Table 4 Transfer learning performance comparison
From: LLM-Prop: predicting the properties of crystalline materials using large language models
Model | Volume to Band gap (eV) | Band gap to Volume(˚A³/cell) | ||
---|---|---|---|---|
Validation set ↓ | Test set ↓ | Validation set ↓ | Test set ↓ | |
Structure based | ||||
CGCNN-transfer | 0.300 | 0.295 | 187.473 | 182.997 |
MEGNet-transfer | 1.461 | 1.472 | 190.013 | 195.664 |
ALIGNN-transfer | 0.321 | 0.322 | 137.471 | 136.164 |
Text based | ||||
MatBERT-zero-shot | 1.175 | 1.191 | 412.891 | 422.487 |
MatBERT-transfer | 0.259 | 0.266 | 50.530 | 54.289 |
LLM-Prop-zero-shot | 1.288 | 1.103 | 482.922 | 485.583 |
LLM-Prop-transfer | 0.236 | 0.244 | 47.837 | 50.753 |