Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Contrasting age-dependent leaf acclimation strategies drive vegetation greening across deciduous broadleaf forests in mid- to high latitudes

Subjects

Abstract

Increasing leaf area and extending vegetation growing seasons are two primary drivers of global greening, which has emerged as one of the most significant responses to climate change. However, it remains unclear how these two leaf acclimation strategies would vary across forests at a large spatial scale. Here, using multiple satellite-based datasets and field measurements, we analysed the temporal changes (Δ) in maximal leaf area index (LAImax) and length of the growing season (LOS) from 2002 to 2021 across deciduous broadleaf forests (DBFs) in the middle to high latitudes. Contrary to the widely held assumption of coordination, our results revealed a negative correlation between ΔLAImax and ΔLOS. Notably, the trade-offs between ΔLAImax and ΔLOS were strongly explained by stand age. Younger DBFs, with lower baseline LAImax, predominantly located in eastern Asia, displayed an increase in LAImax with small changes in LOS. This acquisitive strategy facilitated younger DBFs to grow more photosynthetically efficient leaves with low leaf mass per area, enhancing their light use efficiency. Conversely, older DBFs with a higher baseline LAImax, primarily located in North America and Europe, extended their LOS by increasing leaf mass per area. This conservative strategy facilitated older DBFs to produce thicker, but less photosynthetically efficient leaves, resulting in decreased light use efficiency. Our findings offer new insights into the contrasting changes in leaf area and growing season length and highlight their divergent impacts on ecosystem functioning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Contrasting changes in maximal leaf area index (∆LAImax) and length of growing season (∆LOS) from 2002 to 2021 across DBFs in the middle to high latitudes.
Fig. 2: Temporal changes in leaf mass per area (∆LMA) and leaf moisture content (∆LMC) from 2002 to 2016 across DBFs in the middle to high latitudes.
Fig. 3: Cascading influences on changes in ecosystem light use efficiency (∆LUE) from 2002 to 2016 across DBFs in the middle to high latitudes.
Fig. 4: Schematic representation of age-dependent leaf acclimation strategies driving vegetation greening across DBFs in the middle to high latitudes.

Similar content being viewed by others

Data availability

All the relevant data come from publicly available sources. The GLASS LAI (01B01.V60) product is available at http://www.glass.umd.edu/LAI/MODIS/0.05D/; the satellite leaf unfolding and dormancy dates product is available at https://lpdaac.usgs.gov/products/mcd12q2v061/; the MPI-BGC stand age data are available at https://doi.org/10.17871/ForestAgeBGI.2021; the MODIS Nadir BRDF-Adjusted Reflectance (NBAR) products (MCD43A4) are available via Google Earth Engine at https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD43A4; the LMC data are available via Zenodo at https://doi.org/10.5281/zenodo.6545571; the BESS v2.0 GPP data are available at https://www.environment.snu.ac.kr/bessv2; the GLASS PAR (04B01.V60) product is available at http://www.glass.umd.edu/PAR/; the GLASS fAPAR (09B01.V60) product is available at http://www.glass.umd.edu/FAPAR/MODIS/0.05D/; the Global Land cover data are available at https://lpdaac.usgs.gov/products/mcd12c1v061/; the MOD13Q1 V061 EVI data are available at https://lpdaac.usgs.gov/products/mod13q1v061/; the in situ leaf unfolding date products of Europe, Russia and the USA, respectively, are available at http://www.pep725.eu, https://doi.org/10.1038/s41597-020-0376-z and https://www.usanpn.org/data/observational; the TRY database is available at https://www.try-db.org/; the MODIS FireCCILT11 (version 1.1) data are available at https://catalogue.ceda.ac.uk/uuid/b1bd715112ca43ab948226d11d72b85e/; the GFW Global Forest Change v1.9 data are available at https://glad.earthengine.app/view/global-forest-change; the Palmer Drought Severity Index data are available at https://climate.northwestknowledge.net/TERRACLIMATE.

Code availability

The code used for this study is available via Zenodo at https://doi.org/10.5281/zenodo.15765680 (ref. 87).

References

  1. Guo, K. et al. Leaf morphogenesis: the multifaceted roles of mechanics. Mol. Plant 15, 1098–1119 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Liu, J. et al. Evidence for widespread thermal acclimation of canopy photosynthesis. Nat. Plants 10, 1919–1927 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Piao, S. et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun. 6, 6911 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    Article  CAS  Google Scholar 

  5. Jian, D. et al. Limited driving of elevated CO2 on vegetation greening over global drylands. Environ. Res. Lett. 18, 104024 (2023).

    Article  CAS  Google Scholar 

  6. Buitenwerf, R., Rose, L. & Higgins, S. I. Three decades of multi-dimensional change in global leaf phenology. Nat. Clim. Change 5, 364–368 (2015).

    Article  Google Scholar 

  7. Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wu, C. et al. Contrasting responses of autumn-leaf senescence to daytime and night-time warming. Nat. Clim. Change 8, 1092–1096 (2018).

    Article  CAS  Google Scholar 

  9. Chen, C. et al. Biophysical impacts of Earth greening largely controlled by aerodynamic resistance. Sci. Adv. 6, eabb1981 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xia, J. et al. Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proc. Natl Acad. Sci. USA 112, 2788–2793 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang, K. et al. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evol. 2, 1897–1905 (2018).

    Article  PubMed  Google Scholar 

  12. Zhu, W. et al. Extension of the growing season due to delayed autumn over mid and high latitudes in North America during 1982–2006. Glob. Ecol. Biogeogr. 21, 260–271 (2012).

    Article  Google Scholar 

  13. Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Zani, D. et al. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Menzel, A. & Fabian, P. Growing season extended in Europe. Nature 397, 659 (1999).

    Article  CAS  Google Scholar 

  16. Gunderson, C. A. et al. Forest phenology and a warmer climate—growing season extension in relation to climatic provenance. Glob. Change Biol. 18, 2008–2025 (2012).

    Article  Google Scholar 

  17. Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 426 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang, X. et al. No trends in spring and autumn phenology during the global warming hiatus. Nat. Commun. 10, 2389 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Article  Google Scholar 

  20. Reich, P. B., Walters, M. B. & Ellsworth, D. S. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol. Monogr. 62, 365–392 (1992).

    Article  Google Scholar 

  21. Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: global convergence in plant functioning. Proc. Natl Acad. Sci. USA 94, 13730–13734 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reich, P. B. & Flores-Moreno, H. Peeking beneath the hood of the leaf economics spectrum. N. Phytol. 214, 1395–1397 (2017).

    Article  Google Scholar 

  24. Chazdon, R. L. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320, 1458–1460 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Yan, K. et al. Performance stability of the MODIS and VIIRS LAI algorithms inferred from analysis of long time series of products. Remote Sens. Environ. 260, 112438 (2021).

    Article  Google Scholar 

  26. Gao, S. et al. Evaluating the saturation effect of vegetation indices in forests using 3D radiative transfer simulations and satellite observations. Remote Sens. Environ. 295, 113665 (2023).

    Article  Google Scholar 

  27. Ma, H. & Liang, S. Development of the GLASS 250-m leaf area index product (version 6) from MODIS data using the bidirectional LSTM deep learning model. Remote Sens. Environ. 273, 112985 (2022).

    Article  Google Scholar 

  28. Friedl, M., Gray, J., & Sulla-Menashe, D. MODIS/Terra+ Aqua Land Cover Dynamics Yearly L3 Global 500 m SIN Grid V061. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MCD12Q2.061 (2022).

  29. Forkel, M. et al. Estimating leaf moisture content at global scale from passive microwave satellite observations of vegetation optical depth. Hydrol. Earth Syst. Sci. 27, 39–68 (2023).

    Article  Google Scholar 

  30. Schaaf, C. & Wang, Z. MODIS/Terra+Aqua BRDF/Albedo Nadir BRDF Adjusted Ref Daily L3 Global - 500m V061. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MCD43A4.061 (2021).

  31. Féret, J.-B. et al. Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: potential and limitations of physical modeling and machine learning. Remote Sens. Environ. 231, 110959 (2019).

    Article  Google Scholar 

  32. Sun, J. et al. Analyzing the performance of PROSPECT model inversion based on different spectral information for leaf biochemical properties retrieval. ISPRS J. Photogramm. Remote Sens. 135, 74–83 (2018).

    Article  Google Scholar 

  33. Jacquemoud, S. & Baret, F. PROSPECT: a model of leaf optical properties spectra. Remote Sens. Environ. 34, 75–91 (1990).

    Article  Google Scholar 

  34. Jacquemoud, S. et al. Estimating leaf biochemistry using the PROSPECT leaf optical properties model. Remote Sens. Environ. 56, 194–202 (1996).

    Article  Google Scholar 

  35. Kattge, J. et al. TRY—a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).

    Article  Google Scholar 

  36. Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).

    Article  Google Scholar 

  37. Li, B. et al. BESSv2.0: a satellite-based and coupled-process model for quantifying long-term global land–atmosphere fluxes. Remote Sens. Environ. 295, 113696 (2023).

    Article  Google Scholar 

  38. Zhang, X. et al. Generating Global Land Surface Satellite incident shortwave radiation and photosynthetically active radiation products from multiple satellite data. Remote Sens. Environ. 152, 318–332 (2014).

    Article  Google Scholar 

  39. Ma, H. et al. Global land surface 250-m 8-day fraction of absorbed photosynthetically active radiation (FAPAR) product from 2000 to 2020. Earth Syst. Sci. Data 14, 5333–5347 (2022).

    Article  Google Scholar 

  40. Liu, F. et al. Variations in orthotropic elastic constants of green Chinese Larch from pith to sapwood. Forests 10, 456 (2019).

    Article  CAS  Google Scholar 

  41. He, P. et al. Growing‐season precipitation is a key driver of plant leaf area to sapwood area ratio at the global scale. Plant, Cell Environ. 48, 746–755 (2025).

    Article  CAS  PubMed  Google Scholar 

  42. Kikuzawa, K., & Lechowicz, M. J. Ecology of Leaf Longevity (Springer, 2011).

  43. Poorter, H. et al. Causes and consequences of variation in leaf mass per area (LMA): a meta‐analysis. N. Phytol. 182, 565–588 (2009).

    Article  Google Scholar 

  44. Wang, Z. et al. Leaf water content contributes to global leaf trait relationships. Nat. Commun. 13, 5525 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, Y. et al. Autumn canopy senescence has slowed down with global warming since the 1980s in the Northern Hemisphere. Commun. Earth Environ. 4, 173 (2023).

    Article  Google Scholar 

  46. Gray, J., Sulla-Menashe, D. & Friedl, M. A. User guide to Collection 6 MODIS land cover dynamics (MCD12Q2) product. NASA EOSDIS Land Process. DAAC 6, 1–8 (2019).

    Google Scholar 

  47. Schwartz, M. D., Betancourt, J. L. & Weltzin, J. F. From Caprio’s lilacs to the USA national phenology network. Front. Ecol. Environ. 10, 324–327 (2012).

    Article  Google Scholar 

  48. Templ, B. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int. J. Biometeorol. 62, 1109–1113 (2018).

    Article  PubMed  Google Scholar 

  49. Ovaskainen, O. et al. Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology. Sci. Data 7, 47 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Didan, K. MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MOD13Q1.061 (2021).

  51. Gill, A. L. et al. Changes in autumn senescence in northern hemisphere deciduous trees: a meta-analysis of autumn phenology studies. Ann. Bot. 116, 875–888 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jeong, S.-J. et al. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Change Biol. 17, 2385–2399 (2011).

    Article  Google Scholar 

  53. Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976 (2006).

    Article  Google Scholar 

  54. Piao, S. et al. Variations in satellite-derived phenology in China’s temperate vegetation. Glob. Change Biol. 12, 672–685 (2006).

    Article  Google Scholar 

  55. Asshoff, R., Zotz, G. & Körner, C. Growth and phenology of mature temperate forest trees in elevated CO2. Glob. Change Biol. 12, 848–861 (2006).

    Article  Google Scholar 

  56. Norby, R. J. et al. Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage. Ecol. Appl. 12, 1261–1266 (2002).

    Google Scholar 

  57. Norby, R. J. et al. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proc. Natl Acad. Sci. USA 101, 9689–9693 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fang, K. et al. Influence of non-climatic factors on the relationships between tree growth and climate over the Chinese Loess Plateau. Glob. Planet. Change 132, 54–63 (2015).

    Article  Google Scholar 

  59. Xu, L. et al. Productivity and water use efficiency of Pinus tabulaeformis responses to climate change in the temperate monsoon region. Agric. Meteorol. 327, 109188 (2022).

    Article  Google Scholar 

  60. Niinemets, Ü. Components of leaf dry mass per area—thickness and density—alter leaf photosynthetic capacity in reverse directions in woody plants. N. Phytol. 144, 35–47 (1999).

    Article  Google Scholar 

  61. Thomas, S. C. & Winner, W. E. Photosynthetic differences between saplings and adult trees: an integration of field results by meta-analysis. Tree Physiol. 22, 117–127 (2002).

    Article  PubMed  Google Scholar 

  62. Niinemets, Ü. & Sack, L. Structural determinants of leaf light-harvesting capacity and photosynthetic potentials. Progress Bot. 67, 385–419 (2006).

    Article  CAS  Google Scholar 

  63. Yoshimoto, M., Oue, H. & Kobayashi, K. Energy balance and water use efficiency of rice canopies under free-air CO2 enrichment. Agric. Meteorol. 133, 226–246 (2005).

    Article  Google Scholar 

  64. Ainsworth, E. A. & Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ. 30, 258–270 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, S. et al. Tree species mixing can amplify microclimate offsets in young forest plantations. J. Appl. Ecol. 59, 1428–1439 (2022).

    Article  Google Scholar 

  66. Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Friedl, M. & Sulla-Menashe, D. MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V061. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MCD12C1.061 (2022).

  68. Potapov, P. et al. The global 2000–2020 land cover and land use change dataset derived from the Landsat archive: first results. Front. Remote Sens. 3, 856903 (2022).

    Article  Google Scholar 

  69. Su, Y. et al. Asymmetric influence of forest cover gain and loss on land surface temperature. Nat. Clim. Change 13, 823–831 (2023).

    Article  Google Scholar 

  70. Chuvieco, E., Pettinari, M. L., & Otón, G. ESA Fire Climate Change Initiative (Fire_cci): AVHRR-LTDR Burned Area Pixel product, version 1.1. Centre for Environmental Data Analysis https://doi.org/10.5285/b1bd715112ca43ab948226d11d72b85e (2020).

  71. Abatzoglou, J. T. et al. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 170191 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wang, X. et al. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506, 212–215 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Liu, L. et al. Tropical tall forests are more sensitive and vulnerable to drought than short forests. Glob. Change Biol. 28, 1583–1595 (2022).

    Article  CAS  Google Scholar 

  74. Besnard, S. et al. Mapping global forest age from forest inventories, biomass and climate data. Earth Syst. Sci. Data Discuss. 13, 4881–4896 (2021).

    Article  Google Scholar 

  75. Wang, S. et al. A TPE based inversion of PROSAIL for estimating canopy biophysical and biochemical variables of oilseed rape. Comput. Electron. Agric. 152, 350–362 (2018).

    Article  Google Scholar 

  76. Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sens. Environ. 16, 125–141 (1984).

    Article  Google Scholar 

  77. Verhoef, W. & Bach, H. Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data. Remote Sens. Environ. 109, 166–182 (2007).

    Article  Google Scholar 

  78. Doughty, C. E. et al. Tropical forest leaves may darken in response to climate change. Nat. Ecol. Evol. 2, 1918–1924 (2018).

    Article  PubMed  Google Scholar 

  79. Jacquemoud, S., & Ustin, S. Leaf Optical Properties (Cambridge Univ. Press, 2019).

  80. Feret, J. et al. PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ. 112, 3030–3043 (2008).

    Article  Google Scholar 

  81. Jacquemoud, S. et al. PROSPECT Plus SAIL models: a review of use for vegetation characterization. Remote Sens. Environ. 113, S56–S66 (2009).

    Article  Google Scholar 

  82. Darvishzadeh, R. et al. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sens. Environ. 112, 2592–2604 (2008).

    Article  Google Scholar 

  83. Mousivand, A. et al. Global sensitivity analysis of the spectral radiance of a soil–vegetation system. Remote Sens. Environ. 145, 131–144 (2014).

    Article  Google Scholar 

  84. Breunig, F. M. et al. Spectral anisotropy of subtropical deciduous forest using MISR and MODIS data acquired under large seasonal variation in solar zenith angle. Int. J. Appl. Earth Obs. Geoinf. 35, 294–304 (2015).

    Google Scholar 

  85. Yin, C. et al. Chlorophyll content estimation in arid grasslands from Landsat-8 OLI data. Int. J. Remote Sens. 37, 615–632 (2016).

    Article  Google Scholar 

  86. Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).

    Article  Google Scholar 

  87. Wang, F. Code to support ‘Contrasting age-dependent leaf acclimation strategies driving vegetation greening across deciduous broadleaf forests in the middle to high latitudes’. Zenodo https://doi.org/10.5281/zenodo.15765680 (2025).

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant nos. 42471326, 31971458 and U21A6001), the National Key R&D Program of China (grant no. 2024YFF1306600) and the Science and Technology Program of Guangdong (grant no. 2024B1212070012).

Author information

Authors and Affiliations

Authors

Contributions

X.C. designed the study, wrote the initial paper and revised the paper. F.W. and M.X. collected the data, performed the analysis, drew the figures and wrote the Methods section. L.Z., C.E.D., P.C., P.B.R., J.S., J.M.C., J.L., J.K.G., D.H., S.T., Y.J.S., Lingli Liu, J.X., H.W., K. Yu, Z.Z., P.Z., X.L., H.L., Y.Z., K. Yan, Liyang Liu, R.L., Y.S., Y.M., Y.P., X.Y., Y.H.F., N.H. and W.Y. contributed to discussing the scientific question, as well as writing and revising the paper.

Corresponding author

Correspondence to Xiuzhi Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Rakesh Tiwari and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, and Figs. 1–17.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Xue, M., Zhou, L. et al. Contrasting age-dependent leaf acclimation strategies drive vegetation greening across deciduous broadleaf forests in mid- to high latitudes. Nat. Plants 11, 1748–1758 (2025). https://doi.org/10.1038/s41477-025-02096-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41477-025-02096-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing