Abstract
Osteoarthritis (OA), characterised by cartilage destruction, is the most common degenerative joint disease. However, no effective disease-modifying OA therapy is currently available. Herein, we report orphan nuclear receptor small heterodimer partner (SHP, NR0B2) as a novel catabolic regulator of OA pathogenesis. NR0B2 expression was markedly downregulated in cartilage from patients with OA. Global or chondrocyte-specific Nr0b2 deletion in male mice exacerbated OA-related pain and structural changes following surgical destabilization of the medial meniscus, accompanied by increased matrix metalloproteinase (MMP)-3 and MMP-13 expression in chondrocytes. Conversely, adeno-associated virus-mediated Nr0b2 overexpression in knee joints of male mice protected against accelerated knee OA caused by Nr0b2 deficiency. Mechanistically, NR0B2 inhibited IKKβ kinase activity via IKK complex interaction, downregulating NF-κB signalling. Our results demonstrate that NR0B2 has a chondroprotective role in OA progression by regulating matrix-degrading enzymes in an IKKβ/NF-κB-dependent manner, and gene therapy targeting Nr0b2 may be a promising therapeutic strategy for OA.
Data availability
All data generated and/or analyzed during this study are included in this published article and its Supplementary Information/Source Data files and are available from the corresponding author on reasonable request. Source data are provided with this paper.
References
Hunter, D. J., March, L. & Chew, M. Osteoarthritis in 2020 and beyond: a Lancet Commission. Lancet 396, 1711–1712 (2020).
Martel-Pelletier, J. et al. Osteoarthritis. Nat. Rev. Dis. Prim. 2, 16072 (2016).
Goldring, S. R. & Goldring, M. B. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk. Nat. Rev. Rheumatol. 12, 632–644 (2016).
Collaborators, G. B. D. O. Global, regional, and national burden of osteoarthritis, 1990-2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 5, e508–e522 (2023).
Latourte, A., Kloppenburg, M. & Richette, P. Emerging pharmaceutical therapies for osteoarthritis. Nat. Rev. Rheumatol. 16, 673–688 (2020).
Siddiq, M. A. B., Oo, W. M. & Hunter, D. J. New therapeutic strategies in osteoarthritis. Jt. Bone Spine 91, 105739 (2024).
Peng, Z. et al. The regulation of cartilage extracellular matrix homeostasis in joint cartilage degeneration and regeneration. Biomaterials 268, 120555 (2021).
Sengprasert, P., Kamenkit, O., Tanavalee, A. & Reantragoon, R. The immunological facets of chondrocytes in osteoarthritis: a narrative review. J. Rheumatol. https://doi.org/10.3899/jrheum.2023-0816 (2023).
Wei, G. et al. Risk of metabolic abnormalities in osteoarthritis: a new perspective to understand its pathological mechanisms. Bone Res. 11, 63 (2023).
Arra, M. et al. LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis. Nat. Commun. 11, 3427 (2020).
Wojdasiewicz, P., Poniatowski, L. A. & Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014, 561459 (2014).
Kapoor, M., Martel-Pelletier, J., Lajeunesse, D., Pelletier, J. P. & Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 7, 33–42 (2011).
Chow, Y. Y. & Chin, K. Y. The role of inflammation in the pathogenesis of osteoarthritis. Mediators Inflamm. 2020, 8293921 (2020).
Olivotto, E., Otero, M., Marcu, K. B. & Goldring, M. B. Pathophysiology of osteoarthritis: canonical NF-kappaB/IKKbeta-dependent and kinase-independent effects of IKKalpha in cartilage degradation and chondrocyte differentiation. RMD Open 1, e000061 (2015).
Hinz, M. & Scheidereit, C. The IkappaB kinase complex in NF-kappaB regulation and beyond. EMBO Rep. 15, 46–61 (2014).
Choi, M. C., Jo, J., Park, J., Kang, H. K. & Park, Y. NF-kappaB signaling pathways in osteoarthritic cartilage destruction. Cells 8, https://doi.org/10.3390/cells8070734 (2019).
Rigoglou, S. & Papavassiliou, A. G. The NF-kappaB signalling pathway in osteoarthritis. Int. J. Biochem. Cell Biol. 45, 2580–2584 (2013).
Guo, Q. et al. NF-kappaB in biology and targeted therapy: new insights and translational implications. Signal Transduct. Target Ther. 9, 53 (2024).
Giridharan, S. & Srinivasan, M. Mechanisms of NF-kappaB p65 and strategies for therapeutic manipulation. J. Inflamm. Res. 11, 407–419 (2018).
Mitchell, J. P. & Carmody, R. J. NF-kappaB and the transcriptional control of inflammation. Int. Rev. Cell Mol. Biol. 335, 41–84 (2018).
Mulero, M. C., Wang, V. Y., Huxford, T. & Ghosh, G. Genome reading by the NF-kappaB transcription factors. Nucleic Acids Res. 47, 9967–9989 (2019).
Roman-Blas, J. A. & Jimenez, S. A. NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthr. Cartil. 14, 839–848 (2006).
Yan, H. et al. Suppression of NF-kappaB activity via nanoparticle-based siRNA delivery alters early cartilage responses to injury. Proc. Natl. Acad. Sci. USA. 113, E6199–E6208 (2016).
Catheline, S. E. et al. IKKbeta-NF-kappaB signaling in adult chondrocytes promotes the onset of age-related osteoarthritis in mice. Sci. Signal 14, eabf3535 (2021).
Lee, Y. S., Chanda, D., Sim, J., Park, Y. Y. & Choi, H. S. Structure and function of the atypical orphan nuclear receptor small heterodimer partner. Int. Rev. Cytol. 261, 117–158 (2007).
Zhang, Y., Hagedorn, C. H. & Wang, L. Role of nuclear receptor SHP in metabolism and cancer. Biochim. Biophys. Acta 1812, 893–908 (2011).
Garruti, G. et al. A pleiotropic role for the orphan nuclear receptor small heterodimer partner in lipid homeostasis and metabolic pathways. J. Lipids 2012, 304292 (2012).
Yuk, J. M., Jin, H. S. & Jo, E. K. Small heterodimer partner and innate immune regulation. Endocrinol. Metab. 31, 17–24 (2016).
Yuk, J. M. et al. The orphan nuclear receptor SHP acts as a negative regulator in inflammatory signaling triggered by Toll-like receptors. Nat. Immunol. 12, 742–751 (2011).
Zou, A. et al. Hepatocyte nuclear receptor SHP suppresses inflammation and fibrosis in a mouse model of nonalcoholic steatohepatitis. J. Biol. Chem. 293, 8656–8671 (2018).
Samvelyan, H. J., Hughes, D., Stevens, C. & Staines, K. A. Models of osteoarthritis: relevance and new insights. Calcif. Tissue Int. 109, 243–256 (2021).
Nagira, K. et al. Histological scoring system for subchondral bone changes in murine models of joint aging and osteoarthritis. Sci. Rep. 10, 10077 (2020).
Wan, J. et al. Matrix metalloproteinase 3: a promoting and destabilizing factor in the pathogenesis of disease and cell differentiation. Front. Physiol. 12, 663978 (2021).
Little, C. B. et al. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 60, 3723–3733 (2009).
Glasson, S. S. et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434, 644–648 (2005).
Jenei-Lanzl, Z., Meurer, A. & Zaucke, F. Interleukin-1beta signaling in osteoarthritis - chondrocytes in focus. Cell Signal 53, 212–223 (2019).
Latourte, A. et al. Systemic inhibition of IL-6/Stat3 signalling protects against experimental osteoarthritis. Ann. Rheum. Dis. 76, 748–755 (2017).
Sherwood, J. C., Bertrand, J., Eldridge, S. E. & Dell’Accio, F. Cellular and molecular mechanisms of cartilage damage and repair. Drug Discov. Today 19, 1172–1177 (2014).
Yamamoto, K., Wilkinson, D. & Bou-Gharios, G. Targeting dysregulation of metalloproteinase activity in osteoarthritis. Calcif. Tissue Int. 109, 277–290 (2021).
Salvat, C., Pigenet, A., Humbert, L., Berenbaum, F. & Thirion, S. Immature murine articular chondrocytes in primary culture: a new tool for investigating cartilage. Osteoarthr. Cartil. 13, 243–249 (2005).
Ahamed, F., Eppler, N., Jones, E., He, L. & Zhang, Y. Small heterodimer partner modulates macrophage differentiation during innate immune response through the regulation of peroxisome proliferator activated receptor gamma, mitogen-activated protein kinase, and nuclear factor kappa B pathways. Biomedicines 11, https://doi.org/10.3390/biomedicines11092403 (2023).
Shahoei, S. H. et al. Small heterodimer partner regulates dichotomous T cell expansion by macrophages. Endocrinology 160, 1573–1589 (2019).
Israel, A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb. Perspect. Biol. 2, a000158 (2010).
Zhang, W., Ouyang, H., Dass, C. R. & Xu, J. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res. 4, 15040 (2016).
Sonoda, J., Pei, L. & Evans, R. M. Nuclear receptors: decoding metabolic disease. FEBS Lett. 582, 2–9 (2008).
Sun, M. M., Beier, F. & Ratneswaran, A. Nuclear receptors as potential drug targets in osteoarthritis. Curr. Opin. Pharm. 40, 81–86 (2018).
Culley, K. L. et al. Mouse models of osteoarthritis: surgical model of posttraumatic osteoarthritis induced by destabilization of the medial meniscus. Methods Mol. Biol. 1226, 143–173 (2015).
Yang, C. S. et al. Small heterodimer partner interacts with NLRP3 and negatively regulates activation of the NLRP3 inflammasome. Nat. Commun. 6, 6115 (2015).
Liu, S. et al. Cartilage tissue engineering: from proinflammatory and anti‑inflammatory cytokines to osteoarthritis treatments (Review). Mol. Med. Rep. 25, https://doi.org/10.3892/mmr.2022.12615 (2022).
Egloff, C., Hugle, T. & Valderrabano, V. Biomechanics and pathomechanisms of osteoarthritis. Swiss Med. Wkly 142, w13583 (2012).
Saito, T. & Tanaka, S. Molecular mechanisms underlying osteoarthritis development: notch and NF-kappaB. Arthritis Res. Ther. 19, 94 (2017).
Murahashi, Y. et al. Intra-articular administration of IkappaBalpha kinase inhibitor suppresses mouse knee osteoarthritis via downregulation of the NF-kappaB/HIF-2alpha axis. Sci. Rep. 8, 16475 (2018).
Cao, Y. et al. Decreased miR-214-3p activates NF-kappaB pathway and aggravates osteoarthritis progression. EBioMedicine 65, 103283 (2021).
Moon, J. et al. Small heterodimer partner-interacting leucine zipper protein suppresses pain and cartilage destruction in an osteoarthritis model by modulating the AMPK/STAT3 signaling pathway. Arthritis Res. Ther. 26, 199 (2024).
Sadasivam, N., Radhakrishnan, K., Choi, H. S. & Kim, D. K. Emerging role of SMILE in liver metabolism. Int. J. Mol. Sci. 24, https://doi.org/10.3390/ijms24032907 (2023).
Xie, Y. B. et al. SMILE, a new orphan nuclear receptor SHP-interacting protein, regulates SHP-repressed estrogen receptor transactivation. Biochem. J. 416, 463–473 (2008).
Huang, H. et al. Intra-articular drug delivery systems for osteoarthritis therapy: shifting from sustained release to enhancing penetration into cartilage. Drug Deliv. 29, 767–791 (2022).
Wang, J. H., Gessler, D. J., Zhan, W., Gallagher, T. L. & Gao, G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct. Target Ther. 9, 78 (2024).
Evans, C. H., Ghivizzani, S. C. & Robbins, P. D. Osteoarthritis gene therapy in 2022. Curr. Opin. Rheumatol. 35, 37–43 (2023).
Chen, Q. et al. Comparative intra-articular gene transfer of seven adeno-associated virus serotypes reveals that AAV2 mediates the most efficient transduction to mouse arthritic chondrocytes. PLoS ONE 15, e0243359 (2020).
Wang, L. et al. Redundant pathways for negative feedback regulation of bile acid production. Dev. Cell 2, 721–731 (2002).
Glasson, S. S., Blanchet, T. J. & Morris, E. A. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthr. Cartil. 15, 1061–1069 (2007).
Gardiner, M. D. et al. Transcriptional analysis of micro-dissected articular cartilage in post-traumatic murine osteoarthritis. Osteoarthr. Cartil. 23, 616–628 (2015).
Futami, I. et al. Isolation and characterization of multipotential mesenchymal cells from the mouse synovium. PLoS ONE 7, e45517 (2012).
Chermside-Scabbo, C. J. et al. A proteomics approach to study mouse long bones: examining baseline differences and mechanical loading-induced bone formation in young-adult and old mice. Aging 16, 12726–12768 (2024).
Jackson, M. T. et al. Depletion of protease-activated receptor 2 but not protease-activated receptor 1 may confer protection against osteoarthritis in mice through extracartilaginous mechanisms. Arthritis Rheumatol. 66, 3337–3348 (2014).
Glasson, S. S., Chambers, M. G., Van Den Berg, W. B. & Little, C. B. The OARSI histopathology initiative—recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthr. Cartil. 18, S17–S23 (2010).
Culley, K. L. et al. Mouse models of osteoarthritis: surgical model of post-traumatic osteoarthritis induced by destabilization of the medial meniscus. Methods Mol. Biol. 2221, 223–260 (2021).
Wang, X. et al. Comparison of the major cell populations among osteoarthritis, Kashin-Beck disease and healthy chondrocytes by single-cell RNA-seq analysis. Cell Death Dis. 12, 551 (2021).
He, B. et al. High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential. Arthritis Res. Ther. 16, 205 (2014).
Chen, L. et al. Preparation and characterization of biomimetic functional scaffold with gradient structure for osteochondral defect repair. Bioengineering 10, https://doi.org/10.3390/bioengineering10020213 (2023).
Rigueur, D. & Lyons, K. M. Whole-mount skeletal staining. Methods Mol. Biol. 1130, 113–121 (2014).
Gosset, M., Berenbaum, F., Thirion, S. & Jacques, C. Primary culture and phenotyping of murine chondrocytes. Nat. Protoc. 3, 1253–1260 (2008).
Saeki, N. & Imai, Y. Isolation and culture of primary synovial macrophages and fibroblasts from murine arthritis tissue. J. Vis. Exp. https://doi.org/10.3791/65196 (2023).
Zhao, J. et al. A protocol for the culture and isolation of murine synovial fibroblasts. Biomed. Rep. 5, 171–175 (2016).
Marino, S., Staines, K. A., Brown, G., Howard-Jones, R. A. & Adamczyk, M. Models of ex vivo explant cultures: applications in bone research. Bonekey Rep. 5, 818 (2016).
Acknowledgements
This work was supported by the Basic Science Research Program (2023R1A2C3005244 to C.-H.L.), (RS-2024-00450466 to Y.-H.K.) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT, and by the KRIBB Research Initiative Program (KGM1312612).
Author information
Authors and Affiliations
Contributions
J.K., Y.-H.K., and C.-H.L. conceived and supervised the study. E.-J.K., J.K., Y.-H.K., and C.-H.L. designed all the experiments. E.-J.K. conducted all animal, cell biological, and molecular biological experiments, with assistance from J.-R.N. and J.-H.K., and analyzed and interpreted the relevant data under the supervision of Y.-H.K. and C.-H.L. J.-P.A., M.-C.K., J.H.C., Y.-K.C., I.-B.L., D.-H.C., and Y.-J.S. provided technical support for the animal experiments. E.-J.K. and J.A.P. performed human studies and analyzed and interpreted the relevant data under the supervision of B.J.K., J.-O.J., and J.K. Y.S.J. and H.-S.C. provided the materials and technical support for the adenovirus-related experiments. K.-S.K., J.H.H., Y.-B.K., J.-S.L., J.K., Y.-H.K., and C.-H.L. provided assistance with data interpretation and critical scientific discussion. E.-J.K. drafted the manuscript, and J.K., Y.-H.K., and C.-H.L. edited the manuscript. All authors have read and approved the final manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Taku Saito, who co-reviewed with Taro Kasai; Yan Wang, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Kang, EJ., Noh, JR., Kim, JH. et al. Small heterodimer partner protects against osteoarthritis by inhibiting IKKβ/NF-κB-mediated matrix-degrading enzymes in chondrocytes. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69864-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-69864-5