Table 2 Models used and test results to predict mortality among Brazilians aged 50 and over

From: Predicting all-cause mortality with machine learning among Brazilians aged 50 and over: results from The Brazilian Longitudinal Study of Ageing (ELSI-Brazil)

Algorithms

AUC

AUC-PR

Accuracy

Precision

Recall

F1-Score

Specificity

Logistic Regression

0.78

0.75–0.80

0.30

0.71

0.22

0.74

0.34

0.70

Decision Tree

0.71

0.68–0.74

0.22

0.72

0.21

0.61

0.31

0.72

Random Forest

0.92

0.90–0.94

0.75

0.76

0.29

0.89

0.43

0.75

Gradient Boosting

0.82

0.79–0.84

0.36

0.73

0.24

0.79

0.37

0.72

Support Vector Machine (SVM)

0.84

0.81–0.86

0.37

0.73

0.24

0.80

0.37

0.72

K-Nearest Neighbors (KNN)

0.91

0.89–0.93

0.79

0.75

0.27

0.88

0.41

0.73

XGBoost

0.82

0.88–0.92

0.55

0.72

0.23

0.76

0.36

0.71

LightGBM

0.81

0.78–0.83

0.35

0.72

0.23

0.74

0.35

0.72

CatBoost

0.80

0.77–0.82

0.35

0.73

0.23

0.70

0.35

0.73