Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Mechanism of beta-arrestin 1 mediated Src activation via Src SH3 domain revealed by cryo-electron microscopy
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 February 2026

Mechanism of beta-arrestin 1 mediated Src activation via Src SH3 domain revealed by cryo-electron microscopy

  • Natalia Pakharukova1,2,
  • Brittany N. Thomas  ORCID: orcid.org/0000-0001-8317-75381,2,
  • Harsh Bansia3,4,
  • Linus Li1,
  • Dana K. Bassford1,2,
  • Rinat R. Abzalimov5,
  • Jihee Kim1,
  • Alem W. Kahsai1,
  • Biswaranjan Pani  ORCID: orcid.org/0000-0003-4811-46321,
  • Kunhong Xiao  ORCID: orcid.org/0000-0002-1069-12266,7,
  • Roni Ochakovski1,
  • Shibo Liu5,
  • Xingdong Zhang1,
  • Seungkirl Ahn  ORCID: orcid.org/0000-0001-5681-37891,
  • Amedee des Georges  ORCID: orcid.org/0000-0002-9704-37813,4,5 &
  • …
  • Robert J. Lefkowitz  ORCID: orcid.org/0000-0003-1472-75451,2,8 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cell signalling
  • Cryoelectron microscopy
  • Kinases
  • Molecular conformation

Abstract

Beta-arrestins (βarrs) are key regulators and transducers of G-protein coupled receptor signaling; however, little is known of how βarrs communicate with their downstream effectors. Here, we delineate structural mechanisms underlying βarr-mediated signal transduction. Using cryo-electron microscopy, we elucidate how βarr1 recruits and activates the non-receptor tyrosine kinase Src, a well-established signaling partner of βarrs. βarr1 engages Src SH3 through two distinct sites, each employing a different recognition mechanism: a polyproline motif in the N-domain and a non-proline-based interaction in the central crest region. At both sites βarr1 interacts with the aromatic surface of SH3, disrupting the autoinhibited conformation of Src and directly triggering its allosteric activation. This structural evidence establishes βarr1 as an active regulatory protein rather than a passive scaffold and suggests a potentially general mechanism for βarr-mediated signaling across diverse effectors.

Similar content being viewed by others

Distinct activation mechanisms of β-arrestin-1 revealed by 19F NMR spectroscopy

Article Open access 29 November 2023

Multi-faceted roles of β-arrestins in G protein-coupled receptor endocytosis

Article Open access 11 December 2025

Tail engagement of arrestin at the glucagon receptor

Article Open access 09 August 2023

Data availability

The cryo-EM maps have been deposited in the EMDB under accession codes EMD-45977 (SH3–βarr1-CC complex), EMD-45982 (SH3–βarr1-N complex), and EMD-44881 (Src–βarr1-CC complex). The atomic coordinates have been deposited in the Protein Data Bank under accession codes 9CX3 (SH3–βarr1-CC complex); 9CX9 (SH3–βarr1-N complex); 9BT8 (Src–βarr1-CC complex). The HDX-MS data have been deposited to the ProteomeXchange Consortium [http://proteomecentral.proteomexchange.org] via the MassIVE repository [https://massive.ucsd.edu/] with the dataset identifier PXD073493. CXMS data have been deposited to the ProteomeXchange Consortium [http://proteomecentral.proteomexchange.org] via the PRIDE partner repository74 with the dataset identifier PXD073058. All other data generated or analyzed in this study are included in the article and its Supplementary Information. Source data are provided within the Source Data File. The manuscript refers to the following previously published PDB accession codes: 4JQI (βarr1–V2Rpp); 2PTK (Src); 1G4M (βarr1); 1FMK (Src); 6TKO (β1V2R–βarr1); 6U1N (M2V2R–βarr1); 6UP7 (NTSR1–βarr1); 4U5W (Hck–Nef); 2KNB (endophilin A1 SH3–parkin Ubl); 3A98 (DOCK2 SH3–ELMO 1); 1JT4 (Sla1 SH3-ubiquitin); 1Y57 (Src). Source data are provided with this paper.

References

  1. Lefkowitz, R. J. Arrestins come of age: a personal historical perspective. Prog. Mol. Biol. Transl. Sci. 118, 3–18 (2013).

    Google Scholar 

  2. Peterson, Y. K. & Luttrell, L. M. The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling. Pharm. Rev. 69, 256–297 (2017).

    Google Scholar 

  3. Yang, F. et al. Allosteric mechanisms underlie GPCR signaling to SH3-domain proteins through arrestin. Nat. Chem. Biol. 14, 876–886 (2018).

    Google Scholar 

  4. Pakharukova, N., Masoudi, A., Pani, B., Staus, D. P. & Lefkowitz, R. J. Allosteric activation of proto-oncogene kinase Src by GPCR-beta-arrestin complexes. J. Biol. Chem. 295, 16773–16784 (2020).

    Google Scholar 

  5. Zang, Y., Kahsai, A. W., Pakharukova, N., Huang, L. Y. & Lefkowitz, R. J. The GPCR-beta-arrestin complex allosterically activates C-Raf by binding its amino terminus. J. Biol. Chem. 297, 101369 (2021).

    Google Scholar 

  6. Kahsai, A. W. et al. Signal transduction at GPCRs: Allosteric activation of the ERK MAPK by β-arrestin. P Natl. Acad. Sci. USA. 120, (2023).

  7. Karkkainen, S. et al. Identification of preferred protein interactions by phage-display of the human Src homology-3 proteome. EMBO Rep. 7, 186–191 (2006).

    Google Scholar 

  8. Li, S. S. Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem J. 390, 641–653 (2005).

    Google Scholar 

  9. Luttrell, L. M. et al. Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283, 655–661 (1999).

    Google Scholar 

  10. Xiao, K. et al. Revealing the architecture of protein complexes by an orthogonal approach combining HDXMS, CXMS, and disulfide trapping. Nat. Protoc. 13, 1403–1428 (2018).

    Google Scholar 

  11. Cahill, T. J. 3rd et al. Distinct conformations of GPCR-beta-arrestin complexes mediate desensitization, signaling, and endocytosis. Proc. Natl. Acad. Sci. USA 114, 2562–2567 (2017).

    Google Scholar 

  12. Shukla, A. K. et al. Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497, 137–141 (2013).

    Google Scholar 

  13. Lee, C. H., Saksela, K., Mirza, U. A., Chait, B. T. & Kuriyan, J. Crystal structure of the conserved core of HIV-1 Nef complexed with a Src family SH3 domain. Cell 85, 931–942 (1996).

    Google Scholar 

  14. Alvarado, J. J., Tarafdar, S., Yeh, J. I. & Smithgall, T. E. Interaction with the Src homology (SH3-SH2) region of the Src-family kinase Hck structures the HIV-1 Nef dimer for kinase activation and effector recruitment. J. Biol. Chem. 289, 28539–28553 (2014).

    Google Scholar 

  15. He, Y., Hicke, L. & Radhakrishnan, I. Structural basis for ubiquitin recognition by SH3 domains. J. Mol. Biol. 373, 190–196 (2007).

    Google Scholar 

  16. Trempe, J. F. et al. SH3 domains from a subset of BAR proteins define a Ubl-binding domain and implicate parkin in synaptic ubiquitination. Mol. Cell 36, 1034–1047 (2009).

    Google Scholar 

  17. Hanawa-Suetsugu, K. et al. Structural basis for mutual relief of the Rac guanine nucleotide exchange factor DOCK2 and its partner ELMO1 from their autoinhibited forms. P Natl. Acad. Sci. USA. 109, 3305–3310 (2012).

    Google Scholar 

  18. Teyra, J. et al. Comprehensive Analysis of the Human SH3 Domain Family Reveals a Wide Variety of Non-canonical Specificities. Structure 25, 1598–1610.e1593 (2017).

    Google Scholar 

  19. Saksela, K. & Permi, P. SH3 domain ligand binding: What’s the consensus and where’s the specificity? FEBS Lett. 586, 2609–2614 (2012).

    Google Scholar 

  20. Harrison, S. C. Variation on an Src-like theme. Cell 112, 737–740 (2003).

    Google Scholar 

  21. Xu, W., Harrison, S. C. & Eck, M. J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–602 (1997).

    Google Scholar 

  22. Porter, M., Schindler, T., Kuriyan, J. & Miller, W. T. Reciprocal regulation of Hck activity by phosphorylation of Tyr(527) and Tyr(416). Effect of introducing a high affinity intramolecular SH2 ligand. J. Biol. Chem. 275, 2721–2726 (2000).

    Google Scholar 

  23. Young, M. A., Gonfloni, S., Superti-Furga, G., Roux, B. & Kuriyan, J. Dynamic coupling between the SH2 and SH3 domains of c-Src and hck underlies their inactivation by C-terminal tyrosine phosphorylation. Cell 105, 115–126 (2001).

    Google Scholar 

  24. Bous, J. et al. Structure of the vasopressin hormone-V2 receptor-beta-arrestin1 ternary complex. Sci. Adv. 8, eabo7761 (2022).

    Google Scholar 

  25. Staus, D. P. et al. Structure of the M2 muscarinic receptor-beta-arrestin complex in a lipid nanodisc. Nature 579, 297–302 (2020).

    Google Scholar 

  26. Huang, W. et al. Structure of the neurotensin receptor 1 in complex with beta-arrestin 1. Nature 579, 303–308 (2020).

    Google Scholar 

  27. Lee, Y. et al. Molecular basis of beta-arrestin coupling to formoterol-bound beta(1)-adrenoceptor. Nature 583, 862–866 (2020).

    Google Scholar 

  28. O’Hayre, M. et al. Genetic evidence that β-arrestins are dispensable for the initiation of β-adrenergic receptor signaling to ERK. Sci Signal 10, (2017).

  29. Stramiello, M. & Wagner, J. J. Dreceptor-mediated enhancement of LTP requires PKA, Src family kinases, and NR2B-containing NMDARs. Neuropharmacology 55, 871–877 (2008).

    Google Scholar 

  30. Kaya, A. I., Perry, N. A., Gurevich, V. V. & Iverson, T. M. Phosphorylation barcode-dependent signal bias of the dopamine D1 receptor. Proc. Natl. Acad. Sci. USA. 117, 14139–14149 (2020).

    Google Scholar 

  31. Violin, J. D. et al. J. β-adrenergic receptor signaling and desensitization elucidated by quantitative modeling of real time cAMP dynamics. J. Biol. Chem. 283, 2949–2961 (2008).

    Google Scholar 

  32. Qin, L. et al. Structural biology. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science 347, 1117–1122 (2015).

    Google Scholar 

  33. Rosenbaum, D. M. et al. Structure and function of an irreversible agonist-beta(2) adrenoceptor complex. Nature 469, 236–240 (2011).

    Google Scholar 

  34. Chen, Q. Y. et al. Structures of rhodopsin in complex with G-protein-coupled receptor kinase 1. Nature 595, 600–605 (2021).

    Google Scholar 

  35. Scott, J. D. & Pawson, T. Cell Signaling in Space and Time: Where Proteins Come Together and When They’re Apart. Science 326, 1220–1224 (2009).

    Google Scholar 

  36. Moarefi, I. et al. Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature 385, 650–653 (1997).

    Google Scholar 

  37. Alexandropoulos, K. & Baltimore, D. Coordinate activation of c-Src by SH3- and SH2-binding sites on a novel, p130(Cas)-related protein, Sin. Gene Dev. 10, 1341–1355 (1996).

    Google Scholar 

  38. Kypta, R. M., Goldberg, Y., Ulug, E. T. & Courtneidge, S. A. Association between the Pdgf Receptor and Members of the Src Family of Tyrosine Kinases. Cell 62, 481–492 (1990).

    Google Scholar 

  39. Cobb, B. S., Schaller, M. D., Leu, T. H. & Parsons, J. T. Stable Association of Pp60(Src) and Pp59(Fyn) with the Focal Adhesion-Associated Protein-Tyrosine Kinase, Pp125(Fak). Mol. Cell Biol. 14, 147–155 (1994).

    Google Scholar 

  40. Burnham, M. R. et al. Regulation of c-SRC activity and function by the adapter protein CAS. Mol. Cell Biol. 20, 5865–5878 (2000).

    Google Scholar 

  41. Bjorge, J. D., Jakymiw, A. & Fujita, D. J. Selected glimpses into the activation and function of Src kinase. Oncogene 19, 5620–5635 (2000).

    Google Scholar 

  42. Roskoski, R. Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharm. Res. 94, 9–25 (2015).

    Google Scholar 

  43. Thomsen, A. R. B. et al. GPCR-G Protein-beta-Arrestin Super-Complex Mediates Sustained G Protein Signaling. Cell 166, 907–919 (2016).

    Google Scholar 

  44. Nguyen, A. H. et al. Structure of an endosomal signaling GPCR-G protein-β-arrestin megacomplex. Nat. Struct. Mol. Biol. 26, 1123–1131 (2019).

    Google Scholar 

  45. Frame, M. C. Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys. Acta 1602, 114–130 (2002).

    Google Scholar 

  46. Benovic, J. L. et al. Functional desensitization of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48-kDa protein). Proc. Natl. Acad. Sci. USA. 84, 8879–8882 (1987).

    Google Scholar 

  47. Lohse, M. J., Benovic, J. L., Codina, J., Caron, M. G. & Lefkowitz, R. J. Beta-Arrestin - a Protein That Regulates Beta-Adrenergic-Receptor Function. Science 248, 1547–1550 (1990).

    Google Scholar 

  48. Gutkind, J. S. & Kostenis, E. Arrestins as rheostats of GPCR signalling. Nat. Rev. Mol. Cell Bio 19, 615–616 (2018).

    Google Scholar 

  49. Mitra, S. K. & Schlaepfer, D. D. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr. Opin. Cell Biol. 18, 516–523 (2006).

    Google Scholar 

  50. Staus, D. P. et al. Sortase ligation enables homogeneous GPCR phosphorylation to reveal diversity in beta-arrestin coupling. Proc. Natl. Acad. Sci. USA. 115, 3834–3839 (2018).

    Google Scholar 

  51. Paduch, M. et al. A. Generating conformation-specific synthetic antibodies to trap proteins in selected functional states. Methods 60, 3–14 (2013).

    Google Scholar 

  52. Shukla, A. K. et al. Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 512, 218–222 (2014).

    Google Scholar 

  53. Seeliger, M. A. et al. High yield bacterial expression of active c-Abl and c-Src tyrosine kinases. Protein Sci. 14, 3135–3139 (2005).

    Google Scholar 

  54. Nobles, K. N., Guan, Z., Xiao, K., Oas, T. G. & Lefkowitz, R. J. The active conformation of beta-arrestin1: direct evidence for the phosphate sensor in the N-domain and conformational differences in the active states of beta-arrestins1 and -2. J. Biol. Chem. 282, 21370–21381 (2007).

    Google Scholar 

  55. Rizk, S. S. et al. Allosteric control of ligand-binding affinity using engineered conformation-specific effector proteins. Nat. Struct. Mol. Biol. 18, 437–442 (2011).

    Google Scholar 

  56. Levinson, N. M., Seeliger, M. A., Cole, P. A. & Kuriyan, J. Structural basis for the recognition of c-Src by its inactivator Csk. Cell 134, 124–134 (2008).

    Google Scholar 

  57. Strachan, R. T. et al. Divergent Transducer-specific Molecular Efficacies Generate Biased Agonism at a G Protein-coupled Receptor (GPCR). J. Biol. Chem. 289, 14211–14224 (2014).

    Google Scholar 

  58. Attramadal, H. et al. Beta-Arrestin2, a Novel Member of the Arrestin Beta-Arrestin Gene Family. J. Biol. Chem. 267, 17882–17890 (1992).

    Google Scholar 

  59. Chen, S., Li, J., Vinothkumar, K. R. & Henderson, R. Interaction of human erythrocyte catalase with air-water interface in cryoEM. Microsc. (Oxf.) 71, i51–i59 (2022).

    Google Scholar 

  60. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Google Scholar 

  61. Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).

    Google Scholar 

  62. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Google Scholar 

  63. Liu, Y. T., Fan, H., Hu, J. J. & Zhou, Z. H. Overcoming the preferred-orientation problem in cryo-EM with self-supervised deep learning. Nat. Methods 22, 113–123 (2025).

    Google Scholar 

  64. Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).

    Google Scholar 

  65. Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput Chem. 25, 1605–1612 (2004).

    Google Scholar 

  66. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr D. Biol. Crystallogr 66, 486–501 (2010).

    Google Scholar 

  67. Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D. 74, 519–530 (2018).

    Google Scholar 

  68. Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Google Scholar 

  69. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D. Biol. Crystallogr 58, 1948–1954 (2002).

    Google Scholar 

  70. Kim, D. N. et al. Cryo_fit: Democratization of flexible fitting for cryo-EM. J. Struct. Biol. 208, 1–6 (2019).

    Google Scholar 

  71. Kidmose, R. T. et al. Namdinator - automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps. Iucrj 6, 526–531 (2019).

    Google Scholar 

  72. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D. Biol. Crystallogr 66, 12–21 (2010).

    Google Scholar 

  73. Barker, S. C. et al. Characterization of pp60c-src tyrosine kinase activities using a continuous assay: autoactivation of the enzyme is an intermolecular autophosphorylation process. Biochemistry 34, 14843–14851 (1995).

    Google Scholar 

  74. Perez-Riverol, Y. et al. The PRIDE database at 20 years: 2025 update. Nucleic Acids Res. 53, D543–D553 (2024).

    Google Scholar 

Download references

Acknowledgements

We acknowledge the use of cryo-EM microscopes at the Shared Materials Instrumentation Facility (Duke University) and thank Nilakshee Bhattacharya for assistance with microscope operation. We are grateful to Liyin Huang for their helpful discussions throughout this work and to Yangyang Li for administrative assistance. R.J.L. is an Investigator of the Howard Hughes Medical Institute. This work was supported, in part, by US National Institutes of Health (National Heart, Lung, and Blood Institute: R01 HL16037 to R.J.L.; National Institute of General Medical Sciences: R35GM133598 to A.G.). N.P. is supported by postdoctoral fellowships from Human Frontier Science Program (LT000174/2018) and European Molecular Biology Organization (ALTF 1071-2017). K.X. is supported by the Moonshot Biomarker Program of Allegheny Health Network Cancer Institute and Highmark Health, the Prostate Cancer Foundation Challenge Award (2023CHAL4223), the PA State Formula Grant (SAP #: 4100095527), and The Pittsburgh Foundation (cc#45126409).

Author information

Authors and Affiliations

  1. Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA

    Natalia Pakharukova, Brittany N. Thomas, Linus Li, Dana K. Bassford, Jihee Kim, Alem W. Kahsai, Biswaranjan Pani, Roni Ochakovski, Xingdong Zhang, Seungkirl Ahn & Robert J. Lefkowitz

  2. Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, 27710, USA

    Natalia Pakharukova, Brittany N. Thomas, Dana K. Bassford & Robert J. Lefkowitz

  3. Department of Molecular Pathobiology, College of Dentistry, New York University, New York, 10010, USA

    Harsh Bansia & Amedee des Georges

  4. Pain Research Center, New York University, New York, 10010, USA

    Harsh Bansia & Amedee des Georges

  5. Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, 10031, USA

    Rinat R. Abzalimov, Shibo Liu & Amedee des Georges

  6. Center for Proteomics & Artificial Intelligence, Allegheny Health Network Cancer Institute, Pittsburgh, PA, 15202, USA

    Kunhong Xiao

  7. Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA

    Kunhong Xiao

  8. Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA

    Robert J. Lefkowitz

Authors
  1. Natalia Pakharukova
    View author publications

    Search author on:PubMed Google Scholar

  2. Brittany N. Thomas
    View author publications

    Search author on:PubMed Google Scholar

  3. Harsh Bansia
    View author publications

    Search author on:PubMed Google Scholar

  4. Linus Li
    View author publications

    Search author on:PubMed Google Scholar

  5. Dana K. Bassford
    View author publications

    Search author on:PubMed Google Scholar

  6. Rinat R. Abzalimov
    View author publications

    Search author on:PubMed Google Scholar

  7. Jihee Kim
    View author publications

    Search author on:PubMed Google Scholar

  8. Alem W. Kahsai
    View author publications

    Search author on:PubMed Google Scholar

  9. Biswaranjan Pani
    View author publications

    Search author on:PubMed Google Scholar

  10. Kunhong Xiao
    View author publications

    Search author on:PubMed Google Scholar

  11. Roni Ochakovski
    View author publications

    Search author on:PubMed Google Scholar

  12. Shibo Liu
    View author publications

    Search author on:PubMed Google Scholar

  13. Xingdong Zhang
    View author publications

    Search author on:PubMed Google Scholar

  14. Seungkirl Ahn
    View author publications

    Search author on:PubMed Google Scholar

  15. Amedee des Georges
    View author publications

    Search author on:PubMed Google Scholar

  16. Robert J. Lefkowitz
    View author publications

    Search author on:PubMed Google Scholar

Contributions

N.P. and R.J.L. conceived the study. N.P., R.R.A., J.K., A.W.K., B.P., K.X., and S.A. designed the experiments. N.P., B.N.T., L.L., D.K.B., A.W.K., B.P., K.X., R.O., and X.Z. performed biochemical experiments. N.P., B.N.T., J.K. and S.A. performed cellular functional assays. N.P., B.N.T., and D.K.B. performed structural biology experiments. N.P. and H.B. built and refined structural models. R.R.A. and S.L. performed HDX-MS experiments. N.P., B.N.T., H.B., D.K.B., R.R.A., J.K., A.W.K., B.P., and K.X. analyzed the data. N.P. wrote the manuscript with input from all authors. A.G. and R.J.L. supervised the work.

Corresponding authors

Correspondence to Amedee des Georges or Robert J. Lefkowitz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Supplementary Data 6

Supplementary Video 1

Supplementary Video 2

Supplementary Video 3

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakharukova, N., Thomas, B.N., Bansia, H. et al. Mechanism of beta-arrestin 1 mediated Src activation via Src SH3 domain revealed by cryo-electron microscopy. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69884-1

Download citation

  • Received: 17 July 2025

  • Accepted: 09 February 2026

  • Published: 20 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69884-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing