in leukemia patients receiving CD19 CAR T cell therapy
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 February 2026

Immunometabolic determinants of long-term response in leukemia patients receiving CD19 CAR T cell therapy

  • Lior Goldberg  ORCID: orcid.org/0000-0002-1643-76161,2,
  • Eric R. Haas  ORCID: orcid.org/0000-0003-2962-93311,
  • Jiaqi Wu1,
  • Bryan Garcia1,
  • Ryan Urak1,
  • Vibhuti Vyas1,
  • Ruby Espinosa1,
  • Tamara Munoz1,
  • Shirley Bierkatz1,
  • Khyatiben V. Pathak3,4,
  • Nathaniel P. Hansen3,4,
  • Patrick Pirrotte  ORCID: orcid.org/0000-0003-1360-60393,4,
  • Jyotsana Singhal5,
  • James L. Figarola5,
  • Ricardo Zerda Noriega6,
  • Zhuo Li6,
  • Dasol Wi7,8,9,
  • Erin Tanaka7,8,
  • Ramon Klein Geltink  ORCID: orcid.org/0000-0003-4610-30597,8,10,11,
  • Min-Hsuan Chen12,
  • Xiwei Wu12,
  • Jamie R. Wagner1,
  • Jinny Paul1,
  • Mary C. Clark  ORCID: orcid.org/0000-0003-1672-26841,
  • Dat Ngo1,
  • Ibrahim Aldoss  ORCID: orcid.org/0000-0001-9564-44981,
  • Stephen J. Forman  ORCID: orcid.org/0000-0002-2803-41521 na1 &
  • …
  • Xiuli Wang  ORCID: orcid.org/0000-0001-5964-43271 na1 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Immunotherapy
  • Tumour immunology

Abstract

Although most patients with relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL) receiving CD19-targeted chimeric antigen receptor (CAR) T cell therapy achieve remission, loss of CAR T cell functionality and subsequent relapse remains an unmet therapeutic need. Herein, we apply an integrative approach to study the immunometabolism of pre- and post-infusion CD19-CAR T cells of patients with relapsed/refractory B-ALL. Pre-infusion CAR T cells of long-term responders (LTR) have increased oxidative phosphorylation, fatty acid oxidation, and pentose phosphate pathway activities, higher mitochondrial mass, tighter cristae, and lower mTOR expression compared to products of short-term responders. Post-infusion CAR T cells in bone marrow (BM) of LTR have high immunometabolic plasticity and mTOR-pS6 expression supported by the BM microenvironment. Transient inhibition of mTOR during manufacture induces metabolic reprogramming and enhances anti-tumor activity of CAR T cells. Our findings provide insight into immunometabolic determinants of long-term response and suggest a therapeutic strategy to improve long-term remission.

Data availability

The RNA sequencing data generated in this study are available at the Gene Expression Omnibus (GEO) repository of the National Center for Biotechnology Information under accession code GSE298663. Metabolomic profiles are available at the NIH Common Fund’s National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench42 (https://www.metabolomicsworkbench.org, Study IDs: ST003963, ST003964, ST003966. Supplementary information, including Supplementary Figs. 1–8 and Supplementary Data files 1–6 are provided with the online version of this paper. All other datasets generated during and/or analyzed during this study are available from the corresponding author on request. Source data are provided with this paper.

References

  1. Myers, R. M. et al. Reinfusion of CD19 CAR T cells for relapse prevention and treatment in children with acute lymphoblastic leukemia. Blood Adv. 8, 2182–2192 (2024).

    Google Scholar 

  2. Chapman, N. M., Boothby, M. R. & Chi, H. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 20, 55–70 (2020).

    Google Scholar 

  3. Aldoss, I. et al. Favorable activity and safety profile of memory-enriched CD19-targeted chimeric antigen receptor T-cell therapy in adults with high-risk relapsed/refractory ALL. Clin. Cancer Res. 29, 742–753 (2023).

    Google Scholar 

  4. Goldberg, L. et al. Immunometabolic adaptation of CD19-targeted CAR T cells in the central nervous system microenvironment of patients promotes memory development. Cancer Res. 84, 1048–1064 (2024).

    Google Scholar 

  5. Buck, M. D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).

    Google Scholar 

  6. Klein Geltink, R. I. et al. Mitochondrial priming by CD28. Cell 171, 385–397 e311 (2017).

    Google Scholar 

  7. van der Windt, G. J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    Google Scholar 

  8. Baldwin, J. G. et al. Intercellular nanotube-mediated mitochondrial transfer enhances T cell metabolic fitness and antitumor efficacy. Cell 187, 6614–6630 e6621 (2024).

    Google Scholar 

  9. Ren, W. et al. Amino-acid transporters in T-cell activation and differentiation. Cell Death Dis. 8, e2655 (2017).

    Google Scholar 

  10. Liu, Y. et al. tRNA-m(1)A modification promotes T cell expansion via efficient MYC protein synthesis. Nat. Immunol. 23, 1433–1444 (2022).

    Google Scholar 

  11. Mousset, C. M. et al. Comprehensive phenotyping of T cells using flow cytometry. Cytom. A 95, 647–654 (2019).

    Google Scholar 

  12. Hartmann, F. J. et al. Single-cell metabolic profiling of human cytotoxic T cells. Nat. Biotechnol. 39, 186–197 (2021).

    Google Scholar 

  13. Bishop, E. L., Gudgeon, N. & Dimeloe, S. Control of T cell metabolism by cytokines and hormones. Front. Immunol. 12, 653605 (2021).

    Google Scholar 

  14. Raynor, J. L. & Chi, H. Nutrients: signal 4 in T cell immunity. J. Exp. Med. 221, e20221839 (2024).

  15. Ma, E. H. et al. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 25, 482 (2017).

    Google Scholar 

  16. Klysz, D. D. et al. Inosine induces stemness features in CAR-T cells and enhances potency. Cancer Cell 42, 266–282 e268 (2024).

    Google Scholar 

  17. Cheng, H. et al. Extracellular acidosis restricts one-carbon metabolism and preserves T cell stemness. Nat. Metab. 5, 314–330 (2023).

    Google Scholar 

  18. Sukumar, M. et al. Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy. Cell Metab. 23, 63–76 (2016).

    Google Scholar 

  19. Frishman-Levy, L. et al. Central nervous system acute lymphoblastic leukemia: role of natural killer cells. Blood 125, 3420–3431 (2015).

    Google Scholar 

  20. Zhang, D. K. Y. et al. Enhancing CAR-T cell functionality in a patient-specific manner. Nat. Commun. 14, 506 (2023).

    Google Scholar 

  21. Mitchell, E. & Vassiliou, G. S. T-cell cancer after CAR T-cell therapy. N. Engl. J. Med. 390, 2120–2121 (2024).

    Google Scholar 

  22. Markowitz, G. J. et al. Deficiency of metabolic regulator PKM2 activates the pentose phosphate pathway and generates TCF1(+) progenitor CD8(+) T cells to improve immunotherapy. Nat. Immunol. 25, 1884–1899 (2024).

    Google Scholar 

  23. Rezvan, A. et al. Identification of a clinically efficacious CAR T cell subset in diffuse large B cell lymphoma by dynamic multidimensional single-cell profiling. Nat. Cancer 5, 1010–1023 (2024).

    Google Scholar 

  24. Bai, Z. et al. Single-cell CAR T atlas reveals type 2 function in 8-year leukaemia remission. Nature 634, 702–711 (2024).

    Google Scholar 

  25. Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4(+) CAR T cells. Nature 602, 503–509 (2022).

    Google Scholar 

  26. Peiffer, L. et al. BRAF and MEK inhibition in melanoma patients enables reprogramming of tumor infiltrating lymphocytes. Cancer Immunol. Immunother. 70, 1635–1647 (2021).

    Google Scholar 

  27. Weber, E. W. et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 372, eaba1786 (2021).

  28. Bennett, H. M., Stephenson, W., Rose, C. M. & Darmanis, S. Single-cell proteomics enabled by next-generation sequencing or mass spectrometry. Nat. Methods 20, 363–374 (2023).

    Google Scholar 

  29. Aldoss, I. et al. Favorable activity and safety profile of memory-enriched CD19-targeted chimeric antigen receptor T cell therapy in adults with high-risk relapsed/refractory ALL. Clin. Cancer Res. 29, 742–753 (2022).

  30. Zhang, B. et al. Acquired miR-142 deficit in leukemic stem cells suffices to drive chronic myeloid leukemia into blast crisis. Nat. Commun. 14, 5325 (2023).

    Google Scholar 

  31. Fan, S. et al. Systematic error removal using random forest for normalizing large-scale untargeted lipidomics data. Anal. Chem. 91, 3590–3596 (2019).

    Google Scholar 

  32. Mascorro, J. A. & Bozzola, J. J. Processing biological tissues for ultrastructural study. Methods Mol. Biol. 369, 19–34 (2007).

    Google Scholar 

  33. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Google Scholar 

  34. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Google Scholar 

  35. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Google Scholar 

  36. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Google Scholar 

  37. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Google Scholar 

  38. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Google Scholar 

  39. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Google Scholar 

  40. Yu, G. Thirteen years of clusterProfiler. Innovation 5, 100722 (2024).

    Google Scholar 

  41. Xu, S. et al. Using clusterProfiler to characterize multiomics data. Nat. Protoc. 19, 3292–3320 (2024).

    Google Scholar 

  42. Sud, M. et al. Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 44, D463–D470 (2016).

    Google Scholar 

Download references

Acknowledgements

Research reported in this publication included work performed in the Integrative Genomics Core and the Integrated Mass Spectrometry Shared Resource supported by the National Cancer Institute of the National Institutes of Health under grant number P30CA033572. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. L.G. acknowledges support from NIH K12 grant no. 5K12CA001727–29, the Hyundai Hope on Wheels Young Investigator Award, the Margaret E. Early Medical Research Trust Award, the Schwartz Accelerator Fund, the Norman and Sadie Lee Foundation, and the Albert and Bettie Sacchi Foundation. The authors thank Chunyan Zhang for her meticulous technical support throughout the preparation of this manuscript.

Author information

Author notes
  1. These authors contributed equally: Stephen J. Forman, Xiuli Wang.

Authors and Affiliations

  1. Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, Beckman Research Institute, City of Hope, Duarte, CA, USA

    Lior Goldberg, Eric R. Haas, Jiaqi Wu, Bryan Garcia, Ryan Urak, Vibhuti Vyas, Ruby Espinosa, Tamara Munoz, Shirley Bierkatz, Jamie R. Wagner, Jinny Paul, Mary C. Clark, Dat Ngo, Ibrahim Aldoss, Stephen J. Forman & Xiuli Wang

  2. Department of Pediatrics, City of Hope, Duarte, CA, USA

    Lior Goldberg

  3. Integrated Mass Spectrometry Shared Resource, City of Hope, Duarte, CA, USA

    Khyatiben V. Pathak, Nathaniel P. Hansen & Patrick Pirrotte

  4. Early Detection and Prevention Division, Translational Genomics Research Institute, Phoenix, AZ, USA

    Khyatiben V. Pathak, Nathaniel P. Hansen & Patrick Pirrotte

  5. Division of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, CA, USA

    Jyotsana Singhal & James L. Figarola

  6. Core of Electron Microscopy, City of Hope, Duarte, CA, USA

    Ricardo Zerda Noriega & Zhuo Li

  7. Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada

    Dasol Wi, Erin Tanaka & Ramon Klein Geltink

  8. BC Children’s Hospital Research Institute, Vancouver, BC, Canada

    Dasol Wi, Erin Tanaka & Ramon Klein Geltink

  9. Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada

    Dasol Wi

  10. Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada

    Ramon Klein Geltink

  11. Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, BC, Canada

    Ramon Klein Geltink

  12. Integrative Genomics Core, City of Hope and Beckman Research Institute, Duarte, CA, USA

    Min-Hsuan Chen & Xiwei Wu

Authors
  1. Lior Goldberg
    View author publications

    Search author on:PubMed Google Scholar

  2. Eric R. Haas
    View author publications

    Search author on:PubMed Google Scholar

  3. Jiaqi Wu
    View author publications

    Search author on:PubMed Google Scholar

  4. Bryan Garcia
    View author publications

    Search author on:PubMed Google Scholar

  5. Ryan Urak
    View author publications

    Search author on:PubMed Google Scholar

  6. Vibhuti Vyas
    View author publications

    Search author on:PubMed Google Scholar

  7. Ruby Espinosa
    View author publications

    Search author on:PubMed Google Scholar

  8. Tamara Munoz
    View author publications

    Search author on:PubMed Google Scholar

  9. Shirley Bierkatz
    View author publications

    Search author on:PubMed Google Scholar

  10. Khyatiben V. Pathak
    View author publications

    Search author on:PubMed Google Scholar

  11. Nathaniel P. Hansen
    View author publications

    Search author on:PubMed Google Scholar

  12. Patrick Pirrotte
    View author publications

    Search author on:PubMed Google Scholar

  13. Jyotsana Singhal
    View author publications

    Search author on:PubMed Google Scholar

  14. James L. Figarola
    View author publications

    Search author on:PubMed Google Scholar

  15. Ricardo Zerda Noriega
    View author publications

    Search author on:PubMed Google Scholar

  16. Zhuo Li
    View author publications

    Search author on:PubMed Google Scholar

  17. Dasol Wi
    View author publications

    Search author on:PubMed Google Scholar

  18. Erin Tanaka
    View author publications

    Search author on:PubMed Google Scholar

  19. Ramon Klein Geltink
    View author publications

    Search author on:PubMed Google Scholar

  20. Min-Hsuan Chen
    View author publications

    Search author on:PubMed Google Scholar

  21. Xiwei Wu
    View author publications

    Search author on:PubMed Google Scholar

  22. Jamie R. Wagner
    View author publications

    Search author on:PubMed Google Scholar

  23. Jinny Paul
    View author publications

    Search author on:PubMed Google Scholar

  24. Mary C. Clark
    View author publications

    Search author on:PubMed Google Scholar

  25. Dat Ngo
    View author publications

    Search author on:PubMed Google Scholar

  26. Ibrahim Aldoss
    View author publications

    Search author on:PubMed Google Scholar

  27. Stephen J. Forman
    View author publications

    Search author on:PubMed Google Scholar

  28. Xiuli Wang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

L.G., S.J.F., and X. Wang. conceived and conceptualized the study. L.G. performed the in vitro and in vivo experiments, analyzed the data, and wrote the manuscript. E.R.H. performed cytometry data analysis and generated plots. J.W., B.G., R.U., V.V., and R.E. performed in vitro and in vivo experiments and analyzed data. K.V.P., N.P.H., and P.P. performed and analyzed the mass spectrometry experiments. J.S. and J.L.F. performed the extracellular flux experiments. R.Z.N. and Z.L. performed transmission electron microscope experiments. D.W., E.T., and R.K.G. analyzed transmission electron microscope and mass spectrometry data. M.H.C. and X. Wu. analyzed RNA data. T.M., S.B., J.R.W., J.P., M.C.C., D.N., and I.A. collected and analyzed patient data. L.G. and M.C.C. wrote the original draft. All authors reviewed and edited the final manuscript. L.G., X. Wang., and S.J.F. provided resources, acquired funding, and supervised the study.

Corresponding authors

Correspondence to Lior Goldberg or Xiuli Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Supplementary Data 6

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldberg, L., Haas, E.R., Wu, J. et al. Immunometabolic determinants of long-term response in leukemia patients receiving CD19 CAR T cell therapy. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69857-4

Download citation

  • Received: 10 February 2025

  • Accepted: 06 February 2026

  • Published: 20 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69857-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer