Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Small heterodimer partner protects against osteoarthritis by inhibiting IKKβ/NF-κB-mediated matrix-degrading enzymes in chondrocytes
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 February 2026

Small heterodimer partner protects against osteoarthritis by inhibiting IKKβ/NF-κB-mediated matrix-degrading enzymes in chondrocytes

  • Eun-Jung Kang  ORCID: orcid.org/0009-0006-0144-481X1,
  • Jung-Ran Noh1,
  • Jae-Hoon Kim2,
  • Ji Ah Park3,
  • Jeong-Pin Ahn1,4,
  • Min-Chan Kim  ORCID: orcid.org/0009-0007-8588-76571,4,
  • Jung Hyeon Choi1,
  • Young-Keun Choi1,
  • In-Bok Lee1,
  • Dong-Hee Choi1,
  • Yun Jeong Seo1,
  • Yoon Seok Jung5,
  • Kyoung-Shim Kim  ORCID: orcid.org/0000-0001-6636-83591,4,
  • Jung Hwan Hwang1,4,
  • Yong-Bum Kim6,
  • Jong-Soo Lee  ORCID: orcid.org/0000-0001-5119-07117,
  • Bon Jeong Ku  ORCID: orcid.org/0000-0002-3414-89493,
  • Jin-Ok Jeong  ORCID: orcid.org/0000-0003-0763-47543,
  • Hueng-Sik Choi  ORCID: orcid.org/0000-0002-3163-15725,
  • Jinhyun Kim  ORCID: orcid.org/0000-0001-5235-26123,
  • Yong-Hoon Kim  ORCID: orcid.org/0000-0002-0682-22381,4 &
  • …
  • Chul-Ho Lee  ORCID: orcid.org/0000-0002-6996-57461,4 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Chondrocytes
  • Osteoarthritis

Abstract

Osteoarthritis (OA), characterised by cartilage destruction, is the most common degenerative joint disease. However, no effective disease-modifying OA therapy is currently available. Herein, we report orphan nuclear receptor small heterodimer partner (SHP, NR0B2) as a novel catabolic regulator of OA pathogenesis. NR0B2 expression was markedly downregulated in cartilage from patients with OA. Global or chondrocyte-specific Nr0b2 deletion in male mice exacerbated OA-related pain and structural changes following surgical destabilization of the medial meniscus, accompanied by increased matrix metalloproteinase (MMP)-3 and MMP-13 expression in chondrocytes. Conversely, adeno-associated virus-mediated Nr0b2 overexpression in knee joints of male mice protected against accelerated knee OA caused by Nr0b2 deficiency. Mechanistically, NR0B2 inhibited IKKβ kinase activity via IKK complex interaction, downregulating NF-κB signalling. Our results demonstrate that NR0B2 has a chondroprotective role in OA progression by regulating matrix-degrading enzymes in an IKKβ/NF-κB-dependent manner, and gene therapy targeting Nr0b2 may be a promising therapeutic strategy for OA.

Data availability

All data generated and/or analyzed during this study are included in this published article and its Supplementary Information/Source Data files and are available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Hunter, D. J., March, L. & Chew, M. Osteoarthritis in 2020 and beyond: a Lancet Commission. Lancet 396, 1711–1712 (2020).

    Google Scholar 

  2. Martel-Pelletier, J. et al. Osteoarthritis. Nat. Rev. Dis. Prim. 2, 16072 (2016).

    Google Scholar 

  3. Goldring, S. R. & Goldring, M. B. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk. Nat. Rev. Rheumatol. 12, 632–644 (2016).

    Google Scholar 

  4. Collaborators, G. B. D. O. Global, regional, and national burden of osteoarthritis, 1990-2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 5, e508–e522 (2023).

    Google Scholar 

  5. Latourte, A., Kloppenburg, M. & Richette, P. Emerging pharmaceutical therapies for osteoarthritis. Nat. Rev. Rheumatol. 16, 673–688 (2020).

    Google Scholar 

  6. Siddiq, M. A. B., Oo, W. M. & Hunter, D. J. New therapeutic strategies in osteoarthritis. Jt. Bone Spine 91, 105739 (2024).

    Google Scholar 

  7. Peng, Z. et al. The regulation of cartilage extracellular matrix homeostasis in joint cartilage degeneration and regeneration. Biomaterials 268, 120555 (2021).

    Google Scholar 

  8. Sengprasert, P., Kamenkit, O., Tanavalee, A. & Reantragoon, R. The immunological facets of chondrocytes in osteoarthritis: a narrative review. J. Rheumatol. https://doi.org/10.3899/jrheum.2023-0816 (2023).

  9. Wei, G. et al. Risk of metabolic abnormalities in osteoarthritis: a new perspective to understand its pathological mechanisms. Bone Res. 11, 63 (2023).

    Google Scholar 

  10. Arra, M. et al. LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis. Nat. Commun. 11, 3427 (2020).

    Google Scholar 

  11. Wojdasiewicz, P., Poniatowski, L. A. & Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014, 561459 (2014).

    Google Scholar 

  12. Kapoor, M., Martel-Pelletier, J., Lajeunesse, D., Pelletier, J. P. & Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 7, 33–42 (2011).

    Google Scholar 

  13. Chow, Y. Y. & Chin, K. Y. The role of inflammation in the pathogenesis of osteoarthritis. Mediators Inflamm. 2020, 8293921 (2020).

    Google Scholar 

  14. Olivotto, E., Otero, M., Marcu, K. B. & Goldring, M. B. Pathophysiology of osteoarthritis: canonical NF-kappaB/IKKbeta-dependent and kinase-independent effects of IKKalpha in cartilage degradation and chondrocyte differentiation. RMD Open 1, e000061 (2015).

    Google Scholar 

  15. Hinz, M. & Scheidereit, C. The IkappaB kinase complex in NF-kappaB regulation and beyond. EMBO Rep. 15, 46–61 (2014).

    Google Scholar 

  16. Choi, M. C., Jo, J., Park, J., Kang, H. K. & Park, Y. NF-kappaB signaling pathways in osteoarthritic cartilage destruction. Cells 8, https://doi.org/10.3390/cells8070734 (2019).

  17. Rigoglou, S. & Papavassiliou, A. G. The NF-kappaB signalling pathway in osteoarthritis. Int. J. Biochem. Cell Biol. 45, 2580–2584 (2013).

    Google Scholar 

  18. Guo, Q. et al. NF-kappaB in biology and targeted therapy: new insights and translational implications. Signal Transduct. Target Ther. 9, 53 (2024).

    Google Scholar 

  19. Giridharan, S. & Srinivasan, M. Mechanisms of NF-kappaB p65 and strategies for therapeutic manipulation. J. Inflamm. Res. 11, 407–419 (2018).

    Google Scholar 

  20. Mitchell, J. P. & Carmody, R. J. NF-kappaB and the transcriptional control of inflammation. Int. Rev. Cell Mol. Biol. 335, 41–84 (2018).

    Google Scholar 

  21. Mulero, M. C., Wang, V. Y., Huxford, T. & Ghosh, G. Genome reading by the NF-kappaB transcription factors. Nucleic Acids Res. 47, 9967–9989 (2019).

    Google Scholar 

  22. Roman-Blas, J. A. & Jimenez, S. A. NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthr. Cartil. 14, 839–848 (2006).

    Google Scholar 

  23. Yan, H. et al. Suppression of NF-kappaB activity via nanoparticle-based siRNA delivery alters early cartilage responses to injury. Proc. Natl. Acad. Sci. USA. 113, E6199–E6208 (2016).

    Google Scholar 

  24. Catheline, S. E. et al. IKKbeta-NF-kappaB signaling in adult chondrocytes promotes the onset of age-related osteoarthritis in mice. Sci. Signal 14, eabf3535 (2021).

    Google Scholar 

  25. Lee, Y. S., Chanda, D., Sim, J., Park, Y. Y. & Choi, H. S. Structure and function of the atypical orphan nuclear receptor small heterodimer partner. Int. Rev. Cytol. 261, 117–158 (2007).

    Google Scholar 

  26. Zhang, Y., Hagedorn, C. H. & Wang, L. Role of nuclear receptor SHP in metabolism and cancer. Biochim. Biophys. Acta 1812, 893–908 (2011).

    Google Scholar 

  27. Garruti, G. et al. A pleiotropic role for the orphan nuclear receptor small heterodimer partner in lipid homeostasis and metabolic pathways. J. Lipids 2012, 304292 (2012).

    Google Scholar 

  28. Yuk, J. M., Jin, H. S. & Jo, E. K. Small heterodimer partner and innate immune regulation. Endocrinol. Metab. 31, 17–24 (2016).

    Google Scholar 

  29. Yuk, J. M. et al. The orphan nuclear receptor SHP acts as a negative regulator in inflammatory signaling triggered by Toll-like receptors. Nat. Immunol. 12, 742–751 (2011).

    Google Scholar 

  30. Zou, A. et al. Hepatocyte nuclear receptor SHP suppresses inflammation and fibrosis in a mouse model of nonalcoholic steatohepatitis. J. Biol. Chem. 293, 8656–8671 (2018).

    Google Scholar 

  31. Samvelyan, H. J., Hughes, D., Stevens, C. & Staines, K. A. Models of osteoarthritis: relevance and new insights. Calcif. Tissue Int. 109, 243–256 (2021).

    Google Scholar 

  32. Nagira, K. et al. Histological scoring system for subchondral bone changes in murine models of joint aging and osteoarthritis. Sci. Rep. 10, 10077 (2020).

    Google Scholar 

  33. Wan, J. et al. Matrix metalloproteinase 3: a promoting and destabilizing factor in the pathogenesis of disease and cell differentiation. Front. Physiol. 12, 663978 (2021).

    Google Scholar 

  34. Little, C. B. et al. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 60, 3723–3733 (2009).

    Google Scholar 

  35. Glasson, S. S. et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434, 644–648 (2005).

    Google Scholar 

  36. Jenei-Lanzl, Z., Meurer, A. & Zaucke, F. Interleukin-1beta signaling in osteoarthritis - chondrocytes in focus. Cell Signal 53, 212–223 (2019).

    Google Scholar 

  37. Latourte, A. et al. Systemic inhibition of IL-6/Stat3 signalling protects against experimental osteoarthritis. Ann. Rheum. Dis. 76, 748–755 (2017).

    Google Scholar 

  38. Sherwood, J. C., Bertrand, J., Eldridge, S. E. & Dell’Accio, F. Cellular and molecular mechanisms of cartilage damage and repair. Drug Discov. Today 19, 1172–1177 (2014).

    Google Scholar 

  39. Yamamoto, K., Wilkinson, D. & Bou-Gharios, G. Targeting dysregulation of metalloproteinase activity in osteoarthritis. Calcif. Tissue Int. 109, 277–290 (2021).

    Google Scholar 

  40. Salvat, C., Pigenet, A., Humbert, L., Berenbaum, F. & Thirion, S. Immature murine articular chondrocytes in primary culture: a new tool for investigating cartilage. Osteoarthr. Cartil. 13, 243–249 (2005).

    Google Scholar 

  41. Ahamed, F., Eppler, N., Jones, E., He, L. & Zhang, Y. Small heterodimer partner modulates macrophage differentiation during innate immune response through the regulation of peroxisome proliferator activated receptor gamma, mitogen-activated protein kinase, and nuclear factor kappa B pathways. Biomedicines 11, https://doi.org/10.3390/biomedicines11092403 (2023).

  42. Shahoei, S. H. et al. Small heterodimer partner regulates dichotomous T cell expansion by macrophages. Endocrinology 160, 1573–1589 (2019).

    Google Scholar 

  43. Israel, A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb. Perspect. Biol. 2, a000158 (2010).

    Google Scholar 

  44. Zhang, W., Ouyang, H., Dass, C. R. & Xu, J. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res. 4, 15040 (2016).

    Google Scholar 

  45. Sonoda, J., Pei, L. & Evans, R. M. Nuclear receptors: decoding metabolic disease. FEBS Lett. 582, 2–9 (2008).

    Google Scholar 

  46. Sun, M. M., Beier, F. & Ratneswaran, A. Nuclear receptors as potential drug targets in osteoarthritis. Curr. Opin. Pharm. 40, 81–86 (2018).

    Google Scholar 

  47. Culley, K. L. et al. Mouse models of osteoarthritis: surgical model of posttraumatic osteoarthritis induced by destabilization of the medial meniscus. Methods Mol. Biol. 1226, 143–173 (2015).

    Google Scholar 

  48. Yang, C. S. et al. Small heterodimer partner interacts with NLRP3 and negatively regulates activation of the NLRP3 inflammasome. Nat. Commun. 6, 6115 (2015).

    Google Scholar 

  49. Liu, S. et al. Cartilage tissue engineering: from proinflammatory and anti‑inflammatory cytokines to osteoarthritis treatments (Review). Mol. Med. Rep. 25, https://doi.org/10.3892/mmr.2022.12615 (2022).

  50. Egloff, C., Hugle, T. & Valderrabano, V. Biomechanics and pathomechanisms of osteoarthritis. Swiss Med. Wkly 142, w13583 (2012).

    Google Scholar 

  51. Saito, T. & Tanaka, S. Molecular mechanisms underlying osteoarthritis development: notch and NF-kappaB. Arthritis Res. Ther. 19, 94 (2017).

    Google Scholar 

  52. Murahashi, Y. et al. Intra-articular administration of IkappaBalpha kinase inhibitor suppresses mouse knee osteoarthritis via downregulation of the NF-kappaB/HIF-2alpha axis. Sci. Rep. 8, 16475 (2018).

    Google Scholar 

  53. Cao, Y. et al. Decreased miR-214-3p activates NF-kappaB pathway and aggravates osteoarthritis progression. EBioMedicine 65, 103283 (2021).

    Google Scholar 

  54. Moon, J. et al. Small heterodimer partner-interacting leucine zipper protein suppresses pain and cartilage destruction in an osteoarthritis model by modulating the AMPK/STAT3 signaling pathway. Arthritis Res. Ther. 26, 199 (2024).

    Google Scholar 

  55. Sadasivam, N., Radhakrishnan, K., Choi, H. S. & Kim, D. K. Emerging role of SMILE in liver metabolism. Int. J. Mol. Sci. 24, https://doi.org/10.3390/ijms24032907 (2023).

  56. Xie, Y. B. et al. SMILE, a new orphan nuclear receptor SHP-interacting protein, regulates SHP-repressed estrogen receptor transactivation. Biochem. J. 416, 463–473 (2008).

    Google Scholar 

  57. Huang, H. et al. Intra-articular drug delivery systems for osteoarthritis therapy: shifting from sustained release to enhancing penetration into cartilage. Drug Deliv. 29, 767–791 (2022).

    Google Scholar 

  58. Wang, J. H., Gessler, D. J., Zhan, W., Gallagher, T. L. & Gao, G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct. Target Ther. 9, 78 (2024).

    Google Scholar 

  59. Evans, C. H., Ghivizzani, S. C. & Robbins, P. D. Osteoarthritis gene therapy in 2022. Curr. Opin. Rheumatol. 35, 37–43 (2023).

    Google Scholar 

  60. Chen, Q. et al. Comparative intra-articular gene transfer of seven adeno-associated virus serotypes reveals that AAV2 mediates the most efficient transduction to mouse arthritic chondrocytes. PLoS ONE 15, e0243359 (2020).

    Google Scholar 

  61. Wang, L. et al. Redundant pathways for negative feedback regulation of bile acid production. Dev. Cell 2, 721–731 (2002).

    Google Scholar 

  62. Glasson, S. S., Blanchet, T. J. & Morris, E. A. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthr. Cartil. 15, 1061–1069 (2007).

    Google Scholar 

  63. Gardiner, M. D. et al. Transcriptional analysis of micro-dissected articular cartilage in post-traumatic murine osteoarthritis. Osteoarthr. Cartil. 23, 616–628 (2015).

    Google Scholar 

  64. Futami, I. et al. Isolation and characterization of multipotential mesenchymal cells from the mouse synovium. PLoS ONE 7, e45517 (2012).

    Google Scholar 

  65. Chermside-Scabbo, C. J. et al. A proteomics approach to study mouse long bones: examining baseline differences and mechanical loading-induced bone formation in young-adult and old mice. Aging 16, 12726–12768 (2024).

    Google Scholar 

  66. Jackson, M. T. et al. Depletion of protease-activated receptor 2 but not protease-activated receptor 1 may confer protection against osteoarthritis in mice through extracartilaginous mechanisms. Arthritis Rheumatol. 66, 3337–3348 (2014).

    Google Scholar 

  67. Glasson, S. S., Chambers, M. G., Van Den Berg, W. B. & Little, C. B. The OARSI histopathology initiative—recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthr. Cartil. 18, S17–S23 (2010).

    Google Scholar 

  68. Culley, K. L. et al. Mouse models of osteoarthritis: surgical model of post-traumatic osteoarthritis induced by destabilization of the medial meniscus. Methods Mol. Biol. 2221, 223–260 (2021).

    Google Scholar 

  69. Wang, X. et al. Comparison of the major cell populations among osteoarthritis, Kashin-Beck disease and healthy chondrocytes by single-cell RNA-seq analysis. Cell Death Dis. 12, 551 (2021).

    Google Scholar 

  70. He, B. et al. High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential. Arthritis Res. Ther. 16, 205 (2014).

    Google Scholar 

  71. Chen, L. et al. Preparation and characterization of biomimetic functional scaffold with gradient structure for osteochondral defect repair. Bioengineering 10, https://doi.org/10.3390/bioengineering10020213 (2023).

  72. Rigueur, D. & Lyons, K. M. Whole-mount skeletal staining. Methods Mol. Biol. 1130, 113–121 (2014).

    Google Scholar 

  73. Gosset, M., Berenbaum, F., Thirion, S. & Jacques, C. Primary culture and phenotyping of murine chondrocytes. Nat. Protoc. 3, 1253–1260 (2008).

    Google Scholar 

  74. Saeki, N. & Imai, Y. Isolation and culture of primary synovial macrophages and fibroblasts from murine arthritis tissue. J. Vis. Exp. https://doi.org/10.3791/65196 (2023).

  75. Zhao, J. et al. A protocol for the culture and isolation of murine synovial fibroblasts. Biomed. Rep. 5, 171–175 (2016).

    Google Scholar 

  76. Marino, S., Staines, K. A., Brown, G., Howard-Jones, R. A. & Adamczyk, M. Models of ex vivo explant cultures: applications in bone research. Bonekey Rep. 5, 818 (2016).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program (2023R1A2C3005244 to C.-H.L.), (RS-2024-00450466 to Y.-H.K.) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT, and by the KRIBB Research Initiative Program (KGM1312612).

Author information

Authors and Affiliations

  1. Laboratory Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea

    Eun-Jung Kang, Jung-Ran Noh, Jeong-Pin Ahn, Min-Chan Kim, Jung Hyeon Choi, Young-Keun Choi, In-Bok Lee, Dong-Hee Choi, Yun Jeong Seo, Kyoung-Shim Kim, Jung Hwan Hwang, Yong-Hoon Kim & Chul-Ho Lee

  2. Livestock Products Analysis Division, Division of Animal Health, Daejeon Metropolitan City Institute of Health and Environment, Daejeon, Republic of Korea

    Jae-Hoon Kim

  3. Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea

    Ji Ah Park, Bon Jeong Ku, Jin-Ok Jeong & Jinhyun Kim

  4. Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea

    Jeong-Pin Ahn, Min-Chan Kim, Kyoung-Shim Kim, Jung Hwan Hwang, Yong-Hoon Kim & Chul-Ho Lee

  5. School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea

    Yoon Seok Jung & Hueng-Sik Choi

  6. Center for Biomedical Diagnostic Research, Korea Institute of Toxicology (KIT), Daejeon, Republic of Korea

    Yong-Bum Kim

  7. College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea

    Jong-Soo Lee

Authors
  1. Eun-Jung Kang
    View author publications

    Search author on:PubMed Google Scholar

  2. Jung-Ran Noh
    View author publications

    Search author on:PubMed Google Scholar

  3. Jae-Hoon Kim
    View author publications

    Search author on:PubMed Google Scholar

  4. Ji Ah Park
    View author publications

    Search author on:PubMed Google Scholar

  5. Jeong-Pin Ahn
    View author publications

    Search author on:PubMed Google Scholar

  6. Min-Chan Kim
    View author publications

    Search author on:PubMed Google Scholar

  7. Jung Hyeon Choi
    View author publications

    Search author on:PubMed Google Scholar

  8. Young-Keun Choi
    View author publications

    Search author on:PubMed Google Scholar

  9. In-Bok Lee
    View author publications

    Search author on:PubMed Google Scholar

  10. Dong-Hee Choi
    View author publications

    Search author on:PubMed Google Scholar

  11. Yun Jeong Seo
    View author publications

    Search author on:PubMed Google Scholar

  12. Yoon Seok Jung
    View author publications

    Search author on:PubMed Google Scholar

  13. Kyoung-Shim Kim
    View author publications

    Search author on:PubMed Google Scholar

  14. Jung Hwan Hwang
    View author publications

    Search author on:PubMed Google Scholar

  15. Yong-Bum Kim
    View author publications

    Search author on:PubMed Google Scholar

  16. Jong-Soo Lee
    View author publications

    Search author on:PubMed Google Scholar

  17. Bon Jeong Ku
    View author publications

    Search author on:PubMed Google Scholar

  18. Jin-Ok Jeong
    View author publications

    Search author on:PubMed Google Scholar

  19. Hueng-Sik Choi
    View author publications

    Search author on:PubMed Google Scholar

  20. Jinhyun Kim
    View author publications

    Search author on:PubMed Google Scholar

  21. Yong-Hoon Kim
    View author publications

    Search author on:PubMed Google Scholar

  22. Chul-Ho Lee
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.K., Y.-H.K., and C.-H.L. conceived and supervised the study. E.-J.K., J.K., Y.-H.K., and C.-H.L. designed all the experiments. E.-J.K. conducted all animal, cell biological, and molecular biological experiments, with assistance from J.-R.N. and J.-H.K., and analyzed and interpreted the relevant data under the supervision of Y.-H.K. and C.-H.L. J.-P.A., M.-C.K., J.H.C., Y.-K.C., I.-B.L., D.-H.C., and Y.-J.S. provided technical support for the animal experiments. E.-J.K. and J.A.P. performed human studies and analyzed and interpreted the relevant data under the supervision of B.J.K., J.-O.J., and J.K. Y.S.J. and H.-S.C. provided the materials and technical support for the adenovirus-related experiments. K.-S.K., J.H.H., Y.-B.K., J.-S.L., J.K., Y.-H.K., and C.-H.L. provided assistance with data interpretation and critical scientific discussion. E.-J.K. drafted the manuscript, and J.K., Y.-H.K., and C.-H.L. edited the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Jinhyun Kim, Yong-Hoon Kim or Chul-Ho Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Taku Saito, who co-reviewed with Taro Kasai; Yan Wang, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, EJ., Noh, JR., Kim, JH. et al. Small heterodimer partner protects against osteoarthritis by inhibiting IKKβ/NF-κB-mediated matrix-degrading enzymes in chondrocytes. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69864-5

Download citation

  • Received: 08 December 2024

  • Accepted: 04 February 2026

  • Published: 21 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69864-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing