Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Megafire smoke exposure jeopardizes tree carbohydrate reserves and yield

Abstract

The global incidence of megafires is on the rise, leading to extensive areas being shrouded in dense smoke for prolonged periods, spanning days or weeks1. Here, by integrating long-term regional observations of non-structural carbohydrate content in trees across California’s Central Valley with spatiotemporal satellite data, we present compelling evidence that dense smoke plumes negatively impact carbohydrate stores in three tree species: Prunus dulcis, Pistacia vera and Juglans regia. Our findings show that the presence of smoke causes a significant decrease in total non-structural carbohydrates, with reductions in the accumulation of both soluble sugar and starch reserves. This decline in carbohydrate levels persists through the trees’ dormancy period into the next season’s bloom, culminating in a reduced yield. Our results highlight a previously unrecognized wildfire threat that could affect plant health and ecosystem stability in both agricultural and natural environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Temporal and spatial analysis of the impact of wildfires on the air quality of the California Central Valley.
Fig. 2: Contrasting environmental parameters between a low-smoke year (2019) and a high-smoke year (2020).
Fig. 3: Smoke is associated with persistent declines in NSC.
Fig. 4: Smoke is associated with yield declines in P. dulcis.

Similar content being viewed by others

Data availability

The AOD data were accessed through Google Earth Engine and are available at https://doi.org/10.5067/MODIS/MCD19A2.061. The climatic data are available from the PRISM Climate Group (https://prism.oregonstate.edu/). For the air quality data, daily mean PM2.5 and daily maximum eight-hour O3 concentrations were collected from https://www.epa.gov/outdoor-air-quality-data. The reported data are available via figshare at https://doi.org/10.6084/m9.figshare.26197214.v1 (ref. 36).

References

  1. Yu, P. et al. Black carbon lofts wildfire smoke high into the stratosphere to form a persistent plume. Science 365, 587–590 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Turco, M. et al. Anthropogenic climate change impacts exacerbate summer forest fires in California. Proc. Natl Acad. Sci. USA 120, e2213815120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aguilera, R., Corringham, T., Gershunov, A. & Benmarhnia, T. Wildfire smoke impacts respiratory health more than fine particles from other sources: observational evidence from Southern California. Nat. Commun. 12, 1493 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gilbert, M. E. & Ripley, B. S. The effect of smoke on the photosynthetic gas exchange of Chrysanthemoides monilifera. S. Afr. J. Bot. 68, 525–531 (2002).

    Article  Google Scholar 

  5. Hoshika, Y. et al. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests. Sci. Rep. 5, 9871 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, L. & Mu, G. Similar effects as shade tolerance induced by dust accumulation and size penetration of particulates on cotton leaves. BMC Plant Biol. 21, 149 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li, Y., Wang, Y., Wang, B., Wang, Y. & Yu, W. The response of plant photosynthesis and stomatal conductance to fine particulate matter (PM2.5) based on leaf factors analyzing. J. Plant Biol. 62, 120–128 (2019).

    Article  CAS  Google Scholar 

  8. Wittig, V. E., Ainsworth, E. A. & Long, S. P. To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant Cell Environ. 30, 1150–1162 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Calder, W. J., Lifferth, G., Moritz, M. A. & St. Clair, S. B. Physiological effects of smoke exposure on deciduous and conifer tree species. Int. J. For. Res. https://doi.org/10.1155/2010/438930 (2010).

  10. Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Rap, A. et al. Fires increase Amazon forest productivity through increases in diffuse radiation. Geophys. Res. Lett. 42, 4654–4662 (2015).

    Article  Google Scholar 

  12. Yue, X. & Unger, N. Fire air pollution reduces global terrestrial productivity. Nat. Commun. 9, 5413 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yue, X. & Unger, N. Aerosol optical depth thresholds as a tool to assess diffuse radiation fertilization of the land carbon uptake in China. Atmos. Chem. Phys. 17, 1329–1342 (2017).

    Article  CAS  Google Scholar 

  14. Roderick, M. L., Farquhar, G. D., Berry, S. L. & Noble, I. R. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129, 21–30 (2001).

    Article  PubMed  Google Scholar 

  15. Stitt, M. & Zeeman, S. C. Starch turnover: pathways, regulation and role in growth. Curr. Opin. Plant Biol. 15, 282–292 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Peltier, D. M. P. et al. Old reserves and ancient buds fuel regrowth of coast redwood after catastrophic fire. Nat. Plants 9, 1978–1985 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Hartmann, H. & Trumbore, S. Understanding the roles of nonstructural carbohydrates in forest trees—from what we can measure to what we want to know. N. Phytol. 211, 386–403 (2016).

    Article  CAS  Google Scholar 

  18. Jones, M. W. et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 60, e2020RG000726 (2022).

    Article  Google Scholar 

  19. Pan, K. & Faloona, I. C. The impacts of wildfires on ozone production and boundary layer dynamics in California’s Central Valley. Atmos. Chem. Phys. 22, 9681–9702 (2022).

    Article  CAS  Google Scholar 

  20. Sperling, O. & Zwieniecki, M. A. Winding up the bloom clock—do sugar levels at senescence determine how trees respond to winter temperature? Tree Physiol. 41, 1906–1917 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Zwieniecki, M. A., Davidson, A. M., Orozco, J., Cooper, K. B. & Guzman-Delgado, P. The impact of non-structural carbohydrates (NSC) concentration on yield in Prunus dulcis, Pistacia vera, and Juglans regia. Sci. Rep. 12, 4360 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McDowell, N. G. et al. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat. Rev. Earth Environ. 3, 294–308 (2022).

    Article  CAS  Google Scholar 

  23. McDowell, N. G. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol. 155, 1051–1059 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O’Brien, M. J., Leuzinger, S., Philipson, C. D., Tay, J. & Hector, A. Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nat. Clim. Change 4, 710–714 (2014).

    Article  Google Scholar 

  25. D’Andrea, E. et al. Unravelling resilience mechanisms in forests: role of non-structural carbohydrates in responding to extreme weather events. Tree Physiol. 41, 1808–1818 (2021).

    Article  PubMed  Google Scholar 

  26. Palácios, R. et al. Evaluation of MODIS Dark Target AOD product with 3 and 10 km resolution in Amazonia. Atmosphere 13, 1742 (2022).

    Article  Google Scholar 

  27. Swain, D. L. A shorter, sharper rainy season amplifies California wildfire risk. Geophys. Res. Lett. 48, e2021GL092843 (2021).

    Article  Google Scholar 

  28. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013); https://www.r-project.org/

  29. Dancho, M. & Vaughan, D. anomalize: tidy anomaly detection. R package version 0.2.4 (2023); https://business-science.github.io/anomalize/

  30. Rey-Sanchez, C. et al. AmeriFlux FLUXNET-1F US-Bi2 Bouldin Island corn. AmeriFlux, University of California, Berkeley https://doi.org/10.17190/AMF/1871135 (2022).

  31. Ma, S., Xu, L., Verfaillie, J. & Baldocchi, D. AmeriFlux FLUXNET-1F US-Var Vaira Ranch- Ione. AmeriFlux, University of California, Berkeley https://doi.org/10.17190/AMF/1993904 (2023).

  32. Ma, S., Xu, L., Verfaillie, J. & Baldocchi, D. AmeriFlux FLUXNET-1F US-Ton Tonzi Ranch. AmeriFlux, University of California, Berkeley https://doi.org/10.17190/AMF/2204880 (2023).

  33. Lenth, R. V. emmeans: estimated marginal means, aka least-squares means. R package version 1.8.5 (2023).

  34. Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).

    Article  PubMed  Google Scholar 

  35. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  36. Orozco, J., Guzmán-Delgado, P. & Zwieniecki, M. A. Lost in the haze: persistent mega-fire smoke exposure jeopardizes tree carbohydrate reserves and yield. figshare https://doi.org/10.6084/m9.figshare.26197214.v1 (2024).

Download references

Acknowledgements

We thank Olam Food Ingredients (ofi) for providing yield information. This work was supported by grants from the Almond Board of California (WATER17), the California Pistachio Research Board (PREC8), the California Walnut Board and the California Department of Food and Agriculture (22-0001-020-SF), awarded to M.A.Z. We also thank Google Earth Engine for providing the platform, tools and computational resources necessary for gathering, processing and analysing the satellite data used in this study.

Author information

Authors and Affiliations

Authors

Contributions

J.O. and M.A.Z. conceptualized the project. J.O. performed the computations and data visualization and wrote the paper. J.O. and M.A.Z. collected the data. P.G.-D. aided in parts of the data collection. All authors contributed to subsequent paper revisions.

Corresponding author

Correspondence to Jessica Orozco.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Brett Huggett and Drew Peltier for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orozco, J., Guzmán-Delgado, P. & Zwieniecki, M.A. Megafire smoke exposure jeopardizes tree carbohydrate reserves and yield. Nat. Plants 10, 1635–1642 (2024). https://doi.org/10.1038/s41477-024-01819-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41477-024-01819-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing