Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Leaf venation network evolution across clades and scales

An Author Correction to this article was published on 11 July 2025

This article has been updated

Abstract

Leaf venation architecture varies greatly among living and fossil plants. However, we still have a limited understanding of when, why and in which clades new architectures arose and how they impacted leaf functioning. Using data from 1,000 extant and extinct (fossil) plants, we reconstructed approximately 400 million years of venation evolution across clades and vein sizes. Overall, venation networks evolved from having fewer veins and less smooth loops to having more veins and smoother loops, but these changes only occurred in small and medium vein sizes. The diversity of architectural designs increased biphasically, first peaking in the Paleozoic, then decreasing during the Cretaceous, then increasing again in the Cenozoic, when recent angiosperm lineages initiated a second and ongoing phase of diversification. Vein evolution was not associated with temperature and CO2 fluctuations but was associated with insect diversification. Our results highlight the complexity of the evolutionary trajectory and potential drivers of venation network architecture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Time-calibrated phylogeny of 1,000 vascular plant taxa.
Fig. 2: Examples of leaf networks with low and high values for four architecture traits.
Fig. 3: Evolutionary trends in four leaf venation architecture traits across vein sizes (small, medium, large) for the entire phylogeny of vascular plants.
Fig. 4: Evolutionary trends in individual leaf venation architecture traits across vein sizes and plant clades.
Fig. 5: The venation architectural space of vascular plants and its variation over time.
Fig. 6: Variation in leaf venation architecture compared to abiotic and biotic proxies across the Phanerozoic eon.

Similar content being viewed by others

Data availability

The data needed to reproduce all analyses are publicly available on Zenodo at https://doi.org/10.5281/zenodo.13300782 (ref. 66). The original cleared leaf images, leaf masks, extracted networks and all LeafVeinCNN outputs for the 122 leaf samples collected at the UCBG at Berkeley are available on Dryad at https://doi.org/10.5061/dryad.1g1jwsv36 (ref. 67). Network segmentations and leaf masks of all other 878 samples are available on Zenodo at https://doi.org/10.5281/zenodo.13300782 (ref. 66) and https://doi.org/10.5281/zenodo.15217651 (ref. 68). These three previous datasets also contain high-resolution cleared leaf images from Ecuador, Costa Rica, Ghana and UCMP collections. Original leaf cleared images of all other extant species are available via Wilf collection at https://phytokeys.pensoft.net/article/72350/ and Smithsonian National Cleared Leaf Collection at https://collections.peabody.yale.edu/pb/nclc/. Original fossil leaf images are publicly available at https://peabody.yale.edu/, www.gbif.org, https://www.museumfuernaturkunde.berlin/, https://ucmpdb.berkeley.edu/, https://www.floridamuseum.ufl.edu/, https://search.museums.ualberta.ca/, https://ucmp.berkeley.edu/collections/paleobotany-collection/, https://phytokeys.pensoft.net/article/72350/, https://doi.org/10.1016/j.palwor.2017.01.003, https://doi.org/10.1080/14772019.2014.936974, https://doi.org/10.1080/11035890902857846, https://doi.org/10.1016/j.revpalbo.2009.08.004, https://doi.org/10.1016/j.revpalbo.2017.08.003, https://doi.org/10.1515/acpa-2017-0012 and https://api.semanticscholar.org/CorpusID:135128574. World Plants (https://worldplants.de/), Paleobiology (https://paleobiodb.org/) and Fossilworks (fossilworks.org) databases were used to standardize species names. TimeTree: the timescale of life (https://timetree.org/) database was used to recalibrate the age of internal nodes of the phylogenetic tree.

Code availability

The R code needed to reproduce all analyses and figures is publicly available on Zenodo at https://doi.org/10.5281/zenodo.13300782 (ref. 66).

Change history

References

  1. Boyce, C. K., Brodribb, T. J., Feild, T. S. & Zwieniecki, M. A. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proc. R. Soc. B 276, 1771–1776 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sack, L. & Scoffoni, C. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol. 198, 983–1000 (2013).

    Article  PubMed  Google Scholar 

  3. Blonder, B. et al. Linking functional traits to multiscale statistics of leaf venation networks. New Phytol. 228, 1796–1810 (2020).

    Article  PubMed  Google Scholar 

  4. Matos, I. S. et al. Leaf venation network architecture coordinates functional trade‐offs across vein spatial scales: evidence for multiple alternative designs. New Phytol. 7244, 407–425 (2024). nph.2003.

    Article  Google Scholar 

  5. Bres, J., Sepulchre, P., Viovy, N. & Vuichard, N. The Cretaceous physiological adaptation of angiosperms to a declining pCO2: a modeling approach emulating paleo-traits. Biogeosciences https://doi.org/10.5194/bg-2021-139 (2021).

  6. Beerling, D. J. Leaf evolution: gases, genes and geochemistry. Ann. Bot. 96, 345–352 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brodribb, T. J. & Feild, T. S. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol. Lett. 13, 175–183 (2010).

    Article  PubMed  Google Scholar 

  8. Feild, T. S. et al. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution. Proc. Natl Acad. Sci. USA 108, 8363–8366 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boyce, C. K. & Knoll, A. H. Evolution of developmental potential and the multiple independent origins of leaves in Paleozoic vascular plants. Paleobiology 28, 70–100 (2002).

    Article  Google Scholar 

  10. Boyce, C. K. Patterns of segregation and convergence in the evolution of fern and seed plant leaf morphologies. Paleobiology 31, 117–140 (2005).

    Article  Google Scholar 

  11. Walls, R. L. Angiosperm leaf vein patterns are linked to leaf functions in a global‐scale data set. Am. J. Bot. 98, 244–253 (2011).

    Article  PubMed  Google Scholar 

  12. Kawai, K. & Okada, N. Roles of major and minor vein in leaf water deficit tolerance and structural properties in 11 temperate deciduous woody species. Trees 32, 1573–1582 (2018).

    Article  Google Scholar 

  13. Kawai, K. & Okada, N. How are leaf mechanical properties and water‐use traits coordinated by vein traits? A case study in Fagaceae. Funct. Ecol. 30, 527–536 (2016).

    Article  Google Scholar 

  14. Katifori, E., Szöllősi, G. J. & Magnasco, M. O. Damage and fluctuations induce loops in optimal transport networks. Phys. Rev. Lett. 104, 048704 (2010).

    Article  PubMed  Google Scholar 

  15. Benton, M. J., Wilf, P. & Sauquet, H. The Angiosperm Terrestrial Revolution and the origins of modern biodiversity. New Phytol. 233, 2017–2035 (2022).

    Article  PubMed  Google Scholar 

  16. Castiglione, S. et al. A new method for testing evolutionary rate variation and shifts in phenotypic evolution. Methods Ecol. Evol. 9, 974–983 (2018).

    Article  Google Scholar 

  17. Scotese, C. R., Song, H., Mills, B. J. W. & Van Der Meer, D. G. Phanerozoic paleotemperatures: the earth’s changing climate during the last 540 million years. Earth Sci. Rev. 215, 103503 (2021).

    Article  CAS  Google Scholar 

  18. Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Condamine, F. L., Clapham, M. E. & Kergoat, G. J. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence? Sci. Rep. 6, 19208 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Castiglione, S., Serio, C., Mondanaro, A., Melchionna, M. & Raia, P. Fast production of large, time‐calibrated, informal supertrees with tree.merger. Palaeontology 65, e12588 (2022).

    Article  Google Scholar 

  21. Sack, L. et al. Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nat. Commun. 3, 837 (2012).

    Article  PubMed  Google Scholar 

  22. De Boer, H. J., Eppinga, M. B., Wassen, M. J. & Dekker, S. C. A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution. Nat. Commun. 3, 1221 (2012).

    Article  PubMed  Google Scholar 

  23. Brodribb, T. J., Feild, T. S. & Sack, L. Viewing leaf structure and evolution from a hydraulic perspective. Funct. Plant Biol. 37, 488 (2010).

    Article  Google Scholar 

  24. Blonder, B., Violle, C., Bentley, L. P. & Enquist, B. J. Venation networks and the origin of the leaf economics spectrum. Ecol. Lett. 14, 91–100 (2011).

    Article  PubMed  Google Scholar 

  25. Silvestro, D., Cascales‐Miñana, B., Bacon, C. D. & Antonelli, A. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record. New Phytol. 207, 425–436 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Katifori, E. & Magnasco, M. O. Quantifying loopy network architectures. PLoS ONE 7, e37994 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brodribb, T. J., Feild, T. S. & Jordan, G. J. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol. 144, 1890–1898 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Niklas, K. J. Morphological evolution through complex domains of fitness. Proc. Natl Acad. Sci. USA 91, 6772–6779 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boyce, C. K. & Leslie, A. B. The paleontological context of angiosperm vegetative evolution. Int. J. Plant Sci. 173, 561–568 (2012).

    Article  Google Scholar 

  30. Ramírez-Barahona, S., Sauquet, H. & Magallón, S. The delayed and geographically heterogeneous diversification of flowering plant families. Nat. Ecol. Evol. 4, 1232–1238 (2020).

    Article  PubMed  Google Scholar 

  31. Blonder, B., Royer, D. L., Johnson, K. R., Miller, I. & Enquist, B. J. Plant ecological strategies shift across the Cretaceous–Paleogene boundary. PLoS Biol. 12, e1001949 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sperry, J. S., Hacke, U. G., Feild, T. S., Sano, Y. & Sikkema, E. H. Hydraulic consequences of vessel evolution in angiosperms. Int. J. Plant Sci. 168, 1127–1139 (2007).

    Article  Google Scholar 

  33. Feild, T. S. & Wilson, J. P. Evolutionary voyage of angiosperm vessel structure-function and its significance for early angiosperm success. Int. J. Plant Sci. 173, 596–609 (2012).

    Article  Google Scholar 

  34. Ueno, O., Kawano, Y., Wakayama, M. & Takeda, T. Leaf vascular systems in C3 and C4 grasses: a two-dimensional analysis. Ann. Bot. 97, 611–621 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hughes, M., Gerber, S. & Wills, M. A. Clades reach highest morphological disparity early in their evolution. Proc. Natl Acad. Sci. USA 110, 13875–13879 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oyston, J. W., Hughes, M., Gerber, S. & Wills, M. A. Why should we investigate the morphological disparity of plant clades? Ann. Bot. 117, 859–879 (2016).

    Article  PubMed  Google Scholar 

  37. Beerling, D. J. & Berner, R. A. Feedbacks and the coevolution of plants and atmospheric CO2. Proc. Natl Acad. Sci. USA 102, 1302–1305 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Labandeira, C. C. & Currano, E. D. The fossil record of plant-insect dynamics. Annu. Rev. Earth Planet. Sci. 41, 287–311 (2013).

    Article  CAS  Google Scholar 

  39. Coley, P. D. & Barone, J. A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335 (1996).

    Article  Google Scholar 

  40. Wiens, J. J., Lapoint, R. T. & Whiteman, N. K. Herbivory increases diversification across insect clades. Nat. Commun. 6, 8370 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Rashid War, A. et al. Plant defense against herbivory and insect adaptations. AoB Plants https://doi.org/10.1093/aobpla/ply037 (2018).

    Article  Google Scholar 

  42. Wilf, P. et al. An image dataset of cleared, X-rayed, and fossil leaves vetted to plant family for human and machine learning. PhytoKeys 187, 93–128 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Matos, I. S. et al. Leaf architecture and functional traits for 122 species at the University of California Botanical Garden at Berkeley. Ecology 105, e4436 (2024).

    Article  PubMed  Google Scholar 

  44. Niewiadomski, I. et al. A comprehensive illustrated protocol for clearing, mounting, and imaging leaf venation networks. Appl. Plant Sci. 13, e70002 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Deng, S.-H. et al. Plant fossils from the Lower Jurassic coal-bearing formation of central Inner Mongolia of China and their implications for palaeoclimate. Palaeoworld 26, 279–316 (2017).

    Article  Google Scholar 

  46. Escapa, I. H., Bomfleur, B., Cuneo, N. R. & Scasso, R. A new marattiaceous fern from the Lower Jurassic of Patagonia (Argentina): the renaissance of Marattiopsis. J. Syst. Palaeontol. 13, 677–689 (2015).

    Article  Google Scholar 

  47. McLoughlin, S. & Pott, C. The Jurassic flora of Western Australia. GFF 131, 113–136 (2009).

    Article  Google Scholar 

  48. Pott, C. & McLoughlin, S. Bennettitalean foliage in the Rhaetian–Bajocian (latest Triassic–Middle Jurassic) floras of Scania, southern Sweden. Rev. Palaeobot. Palynol. 158, 117–166 (2009).

    Article  Google Scholar 

  49. Na, Y. et al. A brief introduction to the Middle Jurassic Daohugou flora from Inner Mongolia, China. Rev. Palaeobot. Palynol. 247, 53–67 (2017).

    Article  Google Scholar 

  50. Pott, C. & Jiang, B. Plant remains from the Middle–Late Jurassic Daohugou site of the Yanliao Biota in Inner Mongolia, China. Acta Palaeobot. 57, 185–222 (2017).

    Article  Google Scholar 

  51. Scanu, G. G., Kustatscher, E. & Pittau, P. The Jurassic plant fossils of the Lovisato Collection: preliminary notes. Boll. Soc. Paleontol. Ital. 51, 71–84 (2012).

    Google Scholar 

  52. McElwain, J. C., Yiotis, C. & Lawson, T. Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution. New Phytol. 209, 94–103 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, J. & Qian, H. U. Taxonstand: an R package for standardizing scientific names of plants and animals. Plant Divers. 45, 1–5 (2023).

    Article  PubMed  Google Scholar 

  54. The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).

    Article  Google Scholar 

  55. Jin, Y. & Qian, H. V.PhyloMaker2: an updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers. 44, 335–339 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Cleal, C. J. & Shute, C. H. The systematic and palaeoecological value of foliage anatomy in Late Palaeozoic medullosalean seed-plants. J. Syst. Palaeontol. 10, 765–800 (2012).

    Article  Google Scholar 

  58. Serio, C. et al. Macroevolution of toothed whales exceptional relative brain size. Evol. Biol. 46, 332–342 (2019).

    Article  Google Scholar 

  59. Xu, H., Blonder, B., Jodra, M., Malhi, Y. & Fricker, M. Automated and accurate segmentation of leaf venation networks via deep learning. New Phytol. 229, 631–648 (2021).

    Article  PubMed  Google Scholar 

  60. Blonder, B. et al. Structural and defensive roles of angiosperm leaf venation network reticulation across an Andes–Amazon elevation gradient. J. Ecol. 106, 1683–1699 (2018).

    Article  Google Scholar 

  61. Castiglione, S. et al. Simultaneous detection of macroevolutionary patterns in phenotypic means and rate of change with and within phylogenetic trees including extinct species. PLoS ONE 14, e0210101 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zuntini, A. R. et al. Phylogenomics and the rise of the angiosperms. Nature 629, 843–850 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Article  Google Scholar 

  64. Guillerme, T. dispRity: a modular R package for measuring disparity. Methods Ecol. Evol. 9, 1755–1763 (2018).

    Article  Google Scholar 

  65. Guillerme, T. & Cooper, N. Time for a rethink: time sub‐sampling methods in disparity‐through‐time analyses. Palaeontology 61, 481–493 (2018).

    Article  Google Scholar 

  66. Matos, I. S., et al. Macroevolutionary trends in leaf venation network architecture. Zenodo https://doi.org/10.5281/zenodo.13300782 (2025).

  67. Matos, I., et al. Leaf architecture and functional traits for 122 species at the University of California at Berkeley botanical garden. Dryad https://doi.org/10.5061/dryad.1g1jwsv36 (2024).

  68. Boakye, M., et al. Leaf venation network architectural traits along a forest-savannah gradient in Ghana. Zenodo https://doi.org/10.5281/zenodo.15217651 (2025).

Download references

Acknowledgements

This study was supported by the US National Science Foundation (grant DEB-2025282, B.B.) with supplements from the Research Experience for Undergraduates, Research Experience for Post-Baccalaureate Students and Research Experience for Teachers programs, the University of California at Berkeley Sponsored Projects for Undergraduate Research program, and the UK Natural Environment Research Council (NE/M019160/1, M.F.). Ghana samples were collected under permit of the Forestry Research Institute of Ghana (FORIG, M.B.) at Kumasi, Ghana. Costa Rica samples were collected under permit ACOPAC-INV-RES-002-11, issued to B.B. by the Ministerio de Ambiente, Energía y Telecomunicaciones, Área de Conservación del Pacífico Central. Ecuador samples were collected under Ministerio Del Ambiente permit 004-2019-IC-PNY-DPAO/AVS and exported under permit MAE-DPAO-2019-1275-O. Ecuador field sampling efforts were funded by CTFS ForestGeo grants program and the Arizona State University WAESO program, which funded the undergraduate research technicians that processed the Ecuador leaf samples. We acknowledge P. Wilf for organizing and publishing a large image database of extant cleared and fossil leaves and thank him for providing useful feedback on a first draft of this paper. We thank S. Castiglione and P. Raia for providing input on RRphylo, and S. Rifai for providing computational support for the bootstrapping analysis. We are grateful to all staff of the UCBG at Berkeley for the logistical support, especially to the horticulturists E. Fenner, E. Hupperts, J. Fong, N. Gapsis, G. Dollarhide, S. Warsh, J. Bonham and C. Rieder, who helped us with sample collection.

Author information

Authors and Affiliations

Authors

Contributions

B.W.B., M.F., L.M.T.A. and B.J.E. acquired funding. I.S.M. and B.W.B. designed the study. M.F. developed the program for leaf venation extraction, which was improved by B.W.B., S.S., S.M. and C.T., using venation images hand-traced by C.P., N.V. and H.J.P. H.F. and D.M.E. provided logistical support to access the UCBG living collections and the UCMP cleared leaf collections, respectively. I.N. led a lab team group responsible for clearing (S.C., M.A., A.C., M.S., N.Y.) and imaging (A.E.) the UCBG leaf samples. L.M.T.A., E.G.H., R.E.C., M.R. and M.A.D. collected and prepared the Ecuador leaf samples. M.B. collected the Ghana leaf samples. B.B. collected the Costa Rica leaf samples with funding from B.J.E. E.G.H. collected the Ecuador leaf samples with funding from L.M.T.A. E.X. selected and imaged the UCMP leaf samples. B.V., J.M., N.V., M.B., I.S.M. and C.P. hand-traced leaf images and prepared leaf masks of extant species, while M.B.F., R.J.W. and J.L. hand-traced fossil leaf images. B.V., J.M., M.S. and I.S.M. used the LeafVeinCNN program to extract the leaf venation networks and the leaf architectural traits. K.D. provided critical support for the data analysis. I.S.M. analysed the data and drafted the paper. All authors contributed to and revised the paper.

Corresponding author

Correspondence to Ilaine Silveira Matos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Christopher Baraloto and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Evolutionary rates of leaf venation architecture traits across vein sizes.

a, Vein density - VD (F: - −0.72; CI: −0.16/0.55; P-value < 0.01); b, Minimum spanning tree ratio - MST (F: −1.43; CI: −0.007/1.43; P-value < 0.01); c, Loop elongation ratio - ER (F: 0.58; CI: 1.44/0.87; P-value < 0.01); d, Loop circularity ratio - CR (F: −1.20; CI: 0.15/1.35; P-value < 0.01). Letters indicate significant differences (p-value < 0.05) in two-sided Wilcoxon signed-rank test followed by Bonferroni p-value correction. Data is presented as median and the Kernel Density Estimation boundary.

Extended Data Fig. 2 Classification of veins into three size classes (small, medium, large).

(a) Density plot of scaled vein width for all 1,000 species evaluated in this study. The red lines indicate the limits used to define the three vein size classes. (b) Detail of the leaf venation network for the species Aextoxicon punctatum, showing the small, medium, and large veins. Distribution of (c) Vein density (VD), (d) Minimum spanning tree ratio (MST), (e) Loop circularity ratio (CR), and (f) Loop elongation ratio (ER) across vein widths for A. punctatum. Panels d-g show the median values for each venation trait at each vein size class.

Extended Data Fig. 3 Evolutionary trends in leaf venation architecture traits across plant clades and vein sizes.

a-c, Vein density (VD). d-f, Minimum spanning tree ratio (MST). g-i, Loop elongation ratio (ER). j-l, Loop circularity ratio (CR). In each panel the bottom axis and jittered points show the venation trait distribution in each plant clade, with the median value highlighted by the hollow black circle. The top axis and dark red bars show the mean trait evolutionary rate per 10 million years. An ‘*’ indicates a significant linear evolutionary trend (α = 0.05) of increase (positive values) or decrease (negative values) in mean trait values over time according to phylogenetic ridge regressions.

Extended Data Fig. 4 Results of disparity through time analysis under a gradual model of evolution for each vascular plant clade.

a, ferns; b, gymnosperms; c, basal angiosperms; d, monocots; e, basal eudicots; f, rosids; g, asterids. Each panel shows the temporal dynamics of two complementary metrics of disparity, the sum of variances (describing the position occupied in the venation architectural) and the median of centroids (describing the extent of space occupied). Lines represent the median values for each time-slice of ca. 10 million years of duration and the corresponding standard deviation.

Extended Data Fig. 5 Cumulative occupation of the venation architectural spaces for different plant clades over the geological time.

First (PC1) and second (PC2) principal components of leaf venation architecture traits (VD, MST, ER, CR) at three vein sizes (small, medium, large) across plant clades. (a) Present; (b) 5 million years ago (Ma); (c) 25 Ma; (d) 50 Ma; (e) 75 Ma; (f) 100 Ma; (g) 150 Ma; (h) 200 Ma; (i) 250 Ma; (j) 300 Ma; (k) 350 Ma; (l) PCA loadings separated from the PCA scored for ease of visualization. 95% confidence ellipses enclose the data at each clade. Colored inserts illustrate some of the changes in architectural designs over time.

Extended Data Fig. 6 Results of time-series analysis for identifying potential abiotic (global CO2 atmospheric concentration and global mean temperature) and biotic (insect diversification rates) drivers of leaf venation architecture evolution in vascular plants.

Vein density (VD, mm mm−2) of small (a-c) and medium (d-f) veins; Minimum spanning tree ratio (MST) of small (g-i) and medium (j-l) veins; Loop circularity ratio (CR) of small (m-o) and medium (p-r) veins; Disparity metrics of sum of variances (s-u) and median of centroids (v-y). Venation traits (VD, MST, CR) depicted in a-r were obtained by collating ancestral state estimates at the phylogenetic tree internal nodes to measured trait values at the tree tips.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Notes 1 and 2.

Reporting Summary

Supplementary Data

Supplementary Data 1–8.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matos, I.S., Vu, B., Mann, J. et al. Leaf venation network evolution across clades and scales. Nat. Plants 11, 1127–1141 (2025). https://doi.org/10.1038/s41477-025-02011-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41477-025-02011-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing