Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comparative transcriptomics in ferns reveals key innovations and divergent evolution of the secondary cell walls

Abstract

Ferns are essential for understanding plant evolution; however, their large and intricate genomes have kept their genetic landscape largely unexplored, with only a few genomes sequenced and limited transcriptomic data available. To bridge this gap, we generated extensive RNA-sequencing data across various organs from 22 representative fern species, resulting in high-quality transcriptome assemblies. These data enabled us to construct a time-calibrated phylogeny for ferns, encompassing all major clades, which revealed numerous instances of whole-genome duplication. We highlighted the distinctiveness of fern genetics, discovering that half of the identified gene families are unique to ferns. Our exploration of fern cell walls through biochemical and immunological analyses uncovered the presence of the lignin syringyl unit, along with evidence of its independent evolution in ferns. Additionally, the identification of an unusual sugar in fern cell walls suggests a divergent evolutionary trajectory in cell wall biochemistry, probably influenced by gene duplication and sub-functionalization. To facilitate further research, we have developed an online database that includes preloaded genomic and transcriptomic data for ferns and other land plants. We used this database to demonstrate the independent evolution of lignocellulosic gene modules in ferns. Our findings provide a comprehensive framework illustrating the unique evolutionary journey ferns have undertaken since diverging from the last common ancestor of euphyllophytes more than 360 million years ago.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sampling, transcriptome assembly and species tree of major representatives of ferns.
Fig. 2: Gene functions in ferns.
Fig. 3: Lignin analysis of ferns.
Fig. 4: Polysaccharide analysis.
Fig. 5: Independent duplication of cell-wall-related modules in ferns.

Similar content being viewed by others

Data availability

The raw sequencing data are available at E-MTAB-13848, and the coding and protein sequences are available via Figshare at https://doi.org/10.6084/m9.figshare.26347330 (ref. 164). The co-expression networks are available at https://conekt.sbs.ntu.edu.sg/species/.

Code availability

The code used to perform the analyses is available on request.

References

  1. Kenrick, P. & Crane, P. R. The origin and early evolution of plants on land. Nature 389, 33–39 (1997).

    Article  CAS  Google Scholar 

  2. Lloyd, R. M. Mating systems and genetic load in pioneer and non-pioneer Hawaiian Pteridophyta. Bot. J. Linn. Soc. 69, 23–35 (1974).

    Article  Google Scholar 

  3. Ellwood, M. D. F. & Foster, W. A. Doubling the estimate of invertebrate biomass in a rainforest canopy. Nature 429, 549–551 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. González de León, S., Briones, O., Aguirre, A., Mehltreter, K. & Pérez-García, B. Germination of an invasive fern responds better than native ferns to water and light stress in a Mexican cloud forest. Biol. Invasions 23, 3187–3199 (2021).

    Article  Google Scholar 

  5. Pryer, K. M. et al. Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. Am. J. Bot. 91, 1582–1598 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. PPG I. A community-derived classification for extant lycophytes and ferns. J. Syst. Evol. 54, 563–603 (2016).

    Article  Google Scholar 

  7. Mehltreter, K. et al. (eds) Fern Ecology (Cambridge Univ. Press, 2010); https://doi.org/10.1017/CBO9780511844898

  8. Page, C. N. Ecological strategies in fern evolution: a neopteridological overview. Rev. Palaeobot. Palynol. 119, 1–33 (2002).

    Article  Google Scholar 

  9. Cao, H. et al. Phytochemicals from fern species: potential for medicine applications. Phytochem. Rev. 16, 379–440 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goswami, H. K., Sen, K. & Mukhopadhyay, R. Pteridophytes: evolutionary boon as medicinal plants. Plant Genet. Resour. 14, 328–355 (2016).

    Article  CAS  Google Scholar 

  11. Shukla, A. K. et al. Expression of an insecticidal fern protein in cotton protects against whitefly. Nat. Biotechnol. 34, 1046–1051 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Shen, H. et al. Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns. GigaScience 7, gix116 (2018).

    Article  PubMed  Google Scholar 

  13. Qi, X. et al. A well-resolved fern nuclear phylogeny reveals the evolution history of numerous transcription factor families. Mol. Phylogenet. Evol. 127, 961–977 (2018).

    Article  PubMed  Google Scholar 

  14. Nitta, J. H., Schuettpelz, E., Ramírez-Barahona, S. & Iwasaki, W. An open and continuously updated fern tree of life. Front. Plant Sci. 13, 909768 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rensing, S. A. Why we need more non-seed plant models. New Phytol. 216, 355–360 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Christenhusz, M. J. M. & Chase, M. W. Trends and concepts in fern classification. Ann. Bot. 113, 571–594 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Testo, W. & Sundue, M. A 4000-species dataset provides new insight into the evolution of ferns. Mol. Phylogenet. Evol. 105, 200–211 (2016).

    Article  PubMed  Google Scholar 

  18. Clark, J. W. Genome evolution in plants and the origins of innovation. New Phytol. 240, 2204–2209 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Chomicki, G., Coiro, M. & Renner, S. S. Evolution and ecology of plant architecture: integrating insights from the fossil record, extant morphology, developmental genetics and phylogenies. Ann. Bot. 120, 855–891 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Weng, J.-K. & Chapple, C. The origin and evolution of lignin biosynthesis. New Phytol. 187, 273–285 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Rencoret, J. et al. New insights on structures forming the lignin-like fractions of ancestral plants. Front. Plant Sci. 12, 740923 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Renault, H., Werck-Reichhart, D. & Weng, J.-K. Harnessing lignin evolution for biotechnological applications. Curr. Opin. Biotechnol. 56, 105–111 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Cronk, Q. C. B. Plant evolution and development in a post-genomic context. Nat. Rev. Genet. 2, 607–619 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Fernández, P. et al. A 160 Gbp fork fern genome shatters size record for eukaryotes. iScience 27, 109889 (2024).

  25. Khandelwal, S. Chromosome evolution in the genus Ophioglossum L. Bot. J. Linn. Soc. 102, 205–217 (1990).

    Article  Google Scholar 

  26. Marchant, D. B. et al. Dynamic genome evolution in a model fern. Nat. Plants 8, 1038–1051 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Klekowski, E. J. & Baker, H. G. Evolutionary significance of polyploidy in the pteridophyta. Science 153, 305–307 (1966).

    Article  PubMed  Google Scholar 

  28. Haufler, C. H. Ever since Klekowski: testing a set of radical hypotheses revives the genetics of ferns and lycophytes. Am. J. Bot. 101, 2036–2042 (2014).

    Article  PubMed  Google Scholar 

  29. Clark, J. et al. Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny. New Phytol. 210, 1072–1082 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Wood, T. E. et al. The frequency of polyploid speciation in vascular plants. Proc. Natl Acad. Sci. USA 106, 13875–13879 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakazato, T., Barker, M. S., Rieseberg, L. H. & Gastony, G. J. in Biology and Evolution of Ferns and Lycophytes (eds Haufler, C. H. & Ranker, T. A.) 175–198 (Cambridge Univ. Press, 2008); https://doi.org/10.1017/CBO9780511541827.008

  32. Barker, M. S. in Plant Genome Diversity Vol. 2: Physical Structure, Behaviour and Evolution of Plant Genomes (eds Greilhuber, J. et al.) 245–253 (Springer, 2013); https://doi.org/10.1007/978-3-7091-1160-4_15

  33. Baniaga, A. E. & Barker, M. S. Nuclear genome size is positively correlated with median LTR-RT insertion time in fern and lycophyte genomes. Am. Fern J. 109, 248–266 (2019).

    Article  Google Scholar 

  34. Huang, C.-H., Qi, X., Chen, D., Qi, J. & Ma, H. Recurrent genome duplication events likely contributed to both the ancient and recent rise of ferns. J. Integr. Plant Biol. 62, 433–455 (2020).

    Article  PubMed  Google Scholar 

  35. Soltis, D. E. & Soltis, P. S. Polyploidy and breeding systems in homosporous pteridophyta: a reevaluation. Am. Nat. 130, 219–232 (1987).

    Article  Google Scholar 

  36. Nakazato, T., Jung, M.-K., Housworth, E. A., Rieseberg, L. H. & Gastony, G. J. Genetic map-based analysis of genome structure in the homosporous fern Ceratopteris richardii. Genetics 173, 1585–1597 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marchant, D. B. et al. The C-Fern (Ceratopteris richardii) genome: insights into plant genome evolution with the first partial homosporous fern genome assembly. Sci. Rep. 9, 18181 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang, X. et al. The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence. Nat. Plants 8, 500–512 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, F.-W. et al. Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nat. Plants 4, 460–472 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fang, Y. et al. The genome of homosporous maidenhair fern sheds light on the euphyllophyte evolution and defences. Nat. Plants 8, 1024–1037 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhong, Y. et al. Genomic insights into genetic diploidization in the homosporous fern Adiantum nelumboides. Genome Biol. Evol. 14, evac127 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Leebens-Mack, J. H. et al. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679–685 (2019).

    Article  Google Scholar 

  43. Rahmatpour, N. et al. Analyses of Marsilea vestita genome and transcriptomes do not support widespread intron retention during spermatogenesis. New Phytol. 237, 1490–1494 (2023).

    Article  PubMed  Google Scholar 

  44. Vanneste, K., Sterck, L., Myburg, A. A., Van de Peer, Y. & Mizrachi, E. Horsetails are ancient polyploids: evidence from Equisetum giganteum. Plant Cell 27, 1567–1578 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, C. & Mirarab, S. ASTRAL-Pro 2: ultrafast species tree reconstruction from multi-copy gene family trees. Bioinformatics 38, 4949–4950 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Emms, D. M. & Kelly, S. STAG: species tree inference from all genes. Preprint at bioRxiv https://doi.org/10.1101/267914 (2018).

  47. Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307–1320 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, F.-G. et al. Genome size evolution of the extant lycophytes and ferns. Plant Divers. 44, 141–152 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chen, H. et al. Revisiting ancient polyploidy in leptosporangiate ferns. New Phytol. 237, 1405–1417 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Pelosi, J. A., Kim, E. H., Barbazuk, W. B. & Sessa, E. B. Phylotranscriptomics illuminates the placement of whole genome duplications and gene retention in ferns. Front. Plant Sci. 13, 882441 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Julca, I. et al. Comparative transcriptomic analysis reveals conserved programmes underpinning organogenesis and reproduction in land plants. Nat. Plants 7, 1143–1159 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Feng, X. et al. Genomes of multicellular algal sisters to land plants illuminate signaling network evolution. Nat. Genet. 56, 1018–1031 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Amorim-Silva, V. et al. TTL proteins scaffold brassinosteroid signaling components at the plasma membrane to optimize signal transduction in Arabidopsis. Plant Cell 31, 1807–1828 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kazan, K. A new twist in SA signalling. Nat. Plants 4, 327–328 (2018).

    Article  PubMed  Google Scholar 

  55. Li, F.-W. et al. Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nat. Plants 6, 259–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Monte, I. et al. Ligand-receptor co-evolution shaped the jasmonate pathway in land plants. Nat. Chem. Biol. 14, 480–488 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Piatkowski, B. T. et al. Phylogenomics reveals convergent evolution of red-violet coloration in land plants and the origins of the anthocyanin biosynthetic pathway. Mol. Phylogenet. Evol. 151, 106904 (2020).

    Article  PubMed  Google Scholar 

  58. Davies, K. M. et al. Evolution and function of red pigmentation in land plants. Ann. Bot. 130, 613–636 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Güngör, E. et al. Azolla ferns testify: seed plants and ferns share a common ancestor for leucoanthocyanidin reductase enzymes. New Phytol. 229, 1118–1132 (2021).

    Article  PubMed  Google Scholar 

  60. Hõrak, H., Kollist, H. & Merilo, E. Fern stomatal responses to ABA and CO2 depend on species and growth conditions. Plant Physiol. 174, 672–679 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Usadel, B. et al. Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ. 32, 1633–1651 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Pomar, F., Merino, F. & Barceló, A. R. O-4-Linked coniferyl and sinapyl aldehydes in lignifying cell walls are the main targets of the Wiesner (phloroglucinol–HCl) reaction. Protoplasma 220, 17–28 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Blaschek, L. et al. Cellular and genetic regulation of coniferaldehyde incorporation in lignin of herbaceous and woody plants by quantitative Wiesner staining. Front. Plant Sci. 11, 109 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yamashita, D., Kimura, S., Wada, M. & Takabe, K. Improved Mäule color reaction provides more detailed information on syringyl lignin distribution in hardwood. J. Wood Sci. 62, 131–137 (2016).

    Article  CAS  Google Scholar 

  65. Logan, K. J. & Thomas, B. A. Distribution of lignin derivatives in plants. New Phytol. 99, 571–585 (1985).

    Article  CAS  Google Scholar 

  66. Lu, F., Wang, C., Chen, M., Yue, F. & Ralph, J. A facile spectroscopic method for measuring lignin content in lignocellulosic biomass. Green Chem. 23, 5106–5112 (2021).

    Article  CAS  Google Scholar 

  67. Lapierre, C., Pollet, B. & Rolando, C. New insights into the molecular architecture of hardwood lignins by chemical degradative methods. Res. Chem. Intermed. 21, 397–412 (1995).

    Article  CAS  Google Scholar 

  68. Kairouani, A. et al. Cell-type-specific control of secondary cell wall formation by Musashi-type translational regulators in Arabidopsis. eLife 12, RP88207 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Proost, S. & Mutwil, M. CoNekT: an open-source framework for comparative genomic and transcriptomic network analyses. Nucleic Acids Res. 46, W133–W140 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Weng, J. K., Li, X., Stout, J. & Chapple, C. Independent origins of syringyl lignin in vascular plants. Proc. Natl. Acad. Sci. USA 105, 7887–7892 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Weng, J. K. et al. Convergent evolution of syringyl lignin biosynthesis via distinct pathways in the lycophyte Selaginella and flowering plants. Plant Cell 22, 1033–1045 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Werck-Reichhart, D. & Feyereisen, R. Cytochromes P450: a success story. Genome Biol. 1, reviews3003.1 (2000).

    Article  Google Scholar 

  73. Ferrari, C. et al. Expression atlas of Selaginella moellendorffii provides insights into the evolution of vasculature, secondary metabolism, and roots. Plant Cell https://doi.org/10.1105/tpc.19.00780 (2020).

  74. Biswal, A. K. et al. Comparison of four glycosyl residue composition methods for effectiveness in detecting sugars from cell walls of dicot and grass tissues. Biotechnol. Biofuels 10, 182 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mueller, K.-K. et al. Fern cell walls and the evolution of arabinogalactan proteins in streptophytes. Plant J. 114, 875–894 (2023).

    Article  CAS  PubMed  Google Scholar 

  76. Urbanowicz, B. R. et al. 4-O-Methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain of unknown function family 579 protein. Proc. Natl Acad. Sci. USA 109, 14253–14258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cantarel, B. L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, D233–D238 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Sampedro, J. et al. AtBGAL10 is the main xyloglucan β-galactosidase in Arabidopsis, and its absence results in unusual xyloglucan subunits and growth defects. Plant Physiol. 158, 1146–1157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gille, S. et al. O-acetylation of Arabidopsis hemicellulose xyloglucan requires AXY4 or AXY4L, proteins with a TBL and DUF231 domain. Plant Cell 23, 4041–4053 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rocha, J. et al. Structure of Arabidopsis thaliana FUT1 reveals a variant of the GT-B class fold and provides insight into xyloglucan fucosylation. Plant Cell 28, 2352–2364 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mikkelsen, M. D. et al. Ancient origin of fucosylated xyloglucan in charophycean green algae. Commun. Biol. 4, 754 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yuan, Y. et al. Mutations of Arabidopsis TBL32 and TBL33 affect xylan acetylation and secondary wall deposition. PLoS ONE 11, e0146460 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Jensen, J. K. et al. Identification of a xylogalacturonan xylosyltransferase involved in pectin biosynthesis in Arabidopsis. Plant Cell 20, 1289–1302 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chiniquy, D. et al. PMR5, an acetylation protein at the intersection of pectin biosynthesis and defense against fungal pathogens. Plant J. Cell Mol. Biol. 100, 1022–1035 (2019).

    Article  CAS  Google Scholar 

  85. Ishimaru, M., Smith, D. L., Mort, A. J. & Gross, K. C. Enzymatic activity and substrate specificity of recombinant tomato beta-galactosidases 4 and 5. Planta. 229, 447–456 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Temple, H. et al. Two members of the DUF579 family are responsible for arabinogalactan methylation in Arabidopsis. Plant Direct 3, e00117 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zhong, R., Cui, D. & Ye, Z.-H. Members of the DUF231 family are O-acetyltransferases catalyzing 2-O- and 3-O-acetylation of mannan. Plant Cell Physiol. 59, 2339–2349 (2018).

    CAS  PubMed  Google Scholar 

  88. Moller, I. et al. High-throughput mapping of cell-wall polymers within and between plants using novel microarrays. Plant J. Cell Mol. Biol. 50, 1118–1128 (2007).

    Article  CAS  Google Scholar 

  89. Fry, S. C., Nesselrode, B. H. W. A., Miller, J. G. & Mewburn, B. R. Mixed-linkage (1→3,1→4)-beta-d-glucan is a major hemicellulose of Equisetum (horsetail) cell walls. New Phytol. 179, 104–115 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Sørensen, I. et al. Mixed-linkage (1→3),(1→4)-beta-d-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls. Plant J. Cell Mol. Biol. 54, 510–521 (2008).

    Article  Google Scholar 

  91. Silva, G. B. et al. Cell wall polysaccharides from fern leaves: evidence for a mannan-rich Type III cell wall in Adiantum raddianum. Phytochemistry 72, 2352–2360 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Fry, S. C. Feruloylated pectins from the primary cell wall: their structure and possible functions. Planta 157, 111–123 (1983).

    Article  CAS  PubMed  Google Scholar 

  93. Lampugnani, E. R. et al. Cellulose synthesis—central components and their evolutionary relationships. Trends Plant Sci. 24, 402–412 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Tsekos, I. The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes. J. Phycol. 35, 635–655 (1999).

    Article  CAS  Google Scholar 

  95. Brown, R. M. Jr The biosynthesis of cellulose. J. Macromol. Sci. A 33, 1345–1373 (1996).

    Article  Google Scholar 

  96. Seifriz, W. The origin, composition, and structure of cellulose in the living plant. Protoplasma 21, 129–159 (1934).

    Article  CAS  Google Scholar 

  97. Pear, J. R., Kawagoe, Y., Schreckengost, W. E., Delmer, D. P. & Stalker, D. M. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc. Natl. Acad. Sci. USA 93, 12637–12642 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Harholt, J. et al. The glycosyltransferase repertoire of the spikemoss Selaginella moellendorffii and a comparative study of its cell wall. PLoS ONE 7, e35846 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yin, Y., Huang, J. & Xu, Y. The cellulose synthase superfamily in fully sequenced plants and algae. BMC Plant Biol. 9, 99 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Goubet, F. et al. Cell wall glucomannan in Arabidopsis is synthesised by CSLA glycosyltransferases, and influences the progression of embryogenesis. Plant J. Cell Mol. Biol. 60, 527–538 (2009).

    Article  CAS  Google Scholar 

  101. Cocuron, J.-C. et al. A gene from the cellulose synthase-like C family encodes a β-1,4 glucan synthase. Proc. Natl Acad. Sci. USA 104, 8550–8555 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang, W. et al. Arabidopsis CSLD1 and CSLD4 are required for cellulose deposition and normal growth of pollen tubes. J. Exp. Bot. 62, 5161–5177 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bernal, A. J. et al. Functional analysis of the cellulose synthase-like genes CSLD1, CSLD2, and CSLD4 in tip-growing Arabidopsis cells. Plant Physiol. 148, 1238–1253 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Burton, R. A. et al. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-beta-d-glucans. Science 311, 1940–1942 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Liu, X. et al. Genome-wide bioinformatics analysis of cellulose synthase gene family in common bean (Phaseolus vulgaris L.) and the expression in the pod development. BMC Genom. Data 23, 9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bringmann, M. et al. POM-POM2/CELLULOSE SYNTHASE INTERACTING1 is essential for the functional association of cellulose synthase and microtubules in Arabidopsis. Plant Cell 24, 163–177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang, Y. et al. LACCASE5 is required for lignification of the Brachypodium distachyon Culm. Plant Physiol. 168, 192–204 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Höfer, R. et al. Dual function of the cytochrome P450 CYP76 family from Arabidopsis thaliana in the metabolism of monoterpenols and phenylurea herbicides. Plant Physiol. 166, 1149–1161 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Rothfels, C. J. et al. The evolutionary history of ferns inferred from 25 low-copy nuclear genes. Am. J. Bot. 102, 1089–1107 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl Acad. Sci. USA 115, E2274–E2283 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Herendeen, P. S., Friis, E. M., Pedersen, K. R. & Crane, P. R. Palaeobotanical redux: revisiting the age of the angiosperms. Nat. Plants 3, 17015 (2017).

    Article  PubMed  Google Scholar 

  112. Condamine, F. L., Silvestro, D., Koppelhus, E. B. & Antonelli, A. The rise of angiosperms pushed conifers to decline during global cooling. Proc. Natl. Acad. Sci. USA 117, 28867–28875 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bowman, J. L. et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171, 287–304.e15 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Weng, J.-K., Banks, J. A. & Chapple, C. Parallels in lignin biosynthesis: a study in Selaginella moellendorffii reveals convergence across 400 million years of evolution. Commun. Integr. Biol. 1, 20–22 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Leroux, O. et al. Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns. BMC Plant Biol. 15, 56 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Bartels, D. & Classen, B. Structural investigations on arabinogalactan-proteins from a lycophyte and different monilophytes (ferns) in the evolutionary context. Carbohydr. Polym. 172, 342–351 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Roberts, A. W. et al. Functional characterization of a glycosyltransferase from the moss Physcomitrella patens involved in the biosynthesis of a novel cell wall arabinoglucan. Plant Cell 30, 1293–1308 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Taketa, S. et al. Functional characterization of barley betaglucanless mutants demonstrates a unique role for CslF6 in (1,3;1,4)-β-d-glucan biosynthesis. J. Exp. Bot. 63, 381–392 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Sperry, J. S. Evolution of water transport and xylem structure. Int. J. Plant Sci. 164, S115–S127 (2003).

    Article  Google Scholar 

  120. Baas, P. & Wheeler, E. A. Parallelism and reversibility in xylem evolution: a review. IAWA J. https://doi.org/10.1163/22941932-90000633 (1996).

  121. Ruprecht, C. et al. Famnet: a framework to identify multiplied modules driving pathway expansion in plants. Plant Physiol. 170, 1878–1894 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ruprecht, C. et al. Phylogenomic analysis of gene co-expression networks reveals the evolution of functional modules. Plant J. 90, 447–465 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1, 18 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-seq data. Nat. Biotechnol. 29, 644–652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article  PubMed  Google Scholar 

  127. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Sensalari, C., Maere, S. & Lohaus, R. ksrates: positioning whole-genome duplications relative to speciation events in KS distributions. Bioinformatics 38, 530–532 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).

    Article  Google Scholar 

  130. Dongen, S. M. van. Graph Clustering by Flow Simulation. PhD dissertation, Utrecht Univ. (2000); https://dspace.library.uu.nl/handle/1874/848

  131. Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5, 113 (2004).

    Article  Google Scholar 

  132. Yang, Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Zwaenepoel, A. & Van de Peer, Y. wgd—simple command line tools for the analysis of ancient whole-genome duplications. Bioinformatics 35, 2153–2155 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Proost, S. et al. i-ADHoRe 3.0—fast and sensitive detection of genomic homology in extremely large data sets. Nucleic Acids Res. 40, e11 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Steenwyk, J. L. et al. OrthoSNAP: a tree splitting and pruning algorithm for retrieving single-copy orthologs from gene family trees. PLoS Biol. 20, e3001827 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    Article  CAS  PubMed  Google Scholar 

  144. Lehtonen, S. et al. Environmentally driven extinction and opportunistic origination explain fern diversification patterns. Sci. Rep. 7, 4831 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Zwaenepoel, A. & Van de Peer, Y. Inference of ancient whole-genome duplications and the evolution of gene duplication and loss rates. Mol. Biol. Evol. 36, 1384–1404 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Löytynoja, A. Phylogeny-aware alignment with PRANK. Methods Mol. Biol. 1079, 155–170 (2014).

    Article  PubMed  Google Scholar 

  147. Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Szöllősi, G. J., Rosikiewicz, W., Boussau, B., Tannier, E. & Daubin, V. Efficient exploration of the space of reconciled gene trees. Syst. Biol. 62, 901–912 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Schwacke, R. et al. MapMan4: a refined protein classification and annotation framework applicable to multi-omics data analysis. Mol. Plant 12, 879–892 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Smith, A. R. et al. A classification for extant ferns. TAXON 55, 705–731 (2006).

    Article  Google Scholar 

  152. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Holm, L. Dali server: structural unification of protein families. Nucleic Acids Res. 50, W210–W215 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42, 243–246 (2024).

    Article  PubMed  Google Scholar 

  155. Gouy, M., Tannier, E., Comte, N. & Parsons, D. P. Seaview version 5: a multiplatform software for multiple sequence alignment, molecular phylogenetic analyses, and tree reconciliation. Methods Mol. Biol. 2231, 241–260 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Hoebler, C., Barry, J. L., David, A. & Delort-Laval, J. Rapid acid hydrolysis of plant cell wall polysaccharides and simplified quantitative determination of their neutral monosaccharides by gas–liquid chromatography. J. Agric. Food Chem. 37, 360–367 (1989).

    Article  CAS  Google Scholar 

  157. Blakeney, A. B., Harris, P. J., Henry, R. J. & Stone, B. A. A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr. Res. 113, 291–299 (1983).

    Article  CAS  Google Scholar 

  158. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mutwil, M. et al. Assembly of an interactive correlation network for the Arabidopsis genome using a novel heuristic clustering algorithm. Plant Physiol. 152, 29–43 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhang, H. et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46, W95–W101 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Johnson, K. L. et al. Pipeline to identify hydroxyproline-rich glycoproteins. Plant Physiol. 174, 886–903 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B Methodol. 57, 289–300 (1995).

    Article  Google Scholar 

  164. Ali, Z. CDS and PEP files. Figshare https://doi.org/10.6084/m9.figshare.26347330 (2024).

Download references

Acknowledgements

We acknowledge J. Fangel for contributions to Fig. 4e and S. Daniel for help with lignin biochemistry. We thank D. Maizels (http://www.scientific-art.com/) for the illustrations in Fig. 1. M.M. acknowledges funding from Singaporean Ministry of Education grant no. MOE-MOET32022-0002 ‘From tough pollen to soft matter’ and a Novo Nordisk Starting Grant. L.P. and B.C. (project no. 440046237) and J.d.V. (project no. 440231723; VR 132/4-2) acknowledge funding within the framework of MAdLand (http://madland.science), priority programme 2237 of the German Research Foundation (DFG). J.d.V. further thanks the European Research Council for funding under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 852725; ERC-StG ‘TerreStriAL’). S.d.V. acknowledges funding from the Lower Saxony Ministry of Science and Culture (Niedersachsen Vorab initiative) and DFG project no. 515101361. We thank L. Saulnier for discussion and help with identifying the unknown sugar. We also thank E. Haswell (https://elizabethhaswell.carrd.co) for her help with proofreading the manuscript. Finally, we thank J. C. Goh for his help in starting the project.

Author information

Authors and Affiliations

Authors

Contributions

Z.M.A. and B.C.H. were involved in the sampling of ferns. Z.M.A., Q.W.T., H.C., P.K.L., I.J., J.M.L., S.d.V., J.d.V., E.M. and Y.V.d.P. were involved in the bioinformatical analysis of the data. L.P. and B.C. were involved in the GC–MS and bioinformatical analyses. F.V., C.A., A.L. and R.S. were involved in tissue sectioning and microscopy and the lignin and sugar analyses. M.S.M. performed the sugar synthesis and analysis. B.J. and P.U. performed the CoMPP analysis. Z.M.A. and M.M. wrote the paper with help from all authors. M.M. conceptualized and supervised the project.

Corresponding author

Correspondence to Marek Mutwil.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Thais Almeida and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19.

Reporting Summary

Supplementary Information

Supplementary Methods.

Supplementary Data 1

Co-expression networks.

Supplementary Tables

Supplementary Tables 1–15.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, Z., Tan, Q.W., Lim, P.K. et al. Comparative transcriptomics in ferns reveals key innovations and divergent evolution of the secondary cell walls. Nat. Plants 11, 1028–1048 (2025). https://doi.org/10.1038/s41477-025-01978-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41477-025-01978-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing