Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chromosomal inversion at the DG1 promoter drives double-grain spikelets and enhances grain yield in sorghum

Abstract

The phenomenon of multiple-grain spikelets is frequently observed in gramineous crops. In the case of dual-floret spikelets, the upper fertile floret develops normally to form a single grain, while the lower sterile floret undergoes abortion. Here we elucidate the role of Double-Grain 1 (DG1), a gene encoding a homeobox-domain-containing protein, in regulating the lower floret meristem activity and double-grain spikelet trait in sorghum. A 35.7-kb paracentric inversion in the DG1 promoter region leads to increased DG1 expression, probably by reducing repressive histone modifications. This increase in DG1 expression transforms the degenerated lower floret into a fertile one. The use of the superior DG1 allele results in an increase of approximately 40.7% to 46.1% in grain number per panicle and a 10.1% to 14.3% increase in overall grain yield. Our findings shed light on the sorghum double-grain spikelet characteristic, offering valuable insights for high-yield breeding designs in cereals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification and map-based cloning of the DG1 locus in controlling the sorghum double-grain trait.
Fig. 2: ORF1 is the candidate gene for DG1.
Fig. 3: DG1 reduced repressive histone lysine methylation and increased gene expression.
Fig. 4: DG1 exhibits fertility of the lower floret to form double grains.
Fig. 5: The potential downstream pathways of DG1.
Fig. 6: DG1 potentially enhances grain number and grain yield.
Fig. 7: A proposed working model for the regulation of the double-grain trait by DG1 in sorghum.

Similar content being viewed by others

Data availability

The raw sequence data from RNA-seq reported in this paper have been deposited in the Genome Sequence Archive in the National Genomics Data Center, China National Center for Bioinformation, Chinese Academy of Sciences, under accession number CRA014887. The gene sequences and amino acid sequences used in this paper were collected from Phytozome (https://phytozome-next.jgi.doe.gov/). Source data are provided with this paper.

References

  1. Xie, P., Wu, Y. & Xie, Q. Evolution of cereal floral architecture and threshability. Trends Plant Sci. 28, 1438–1450 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Ye, S. et al. Mapping and application of the twin-grain1 gene in rice. Planta 245, 707–716 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Xie, Q. & Xu, Z. Sustainable agriculture: from sweet sorghum planting and ensiling to ruminant feeding. Mol. Plant 12, 603–606 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, H. et al. A Gγ protein regulates alkaline sensitivity in crops. Science 379, eade8416 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Ge, F., Xie, P., Wu, Y. & Xie, Q. Genetic architecture and molecular regulation of sorghum domestication. aBIOTECH 4, 57–71 (2023).

    Article  PubMed  Google Scholar 

  6. Zhang, D. et al. Creation of fragrant sorghum by CRISPR/Cas9. J. Integr. Plant Biol. 64, 961–964 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Boyles, R. E. et al. Genome-wide association studies of grain yield components in diverse sorghum germplasm. Plant Genome https://doi.org/10.3835/plantgenome2015.09.0091 (2016).

  8. Borrell, A. K., Bidinger, F. R. & Sunitha, K. Stay-green trait associated with yield in recombinant inbred sorghum lines varying in rate of leaf senescence. Int. Sorghum Millets Newsl. 40, 31–34 (1999).

    Google Scholar 

  9. Baye, W., Xie, Q. & Xie, P. Genetic architecture of grain yield-related traits in sorghum and maize. Int. J. Mol. Sci. 23, 2405 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu, F. et al. Unravelling sorghum functional genomics and molecular breeding: past achievements and future prospects. J. Genet. Genomics https://doi.org/10.1016/j.jgg.2024.07.016 (2024).

  11. Jiao, Y. et al. MSD1 regulates pedicellate spikelet fertility in sorghum through the jasmonic acid pathway. Nat. Commun. 9, 822 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gladman, N. et al. Fertility of pedicellate spikelets in sorghum is controlled by a jasmonic acid regulatory module. Int. J. Mol. Sci. 20, 4951 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dampanaboina, L. et al. Sorghum MSD3 encodes an ω-3 fatty acid desaturase that increases grain number by reducing jasmonic acid levels. Int. J. Mol. Sci. 20, 5359 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karper, R. E. & Stephens, J. C. Floral abnormalities in sorghum. J. Hered. 27, 183–194 (1936).

    Article  Google Scholar 

  15. Shang, E. et al. Robust control of floral meristem determinacy by position-specific multifunctions of KNUCKLES. Proc. Natl Acad. Sci. USA 118, e2102826118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Han, H., Liu, X. & Zhou, Y. Transcriptional circuits in control of shoot stem cell homeostasis. Curr. Opin. Plant Biol. 53, 50–56 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Laux, T., Mayer, K. F., Berger, J. & Jürgens, G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122, 87–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Schoof, H. et al. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100, 635–644 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Lohmann, J. U. et al. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105, 793–803 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Suzaki, T. et al. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development 131, 5649–5657 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Suzaki, T. et al. Conservation and diversification of meristem maintenance mechanism in Oryza sativa: function of the FLORAL ORGAN NUMBER2 gene. Plant Cell Physiol. 47, 1591–1602 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Chu, H. et al. The floral organ number4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice. Plant Physiol. 142, 1039–1052 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, Z. et al. Structural variation at the maize WUSCHEL1 locus alters stem cell organization in inflorescences. Nat. Commun. 12, 2378 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Deal, R. B. & Henikoff, S. Histone variants and modifications in plant gene regulation. Curr. Opin. Plant Biol. 14, 116–122 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Gan, E. S. et al. Jumonji demethylases moderate precocious flowering at elevated temperature via regulation of FLC in Arabidopsis. Nat. Commun. 5, 5098 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Wu, B. et al. Suppressing a phosphohydrolase of cytokinin nucleotide enhances grain yield in rice. Nat. Genet. 55, 1381–1389 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Li, Y. et al. Histone H3 lysine 27 trimethylation suppresses jasmonate biosynthesis and signaling to affect male fertility under high temperature in cotton. Plant Commun. 4, 100660 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou, L. et al. Gene duplication drove the loss of awn in sorghum. Mol. Plant 14, 1831–1845 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, Y. Z. et al. Coupling of H3K27me3 recognition with transcriptional repression through the BAH–PHD–CPL2 complex in Arabidopsis. Nat. Commun. 11, 6212 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu, Z. et al. The prevalence, evolution and chromatin signatures of plant regulatory elements. Nat. Plants 5, 1250–1259 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, J. et al. Molecular basis of locus-specific H3K9 methylation catalyzed by SUVH6 in plants. Proc. Natl Acad. Sci. USA 120, e2208525120 (2023).

    CAS  PubMed  Google Scholar 

  33. Ramakrishnan, M. et al. The role of LTR retrotransposons in plant genetic engineering: how to control their transposition in the genome. Plant Cell Rep. 42, 3–15 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Gibalová, A. et al. AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen. Plant Mol. Biol. 70, 581–601 (2009).

    Article  PubMed  Google Scholar 

  35. Yaish, M. W. et al. The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice. PLoS Genet. 6, e1001098 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nagasawa, N. et al. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130, 705–718 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Zhao, G. et al. Two ATP binding cassette G transporters, rice ATP binding cassette G26 and ATP binding cassette G15, collaboratively regulate rice male reproduction. Plant Physiol. 169, 2064–2079 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sloan, J. et al. Structural basis for the complex DNA binding behavior of the plant stem cell regulator WUSCHEL. Nat. Commun. 11, 2223 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Suzaki, T., Yoshida, A. & Hirano, H. Y. Functional diversification of CLAVATA3-related CLE proteins in meristem maintenance in rice. Plant Cell 20, 2049–2058 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kitagawa, M. & Jackson, D. Control of meristem size. Annu. Rev. Plant Biol. 70, 269–291 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Kurakawa, T. et al. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445, 652–655 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Rong, C. et al. Cytokinin oxidase/dehydrogenase family genes exhibit functional divergence and overlap in rice growth and development, especially in control of tillering. J. Exp. Bot. 73, 3552–3568 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Chickarmane, V. S., Gordon, S. P., Tarr, P. T., Heisler, M. G. & Meyerowitz, E. M. Cytokinin signaling as a positional cue for patterning the apical–basal axis of the growing Arabidopsis shoot meristem. Proc. Natl Acad. Sci. USA 109, 4002–4007 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schmülling, T., Werner, T., Riefler, M., Krupková, E. & Bartrina y Manns, I. Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J. Plant Res. 116, 241–252 (2003).

    Article  PubMed  Google Scholar 

  45. JIANG, L., QIAN, Q., MAO, L., ZHOU, Q.-Y. & ZHAI, W.-X. Characterization of the rice floral organ number mutant fon3. J. Integr. Plant Biol. 47, 100–106 (2005).

    Article  CAS  Google Scholar 

  46. Peng, Z. S., Martinek, P., Kosuge, K., Kuboyama, T. & Watanabe, N. Genetic mapping of a mutant gene producing three pistils per floret in common wheat. J. Appl. Genet. 49, 135–139 (2008).

    Article  PubMed  Google Scholar 

  47. Yuan, Z., Persson, S. & Zhang, D. Molecular and genetic pathways for optimizing spikelet development and grain yield. aBIOTECH 1, 276–292 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang, T. et al. LATERAL FLORET 1 induced the three-florets spikelet in rice. Proc. Natl Acad. Sci. USA 114, 9984–9989 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jiang, L. et al. A paracentric inversion suppresses genetic recombination at the FON3 locus with breakpoints corresponding to sequence gaps on rice chromosome 11L. Mol. Genet. Genomics 277, 263–272 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Li, Y. et al. Characterization and identification of a novel mutant fon(t) on floral organ number and floral organ identity in rice. J. Genet. Genomics 34, 730–737 (2007).

    Article  PubMed  Google Scholar 

  51. Guo, J. et al. Comparative transcriptome profiling of multi-ovary wheat under heterogeneous cytoplasm suppression. Sci. Rep. 9, 8301 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhu, X.-x et al. Genetic mapping and expressivity of a wheat multi-pistil gene in mutant 12TP. J. Integr. Agric. 18, 532–538 (2019).

    Article  CAS  Google Scholar 

  53. Zhang, X. et al. Enhancing rice panicle branching and grain yield through tissue-specific brassinosteroid inhibition. Science 383, eadk8838 (2024).

    Article  CAS  PubMed  Google Scholar 

  54. Xie, P., Liu, F. & Xie, Q. Manipulating hormones to mitigate trade-offs in crops. Plant Cell Environ. 47, 4903–4907 (2024).

    Article  CAS  PubMed  Google Scholar 

  55. Müller, R., Borghi, L., Kwiatkowska, D., Laufs, P. & Simon, R. Dynamic and compensatory responses of Arabidopsis shoot and floral meristems to CLV3 signaling. Plant Cell 18, 1188–1198 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Clark, S. E., Williams, R. W. & Meyerowitz, E. M. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89, 575–585 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Jeong, S., Trotochaud, A. E. & Clark, S. E. The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11, 1925–1934 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tanaka, W. et al. Axillary meristem formation in rice requires the WUSCHEL ortholog TILLERS ABSENT1. Plant Cell 27, 1173–1184 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lu, Z. et al. MONOCULM 3, an ortholog of WUSCHEL in rice, is required for tiller bud formation. J. Genet. Genomics 42, 71–78 (2015).

    Article  PubMed  Google Scholar 

  60. Bommert, P. et al. thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development 132, 1235–1245 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Rodriguez-Leal, D. et al. Evolution of buffering in a genetic circuit controlling plant stem cell proliferation. Nat. Genet. 51, 786–792 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tran, Q. H. et al. Mapping-by-sequencing via MutMap identifies a mutation in ZmCLE7 underlying fasciation in a newly developed EMS mutant population in an elite tropical maize inbred. Genes (Basel) 11, 281 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Je, B. I. et al. Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nat. Genet. 48, 785–791 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Taguchi-Shiobara, F., Yuan, Z., Hake, S. & Jackson, D. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev. 15, 2755–2766 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bommert, P., Nagasawa, N. S. & Jackson, D. Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat. Genet. 45, 334–337 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Zou, G. et al. Sorghum qTGW1a encodes a G-protein subunit and acts as a negative regulator of grain size. J. Exp. Bot. 71, 5389–5401 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Han, L. et al. Fine mapping of qGW1, a major QTL for grain weight in sorghum. Theor. Appl. Genet. 128, 1813–1825 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Xie, P. et al. Natural variation in Glume Coverage 1 causes naked grains in sorghum. Nat. Commun. 13, 1068 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, Y. et al. Loss of function of OsMADS34 leads to large sterile lemma and low grain yield in rice (Oryza sativa L.). Mol. Breed. 36, 147 (2016).

    Article  CAS  Google Scholar 

  70. Zhuang, H. et al. NONSTOP GLUMES1 encodes a C2H2 zinc finger protein that regulates spikelet development in rice. Plant Cell 32, 392–413 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Ren, D. et al. MORE FLORET1 encodes a MYB transcription factor that regulates spikelet development in rice. Plant Physiol. 184, 251–265 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xu, Q. et al. The C2H2 zinc-finger protein LACKING RUDIMENTARY GLUME 1 regulates spikelet development in rice. Sci. Bull. (Beijing) 65, 753–764 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Xu, Q. et al. LRG1 maintains sterile lemma identity by regulating OsMADS6 expression in rice. Sci. China Life Sci. 64, 1190–1192 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Ren, D. et al. ‘Two-floret spikelet’ as a novel resource has the potential to increase rice yield. Plant Biotechnol. J. 16, 351–353 (2018).

    Article  PubMed  Google Scholar 

  75. Li, W. et al. SAD1, an RNA polymerase I subunit A34.5 of rice, interacts with Mediator and controls various aspects of plant development. Plant J. 81, 282–291 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, D., Ma, X., Xie, Q. & Yu, F. Understanding and engineering of aroma compounds in crops. Seed Biol. https://doi.org/10.48130/seedbio-0023-0025 (2024).

  77. Zhang, L. et al. Selection signatures in Chinese sorghum reveals its unique liquor-making properties. Front. Plant Sci. 13, 923734 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. You, F. M. et al. BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinform. 9, 253 (2008).

    Article  Google Scholar 

  79. Gene Ontology Consortium: going forward. Nucleic Acids Res. 43, D1049–D1056 (2015).

  80. Ma, X. et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant 8, 1274–1284 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Wang, Q. et al. Histological and single-nucleus transcriptome analyses reveal the specialized functions of ligular sclerenchyma cells and key regulators of leaf angle in maize. Mol. Plant 17, 920–934 (2024).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (grant nos 32241038 to Q.X., 32472124 to P.X., 32201780 to P.X., 32241045 to Q.X. and 32241042 to F. Yu), the National High-Level Personnel of Special Support Program (grant no. 2024WRQB003 to P.X.), the National Key R&D Program of China (grant nos 2022YFD1500503, 2023YFD1200700 and 2023YFD1200704 to S.T.), the Shenzhen Science and Technology Program (grant no. JCYJ20240813151204006 to P.X.), the Moutai Group Research and Development Project (grant no. 2023011 to Q.X.), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDA0440302 to Q.X.), the ShenZhen Postdoctoral Funding Project (grant no. 77000*42100029 to P.X.) and the Fundamental Research Fund for the Central Universities (grant no. 77000-12240011 to P.X.).

Author information

Authors and Affiliations

Contributions

Q.X. and P.X. designed this project. P.X. and D.Z. wrote the manuscript. D.Z., P.X. and S.T. performed most of the experiments. D.Z., P.X., S.T., K.Z. and F.L. constructed multiple segregated populations and evaluated the yield traits in the field. D.Z. and P.X. collected the genotyping data for the linkage map construction. D.Z., P.X. and R.X. performed the transgenic experiments in sorghum. C.-G.D. and J.C. performed the ChIP–qPCR assay. F.L., L.K. and F. Yang performed RNA in situ hybridization. P.X., D.Z., F. Yu and C.L. analysed the data. All authors have read, discussed and contributed to the manuscript.

Corresponding authors

Correspondence to Peng Xie or Qi Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Hongning Tong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 DG1 is a single dominant locus for double-grain trait.

a, Seed morphology at filling stage of single-grain spikelet and IDGS and EDGS. IDGS, Ineffective double-grain spikelet. EDGS, Effective double-grain spikelet. Gl, Glume. Bar = 1 mm. b, Spikelet morphology of double-grain line NSL360516 and F.R. Miller, as well as three single-grain lines SC855, KS115 and BTx399. Upper and lower bar = 1 cm and 0.5 cm, respectively. c, Ratio of double-grain spikelet in NSL360516, SC855, BTx399, KS115, F1 (NSL360516 × SC855), F1 (NSL360516 × KS115), and F1 (NSL360516 × BTx399). d, Ratio of double-grain spikelet in F.R. Miller, F1 (F.R. Miller × SC855), F1 (F.R. Miller × KS115), and F1 (F.R. Miller × BTx399). e, Genetic analysis in three F2 populations derived from F2 (NSL360516 × SC855), F2 (NSL360516 × KS115), and F2 (NSL360516 × BTx399). Data are shown as mean ± SD, n = 3 biological replicates.

Source data

Extended Data Fig. 2 Construction of the NIL lines.

a, Through molecular markers assisted selection, the NIL lines were constructed from BTx399 and NSL360516 through self-crossing several generations. b, The genetic background of NIL-dg1 and NIL-DG1 lines. The red boxes indicate that the genotypes are derived from NSL360516. The background in white means genotypes is the same between the two NILs.

Extended Data Fig. 3 A chromosomal paracentric inversion in ORF5-KO mutant.

a, The chromosomal paracentric inversion fragment is 2077 bp. It occurred between sgRNA1 and sgRNA2 targets in the homozygous ORF5-KO line. b, Schematic diagram of the peptide sequence alignment of ORF5 and ORF5-KO.

Extended Data Fig. 4 The DG1 orthologs in crops.

a, Phylogenetic analysis of DG1 and its orthologs in different species, including sorghum, maize, Setaria italica, rice and Arabidopsis thaliana. The phylogenetic tree was constructed using the maximum likelihood method. b, Protein sequence alignment of SbDG1 (Sorghum bicolor), AtWUS (Arabidopsis), and ZmWUS1 (maize). The red box indicates the homeobox domain.

Extended Data Fig. 5 Number of stamens and pistils in NIL-dg1 and NIL-DG1.

a, Number of double pistils in NIL-dg1 and NIL-DG1. b, Number of stamens in NIL-dg1 and NIL-DG1. For each line, 200 spikelets were examined.

Source data

Extended Data Fig. 6 Gene expression of SbbZIP34, SbAP2-39 and SbABCG26 in NIL-dg1 and NIL-DG1.

a, Relative expression of SbbZIP34 in the NIL-dg1 and NIL-DG1 at YP1 stage. b, Relative expression of SbAP2-39 in the NIL-dg1 and NIL-DG1 at YP1 stage. c, Relative expression of SbABCG26 in the NIL-dg1 and NIL-DG1 at YP1 stage. Three biological repeats were performed. P value was calculated by two-tailed Student’s t test, *** P < 0.001, ** P < 0.01.

Source data

Extended Data Fig. 7 DG1 enhances grain number and grain yield in 2023.

Field-yield tests were conducted in Beijing in 2023 (See Methods). a, Representative mature panicle and spikelet morphology of NIL-dg1 and NIL-DG1. Left and right bar = 3 mm and 5 cm, respectively. b-c, Grain morphology and statistics of grain length (GL), grain width (GW) and grain thickness (GW) of NIL-dg1, IDGS and EDGS of NIL-DG1. n = 3. Bar = 5 mm. d-h, Statistical analysis of thousand grain weight (n = 3), grain number per panicle (n = 3), grain weight per panicle (n = 3), grain yield per plot (n = 3; plot size: 10 meters long and 4 meters wide, with row spacing set at 50 cm and plant spacing at 20 cm) in NIL-dg1 and NIL-DG1. Data are shown as mean ± SD. P value was determined by two-tailed Student’s t test, *** P < 0.001, ** P < 0.01.

Source data

Extended Data Fig. 8 DG1 enhances grain number and grain yield in different region.

Field-yield tests were conducted in ShenZhen in 2024. a, Representative mature panicle morphology of NIL-dg1 and NIL-DG1. Bar = 5 cm. be, Statistical analysis of thousand grain weight (n = 10), grain number per panicle (n = 8), grain yield per panicle (n = 10), grain yield per plot (n = 3, plot size: 4 meters long and 3 meters wide, with row spacing set at 50 cm and plant spacing at 20 cm) in NIL-dg1 and NIL-DG1. Data are shown as mean ± SD. P value was determined by two-tailed Student’s t test, *** P < 0.001, ** P < 0.01, * P < 0.05, ns: no significant difference.

Source data

Supplementary information

Reporting Summary

Supplementary Dataset 1

Downstream DEG detection for DG1.

Supplementary Dataset 2

Primers used in this study.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Tang, S., Chen, J. et al. Chromosomal inversion at the DG1 promoter drives double-grain spikelets and enhances grain yield in sorghum. Nat. Plants 11, 453–467 (2025). https://doi.org/10.1038/s41477-025-01937-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41477-025-01937-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing