Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Ligand-enabled next-generation glycosyl Stille cross-coupling for the stereospecific synthesis of sterically hindered aryl C-glycosides
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 February 2026

Ligand-enabled next-generation glycosyl Stille cross-coupling for the stereospecific synthesis of sterically hindered aryl C-glycosides

  • Bo Yang1,2 na1,
  • Shuai Chen1 na1,
  • Yang Han1,
  • Bo Zhu2,
  • Jialu Sang3,
  • Wangshu Zhu  ORCID: orcid.org/0000-0001-8379-22824,
  • Yingzi Li5 &
  • …
  • Feng Zhu  ORCID: orcid.org/0000-0003-3012-789X1,2 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Synthetic chemistry methodology
  • Stereochemistry

Abstract

Sterically hindered aryl C-glycosides are biologically important, yet their stereoselective synthesis remains challenging due to severe anomeric congestion. Here we report a next-generation, ligand-enabled, stereospecific Pd-catalyzed glycosyl cross-coupling that efficiently delivers sterically hindered aryl C-glycosides with exclusive anomeric control. Two underexplored biarylmonophosphine ligands, featuring P-bound 3,5-bis(trifluoromethyl)phenyl groups and methoxy or isopropoxy substituents at the 2’- and 6’-positions of the lower aryl ring, are uniquely effective for this challenging C-glycosylation. The scope and practicality of this next-generation Stille glycosylation are demonstrated in over 65 examples, including (un)protected sugars, deoxy sugars, and oligosaccharides. Crystallography reveals that bromide-bridged dimeric Pd(II) complexes as intrinsic features of diarylbiaryl monophosphine ligands, while natural bond orbital (NBO) analysis shows that subtle ligand electronics control the selectivity between β-methoxy elimination and C–C reductive elimination. This predictable, highly chemo- and stereoselective protocol expands the glycosylation toolbox, enables glycomimetic drug discovery, and informs rational ligand design.

Data availability

The authors declare that the data supporting the findings of this study, including experimental details and compound characterization, are available within the article and its Supplementary Information file. All data are available from the corresponding author upon request. Source data are provided with this paper. The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 2489072 (OA5), 2489073 (OA6), 2489150 (OA7), 2489074 (OA8). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Source data are provided with this paper.

References

  1. Bertozzi, C. R. & Kiessling, L. L. Chemical glycobiology. Science 291, 2357–2364 (2001).

    Google Scholar 

  2. Boltje, T. J., Buskas, T. & Boons, G.-J. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat. Chem. 1, 611–622 (2009).

    Google Scholar 

  3. Varki, A. Biological roles of glycans. Glycobiology 27, 3–49 (2017).

    Google Scholar 

  4. Ernst, B. & Magnani, J. L. From carbohydrate leads to glycomimetic drugs. Nat. Rev. Drug Discov. 8, 661–677 (2009).

    Google Scholar 

  5. Cao, X. et al. Carbohydrate-based drugs launched during 2000−2021. Acta Pharm. Sin. B 12, 3783–3821 (2022).

    Google Scholar 

  6. Yang, Y. & Yu, B. Recent advances in the chemical synthesis of c-glycosides. Chem. Rev. 117, 12281–12356 (2017).

    Google Scholar 

  7. Kitamura, K., Ando, Y., Matsumoto, T. & Suzuki, K. Total synthesis of aryl C-glycoside natural products: strategies and tactics. Chem. Rev. 118, 1495–1598 (2018).

    Google Scholar 

  8. Cai, X. et al. Total synthesis of the antitumor natural product polycarcin V and evaluation of its DNA binding profile. Org. Lett. 16, 2962–2965 (2014).

    Google Scholar 

  9. Buchanan, J. Progress in the chemistry of organic natural products. 243 (Springer, 1985).

  10. Goodwin, N. C. et al. Discovery of lx2761, a sodium-dependent glucose cotransporter 1 (sglt1) inhibitor restricted to the intestinal lumen, for the treatment of diabetes. J. Med. Chem. 60, 710–721 (2017).

    Google Scholar 

  11. Bililign, T., Griffith, B. R. & Thorson, J. S. Structure, activity, synthesis and biosynthesis of aryl-c-glycosides. Nat. Prod. Rep. 22, 742–760 (2005).

    Google Scholar 

  12. Manabe, S. & Ito, Y. The novel glycoprotein structure; C-mannosyl tryptophan. Trends Glycosci. Glycotechnol. 15, 181–196 (2003).

    Google Scholar 

  13. Traxler, P., Fritz, H., Fuhrer, H. & Richter, W. J. Papulacandins, a new family of antibiotics with antifungal activity. Structures of papulacandins A, B, C and D. J. Antibiot. 33, 967–978 (1980).

    Google Scholar 

  14. de Oliveira, C. M. et al. Antinociceptive properties of bergenin. J. Nat. Prod. 74, 2062–2068 (2011).

    Google Scholar 

  15. Morimoto, M., Okubo, S., Tomita, F. & Marumo, H. Gilvocarcins, new antitumor antibiotics 3. Antitumor activity. J. Antibiot. 34, 701–707 (1981).

    Google Scholar 

  16. Lyu, Y. S., Hong, S., Lee, S. E., Cho, B. Y. & Park, C.-Y. Efficacy and safety of enavogliflozin vs. Dapagliflozin as add-on therapy in patients with type 2 diabetes mellitus based on renal function: a pooled analysis of two randomized controlled trials. Cardiovasc. Diabetol. 23, 71 (2024).

    Google Scholar 

  17. Cañeque, T. et al. Synthesis of marmycin a and investigation into its cellular activity. Nat. Chem. 7, 744–751 (2015).

    Google Scholar 

  18. Bokor, E. et al. C-Glycopyranosyl arenes and hetarenes: synthetic methods and bioactivity focused on antidiabetic potential. Chem. Rev. 117, 1687–1764 (2017).

    Google Scholar 

  19. Hocek, M. C. -Nucleosides: synthetic strategies and biological applications. Chem. Rev. 109, 6729–6764 (2009).

    Google Scholar 

  20. Liao, H., Ma, J., Yao, H. & Liu, X.-W. Recent progress of C-glycosylation methods in the total synthesis of natural products and pharmaceuticals. Org. Biomol. Chem. 16, 1791–1806 (2018).

    Google Scholar 

  21. Ghouilem, J., de Robichon, M., Le Bideau, F., Ferry, A. & Messaoudi, S. Emerging organometallic methods for the synthesis of C-branched (hetero)aryl, alkenyl, and alkyl glycosides: C−H functionalization and dual photoredox approaches. Chem. Eur. J. 27, 491–511 (2021).

    Google Scholar 

  22. Guo, H. & Loh, C. C. J. Enhanced selectivity of chalcogen bonding over halogen bonding catalyzed C-glycosylation through differentiated intermediate activation. Angew. Chem. Int. Ed. n/a, e17553

  23. Loh, C. C. J. Catalytic strategies for stereoselective carbohydrate synthesis: Emerging concepts for accessing challenging glycosides. Angew. Chem. Int. Ed. 64, e202514167 (2025).

    Google Scholar 

  24. Mahling, J.-A. & Schmidt, R. R. Aryl c-glycosides from O-glycosyltrichloroacetimidates and phenol derivatives with trimethylsilyl trifluoromethanesulfonate (tmsotf) as the catalyst. Synthesis 1993, 325–328 (1993).

    Google Scholar 

  25. G Dos Santos et al. Fries-type reactions for the C-glycosylation of phenols. Curr. Org. Chem. 15, 128–148 (2011).

    Google Scholar 

  26. Guo, H., Kirchhoff, J.-L., Strohmann, C., Grabe, B. & Loh, C. C. J. Exploiting π and chalcogen interactions for the β-selective glycosylation of indoles through glycal conformational distortion. Angew. Chem. Int. Ed. 63, e202316667 (2024).

    Google Scholar 

  27. Sebastian, A. T. & Loh, C. C. J. Emerging capabilities of nonclassical noncovalent interactions and asymmetric catalysis in stereoselective glycosylations and carbohydrate functionalizations. Acc. Chem. Res. 58, 2124–2144 (2025).

    Google Scholar 

  28. Xu, L.-Y., Fan, N.-L. & Hu, X.-G. Recent development in the synthesis of C-glycosides involving glycosyl radicals. Org. Biomol. Chem. 18, 5095–5109 (2020).

    Google Scholar 

  29. Shang, W. & Niu, D. Radical pathway glycosylation empowered by bench-stable glycosyl donors. Acc. Chem. Res. 56, 2473–2488 (2023).

    Google Scholar 

  30. Jiang, Y., Zhang, Y., Lee, B. C. & Koh, M. J. Diversification of glycosyl compounds via glycosyl radicals. Angew. Chem. Int. Ed. 62, e202305138 (2023).

    Google Scholar 

  31. Chen, A., Yang, B., Zhou, Z. & Zhu, F. Recent advances in transition-metal-catalyzed glycosyl cross-coupling reactions. Chem. Catal. 2, 3430–3470 (2022).

    Google Scholar 

  32. Chen, A. et al. Recent advances in glycosylation involving novel anomeric radical precursors. J. Carbohydr. Chem. 40, 361–400 (2021).

    Google Scholar 

  33. Chen, A., Cheng, G. & Zhu, F. Recent advances in stereoselective synthesis of non-classical glycosides. Tetrahedron Chem. 9, 100068 (2024).

    Google Scholar 

  34. Shang, W., Shi, R. & Niu, D. C-Glycoside synthesis enabled by nickel catalysis. Chin. J. Chem. 41, 2217–2236 (2023).

    Google Scholar 

  35. Zhu, F., O’Neill, S., Rodriguez, J. & Walczak, M. A. Rethinking carbohydrate synthesis: Stereoretentive reactions of anomeric stannanes. Chem. Eur. J. 25, 3147–3155 (2019).

    Google Scholar 

  36. Zhu, F., Yang, T. & Walczak, M. A. Glycosyl stille cross-coupling with anomeric nucleophiles–a general solution to a long-standing problem of stereocontrolled synthesis of C-glycosides. Synlett 28, 1510–1516 (2017).

    Google Scholar 

  37. Wei, Y., Lin, L. Q. H., Lee, B. C. & Koh, M. J. Recent advances in first-row transition metal-catalyzed reductive coupling reactions for π-bond functionalization and C-glycosylation. Acc. Chem. Res. 56, 3292–3312 (2023).

    Google Scholar 

  38. Wang, Q., Lee, B. C., Song, N. & Koh, M. J. Stereoselective C-aryl glycosylation by catalytic cross-coupling of heteroaryl glycosyl sulfones. Angew. Chem. Int. Ed. 62, e202301081 (2023).

    Google Scholar 

  39. Zhang, W. et al. Modular and practical 1,2-aryl(alkenyl) heteroatom functionalization of alkenes through iron/photoredox dual catalysis. Angew. Chem. Int. Ed. 62, e202310978 (2023).

    Google Scholar 

  40. Wang, Q. et al. Visible light activation enables desulfonylative cross-coupling of glycosyl sulfones. Nat. Synth. 1, 967–974 (2022).

    Google Scholar 

  41. Wang, Q. et al. Iron-catalysed reductive cross-coupling of glycosyl radicals for the stereoselective synthesis of C-glycosides. Nat. Synth. 1, 235–244 (2022).

    Google Scholar 

  42. Jiang, Y. et al. Direct radical functionalization of native sugars. Nature 631, 319–327 (2024).

    Google Scholar 

  43. Wang, Q., Duan, J., Tang, P., Chen, G. & He, G. Synthesis of non-classical heteroaryl C-glycosides via minisci-type alkylation of n-heteroarenes with 4-glycosyl-dihydropyridines. Sci. China Chem. 63, 1613–1618 (2020).

    Google Scholar 

  44. Liu, J. & Gong, H. Stereoselective preparation of α-C-vinyl/aryl glycosides via nickel-catalyzed reductive coupling of glycosyl halides with vinyl and aryl halides. Org. Lett. 20, 7991–7995 (2018).

    Google Scholar 

  45. Adak, L. et al. Synthesis of aryl C-glycosides via iron-catalyzed cross coupling of halosugars: Stereoselective anomeric arylation of glycosyl radicals. J. Am. Chem. Soc. 139, 10693–10701 (2017).

    Google Scholar 

  46. Gong, H. & Gagné, M. R. Diastereoselective Ni-catalyzed Negishi cross-coupling approach to saturated, fully oxygenated C-alkyl and C-aryl glycosides. J. Am. Chem. Soc. 130, 12177–12183 (2008).

    Google Scholar 

  47. Nicolas, L. et al. Diastereoselective metal-catalyzed synthesis of C-aryl and C-vinyl glycosides. Angew. Chem. Int. Ed. 51, 11101–11104 (2012).

    Google Scholar 

  48. Mao, R. et al. Synthesis of C-mannosylated glycopeptides enabled by Ni-catalyzed photoreductive cross-coupling reactions. J. Am. Chem. Soc. 143, 12699–12707 (2021).

    Google Scholar 

  49. Mou, Z.-D., Wang, J.-X., Zhang, X. & Niu, D. Stereoselective preparation of C-aryl glycosides via visible-light-induced nickel-catalyzed reductive cross-coupling of glycosyl chlorides and aryl bromides. Adv. Synth. Catal. 363, 3025–3029 (2021).

    Google Scholar 

  50. Wei, Y., Ben-zvi, B. & Diao, T. Diastereoselective synthesis of aryl C-glycosides from glycosyl esters via C-O bond homolysis. Angew. Chem. Int. Ed. 133, 9519–9524 (2021).

    Google Scholar 

  51. Li, Y. et al. Chemoselective and diastereoselective synthesis of C-aryl nucleoside analogues by nickel-catalyzed cross-coupling of furanosyl acetates with aryl iodides. Angew. Chem. Int. Ed. 61, e202110391 (2022).

    Google Scholar 

  52. Miller, E. M. & Walczak, M. A. Light-mediated cross-coupling of anomeric trifluoroborates. Org. Lett. 23, 4289–4293 (2021).

    Google Scholar 

  53. Zhang, C. et al. Direct synthesis of unprotected aryl C-glycosides by photoredox Ni-catalysed cross-coupling. Nat. Synth. 2, 251–260 (2023).

    Google Scholar 

  54. Gan, Y. et al. Zirconaaziridine-mediated Ni-catalyzed diastereoselective C(sp2)-glycosylation. J. Am. Chem. Soc. 146, 16753–16763 (2024).

    Google Scholar 

  55. Lyu, M.-Y., Jacobo, S. A. & Brown, M. K. Diverse synthesis of C-glycosides by stereoselective Ni-catalyzed carboboration of glycals. J. Am. Chem. Soc. 146, 18866–18872 (2024).

    Google Scholar 

  56. Wu, J. et al. Remote C−H glycosylation by ruthenium(II) catalysis: Modular assembly of meta-C-aryl glycosides. Angew. Chem. Int. Ed. 61, e202208620 (2022).

    Google Scholar 

  57. Gou, X.-Y. et al. Ruthenium-catalyzed stereo- and site-selective ortho- and meta-C−H glycosylation and mechanistic studies. Angew. Chem. Int. Ed. 61, e202205656 (2022).

    Google Scholar 

  58. Wu, X. et al. Stereoselective construction of multifunctional C-glycosides enabled by nickel-catalyzed tandem borylation/glycosylation. J. Am. Chem. Soc. 146, 22413–22423 (2024).

    Google Scholar 

  59. Zhu, F. et al. Glycosyl cross-coupling of anomeric nucleophiles: Scope, mechanism, and applications in the synthesis of aryl C-glycosides. J. Am. Chem. Soc. 139, 17908–17922 (2017).

    Google Scholar 

  60. Zhu, F., Rourke, M. J., Yang, T. Y., Rodriguez, J. & Walczak, M. A. Highly stereospecific cross-coupling reactions of anomeric stannanes for the synthesis of C-aryl glycosides. J. Am. Chem. Soc. 138, 12049–12052 (2016).

    Google Scholar 

  61. Yi, D., Zhu, F. & Walczak, M. A. Stereoretentive intramolecular glycosyl cross-coupling: Development, scope, and kinetic isotope effect study. Org. Lett. 20, 4627–4631 (2018).

    Google Scholar 

  62. Dumoulin, A., Matsui, J. K., Gutiérrez-Bonet, Á & Molander, G. A. Synthesis of non-classical arylated C-saccharides through nickel/photoredox dual catalysis. Angew. Chem. Int. Ed. 57, 6614–6618 (2018).

    Google Scholar 

  63. Liu, J., Lei, C. & Gong, H. Nickel-catalyzed reductive coupling of glucosyl halides with aryl/vinyl halides enabling β-selective preparation of C-aryl/vinyl glucosides. Sci. China Chem. 62, 1492–1496 (2019).

    Google Scholar 

  64. Cheng, G. et al. Pd-catalyzed stereospecific glycosyl cross-coupling of reversed anomeric stannanes for modular synthesis of nonclassical C-glycosides. Precis. Chem. 2, 587-599 (2024).

  65. Martin, R. & Buchwald, S. L. Palladium-catalyzed Suzuki−Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc. Chem. Res. 41, 1461–1473 (2008).

    Google Scholar 

  66. Ruiz-Castillo, P. & Buchwald, S. L. Applications of palladium-catalyzed C–N cross-coupling reactions. Chem. Rev. 116, 12564–12649 (2016).

    Google Scholar 

  67. Hartwig, J. F. Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc. Chem. Res. 41, 1534–1544 (2008).

    Google Scholar 

  68. Cherney, A. H., Kadunce, N. T. & Reisman, S. E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C–C bonds. Chem. Rev. 115, 9587–9652 (2015).

    Google Scholar 

  69. Jana, R., Pathak, T. P. & Sigman, M. S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 111, 1417–1492 (2011).

    Google Scholar 

  70. Li, L., Wang, C.-Y., Huang, R. & Biscoe, M. R. Stereoretentive Pd-catalysed Stille cross-coupling reactions of secondary alkyl azastannatranes and aryl halides. Nat. Chem. 5, 607–612 (2013).

    Google Scholar 

  71. Espinet, P. & Echavarren, A. M. The mechanisms of the Stille reaction. Angew. Chem. Int. Ed. 43, 4704–4734 (2004).

    Google Scholar 

  72. Cordovilla, C., Bartolomé, C., Martínez-Ilarduya, J. M. & Espinet, P. The Stille reaction, 38 years later. ACS Catal. 5, 3040–3053 (2015).

    Google Scholar 

  73. Ma, X. et al. A general approach to stereospecific cross-coupling reactions of nitrogen-containing stereocenters. Chem 6, 781–791 (2020).

    Google Scholar 

  74. Hicks, J. D., Hyde, A. M., Cuezva, A. M. & Buchwald, S. L. Pd-Catalyzed N-arylation of secondary acyclic amides: Catalyst development, scope, and computational study. J. Am. Chem. Soc. 131, 16720–16734 (2009).

    Google Scholar 

  75. Arrechea, P. L. & Buchwald, S. L. Biaryl phosphine based Pd(II) amido complexes: The effect of ligand structure on reductive elimination. J. Am. Chem. Soc. 138, 12486–12493 (2016).

    Google Scholar 

  76. Hartwig, J. F. Carbon–heteroatom bond formation catalysed by organometallic complexes. Nature 455, 314–322 (2008).

    Google Scholar 

  77. Proutiere, F., Aufiero, M. & Schoenebeck, F. Reactivity and stability of dinuclear Pd(I) complexes: Studies on the active catalytic species, insights into precatalyst activation and deactivation, and application in highly selective cross-coupling reactions. J. Am. Chem. Soc. 134, 606–612 (2012).

    Google Scholar 

  78. Vinogradova, E. V., Zhang, C., Spokoyny, A. M., Pentelute, B. L. & Buchwald, S. L. Organometallic palladium reagents for cysteine bioconjugation. Nature 526, 687–691 (2015).

    Google Scholar 

  79. McCann, S. D., Reichert, E. C., Arrechea, P. L. & Buchwald, S. L. Development of an aryl amination catalyst with broad scope guided by consideration of catalyst stability. J. Am. Chem. Soc. 142, 15027–15037 (2020).

    Google Scholar 

  80. Maiti, D., Fors, B. P., Henderson, J. L., Nakamura, Y. & Buchwald, S. L. Palladium-catalyzed coupling of functionalized primary and secondary amines with aryl and heteroaryl halides: Two ligands suffice in most cases. Chem. Sci. 2, 57–68 (2011).

    Google Scholar 

  81. Feng, K. et al. Development of a deactivation-resistant dialkylbiarylphosphine ligand for Pd-catalyzed arylation of secondary amines. J. Am. Chem. Soc. 146, 26609–26615 (2024).

    Google Scholar 

  82. Fors, B. P., Watson, D. A., Biscoe, M. R. & Buchwald, S. L. A highly active catalyst for Pd-catalyzed amination reactions: Cross-coupling reactions using aryl mesylates and the highly selective monoarylation of primary amines using aryl chlorides. j. Am. Chem. Soc. 130, 13552–13554 (2008).

    Google Scholar 

  83. Olsen, E. P. K., Arrechea, P. L. & Buchwald, S. L. Mechanistic insight leads to a ligand which facilitates the palladium-catalyzed formation of 2-(hetero)arylaminooxazoles and 4-(hetero)arylaminothiazoles. Angew. Chem. Int. Ed. 56, 10569–10572 (2017).

    Google Scholar 

  84. Wang, S. et al. C–H Glycosylation of native carboxylic acids: Discovery of antidiabetic SGLT-2 inhibitors. ACS Cent. Sci. 9, 1129–1139 (2023).

    Google Scholar 

  85. Mondal, H. et al. Late-stage halogenation of peptides, drugs and (hetero)aromatic compounds with a nucleophilic hydrazide catalyst. Angew. Chem. Int. Ed. 62, e202312597 (2023).

    Google Scholar 

  86. Wang, H., Zhou, C., Gao, Z., Li, S. & Li, G. Palladium-catalyzed enantioselective isodesmic C−H iodination of phenylacetic Weinreb amides. Angew. Chem. Int. Ed. 62, e202300905 (2023).

    Google Scholar 

  87. Wang, W. et al. Catalytic electrophilic halogenation of arenes with electron-withdrawing substituents. J. Am. Chem. Soc. 144, 13415–13425 (2022).

    Google Scholar 

  88. Vankar, Y. D. & Linker, T. Recent developments in the synthesis of 2-C-branched and 1,2-annulated carbohydrates. Eur. J. Org. Chem. 2015, 7633–7642 (2015).

    Google Scholar 

  89. Pandey, R. P., Tiwari, B., Ansari, M. & Hussain, N. Lewis acid-mediated domino glycosylation/cyclization of substituted glycals: a stereoselective route toward the synthesis of 1,2-annulated c-glycosides. Org. Lett. 27, 2924–2929 (2025).

    Google Scholar 

  90. Kwak, S. H. et al. Efficacy and safety of enavogliflozin, a novel SGLT2 inhibitor, in korean people with type 2 diabetes: a 24-week, multicentre, randomized, double-blind, placebo-controlled, phase III trial. Diab. Obes. Metab. 25, 1865–1873 (2023).

    Google Scholar 

Download references

Acknowledgements

We acknowledge support by the National Key Research & Development Program of China (Grant No. 2023YFA1508800) to F.Z., the National Natural Science Foundation of China (Grant No. 22301178, and 22577072) to F.Z., the National Natural Science Foundation of China (Grant No. 22301180) to B.Y., the Fundamental Research Funds for the Central Universities (Grant No. 25×010202131) to F.Z., Shanghai Municipal Science and Technology Major Project to F.Z., the Open Grant from the Pingyuan Laboratory (2023PY-OP-0102) to F.Z., the Open Fund from the State Key Laboratory of Antiviral Drugs (Grant No. SKLAD-2024-0103) to B.Y., the Foundation of National Facility for Translational Medicine (Shanghai) to F.Z. We sincerely thank Prof. Feliu Maseras (Institute of Chemical Research of Catalonia, ICIQ) for the valuable guidance and advice on the computational studies. We also thank Guoqiang Cheng for assistance in contributing reversed anomeric stannanes.

Author information

Author notes
  1. These authors contributed equally: Bo Yang, Shuai Chen.

Authors and Affiliations

  1. Frontiers Science Center for Transformative Molecules (FSCTM), Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China

    Bo Yang, Shuai Chen, Yang Han & Feng Zhu

  2. Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Henan Normal University, Xinxiang, Henan, PR China

    Bo Yang, Bo Zhu & Feng Zhu

  3. School of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China

    Jialu Sang

  4. Department of Diagnostic and Interventional Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China

    Wangshu Zhu

  5. Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain

    Yingzi Li

Authors
  1. Bo Yang
    View author publications

    Search author on:PubMed Google Scholar

  2. Shuai Chen
    View author publications

    Search author on:PubMed Google Scholar

  3. Yang Han
    View author publications

    Search author on:PubMed Google Scholar

  4. Bo Zhu
    View author publications

    Search author on:PubMed Google Scholar

  5. Jialu Sang
    View author publications

    Search author on:PubMed Google Scholar

  6. Wangshu Zhu
    View author publications

    Search author on:PubMed Google Scholar

  7. Yingzi Li
    View author publications

    Search author on:PubMed Google Scholar

  8. Feng Zhu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

F.Z. conceived and supervised the project. B.Y., S.C., Y.H., and J.S. carried out the experiments and analyzed the data. Y.L. conducted the DFT calculations and data analysis. W.Z. and B.Z. provided valuable suggestions. F.Z., B.Y., and Y.L. discussed the results and wrote the manuscript with input from all authors. All authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Wangshu Zhu, Yingzi Li or Feng Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Nazar Hussain, Charles C. J. Loh and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Chen, S., Han, Y. et al. Ligand-enabled next-generation glycosyl Stille cross-coupling for the stereospecific synthesis of sterically hindered aryl C-glycosides. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69859-2

Download citation

  • Received: 29 October 2025

  • Accepted: 11 February 2026

  • Published: 21 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69859-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing