Table 3 Performance comparison on test set when the input is a structure
From: LLM-Prop: predicting the properties of crystalline materials using large language models
Model | Band gap | Volume | FEPA | EPA | Ehull | Is-gap-direct |
---|---|---|---|---|---|---|
(eV) ↓ | (A³/cell)↓ | (eV/atom) ↓ | (eV/atom) ↓ | (eV/atom) ↓ | (AUC) ↑ | |
Structure-based | ||||||
CGCNN | 0.293 | 188.834 | 0.046 | 0.082 | 0.040 | 0.830 |
MEGNet | 0.304 | 297.948 | 0.077 | 0.056 | 0.051 | N/A |
ALIGNN | 0.250 | 129.580 | 0.027 | 0.059 | 0.028 | 0.678 |
DeeperGATGNN | 0.291 | 111.857 | 0.081 | 0.116 | 0.045 | N/A |
RF (Robo-struct.) | 0.958 | 271.006 | 0.765 | 1.271 | 0.180 | 0.581 |
XGBoost (Robo-struct.) | 0.984 | 274.104 | 0.761 | 1.266 | 0.178 | 0.586 |
MatBERT (Robo-struct.) | 0.379 | 47.936 | 0.079 | 0.099 | 0.064 | 0.723 |
MatBERT (CIF-struct.) | 0.347 | 46.727 | 0.077 | 0.099 | 0.064 | 0.716 |
LLM-Prop (Robo-struct.) | 0.280 | 36.546 | 0.057 | 0.064 | 0.048 | 0.695 |
LLM-Prop (CIF-struct.) | 0.269 | 36.546 | 0.056 | 0.065 | 0.048 | 0.695 |