Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Computational Materials
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj computational materials
  3. articles
  4. article
Incongruent melting and phase diagram of SiC from machine learning molecular dynamics
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 16 February 2026

Incongruent melting and phase diagram of SiC from machine learning molecular dynamics

  • Yu Xie1 na1,
  • Menghang Wang1 na1,
  • Senja Ramakers2,3,
  • Frans Spaepen1 &
  • …
  • Boris Kozinsky1,4 

npj Computational Materials , Article number:  (2026) Cite this article

  • 266 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Materials science
  • Physics

Abstract

Silicon carbide (SiC) is an important technological material, but its high-temperature phase diagram has remained unclear due to conflicting experimental results about congruent versus incongruent melting. Here, we employ large-scale machine learning molecular dynamics (MLMD) simulations to gain insights into SiC decomposition and phase transitions. Our approach relies on a Bayesian active learning workflow to efficiently train an accurate machine learning force field on density functional theory data. Our large-scale simulations provide direct indication that melting of SiC proceeds incongruently via decomposition into silicon-rich and carbon phases at high temperature and pressure. During cooling at high pressures, carbon nanoclusters nucleate and grow within the homogeneous molten liquid. During heating, the decomposed mixture reversibly transitions back into a homogeneous SiC liquid. The full pressure-temperature phase diagram of SiC is systematically constructed using MLMD simulations, providing new understanding of the nature of phases, resolving long-standing inconsistencies from previous experiments and yielding technologically relevant implications for processing and deposition of this material.

Similar content being viewed by others

Machine learning the metastable phase diagram of covalently bonded carbon

Article Open access 06 June 2022

Uncertainty-aware molecular dynamics from Bayesian active learning for phase transformations and thermal transport in SiC

Article Open access 06 March 2023

Revealing the diffusion mechanism of Cs in amorphous and polycrystalline SiC by actively trained moment tensor potentials

Article Open access 09 January 2026

Data availability

The data and scripts are available on Zenodo: https://doi.org/10.5281/zenodo.14648292 and https://doi.org/10.5281/zenodo.15066527.

Code availability

Post-processing scripts are available on Github: https://github.com/YuuuXie/SiC_MLMD_phase_diagram. For the machine learning force field, this work utilizes FLARE (version 1.3.0) for training and deployment, available at https://github.com/mir-group/flare.

References

  1. Madar, R. Silicon carbide in contention. Nature 430, 974–975 (2004).

    Google Scholar 

  2. Madhusudhan, N., Lee, K. K. & Mousis, O. A possible carbon-rich interior in super-earth 55 Cancri e. Astrophys. J. Lett. 759, L40 (2012).

  3. Katoh, Y. & Snead, L. L. Silicon carbide and its composites for nuclear applications–historical overview. J. Nucl. Mater. 526, 151849 (2019).

    Google Scholar 

  4. Matsunami, H. & Kimoto, T. Step-controlled epitaxial growth of SiC: High quality homoepitaxy. Mater. Sci. Eng. R Rep. 20, 125–166 (1997).

    Google Scholar 

  5. Yi, J., He, X., Sun, Y. & Li, Y. Electron beam-physical vapor deposition of SiC/SiO2 high emissivity thin film. Appl. Surf. Sci. 253, 4361–4366 (2007).

    Google Scholar 

  6. Zhang, W. & Van Duin, A. C. Atomistic-scale simulations of the graphene growth on a silicon carbide substrate using thermal decomposition and chemical vapor deposition. Chem. Mater. 32, 8306–8317 (2020).

    Google Scholar 

  7. Ekimov, E. et al. A high-pressure cell for high-temperature experiments in a toroid-type chamber. Instrum. Exp. Tech. 47, 276–278 (2004).

    Google Scholar 

  8. Togaya, M. & Sugiyama, S. Melting behavior of β-sic at high pressure. Rev. High. Press. Sci. Technol. 7, 1037–1039 (1998).

    Google Scholar 

  9. Daviau, K. & Lee, K. K. Decomposition of silicon carbide at high pressures and temperatures. Phys. Rev. B 96, 174102 (2017).

    Google Scholar 

  10. Bhaumik, S., Divakar, C., Mohan, M. & Singh, A. A modified high-temperature cell (up to 3300 k) for use with a cubic press. Rev. Sci. Instrum. 67, 3679–3682 (1996).

    Google Scholar 

  11. Bhaumik, S. Synthesis and sintering of monolithic and composite ceramics under high pressures and high temperatures. Met. Mater. Process. 12, 215–232 (2000).

    Google Scholar 

  12. Dolloff, R. T. & Sara, R. Research study to determine the phase equilibrium relations of selected metal carbides at high temperatures, vol. 60 (Aeronautical Systems Division, Air Force Systems Command, US Air Force, 1961).

  13. Hall, H. T. High temperature studies: Final Report U.S. Army Ordnance. Tech. Rep. DA 04 493 495 ORD 792, Brigham Young University 36 (1956).

  14. Sokolov, P. S., Mukhanov, V. A., Chauveau, T. & Solozhenko, V. L. On melting of silicon carbide under pressure. J. Superhard Mater. 34, 339–341 (2012).

    Google Scholar 

  15. Finocchi, F., Galli, G., Parrinello, M. & Bertoni, C. M. Microscopic structure of amorphous covalent alloys probed by ab initio molecular dynamics: SiC. Phys. Rev. Lett. 68, 3044 (1992).

  16. Saiz, F. An ab initio study on liquid silicon carbide. J. Phys. Chem. Solids 137, 109204 (2020).

  17. Vashishta, P., Kalia, R. K., Nakano, A. & Rino, J. P. Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide. J. Appl. Phys. 101, 103515 (2007).

    Google Scholar 

  18. Tersoff, J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B 39, 5566 (1989).

    Google Scholar 

  19. Tersoff, J. Chemical order in amorphous silicon carbide. Phys. Rev. B 49, 16349 (1994).

    Google Scholar 

  20. Yan, W., Gao, T., Guo, X., Qin, Y. & Xie, Q. Melting kinetics of bulk SiC using molecular dynamics simulation. Sci. China Phys. Mech. Astron. 56, 1699–1704 (2013).

    Google Scholar 

  21. Devanathan, R., Gao, F. & Weber, W. J. Atomistic modeling of amorphous silicon carbide using a bond-order potential. Nucl. Instrum. Methods Phys. Res. B 255, 130–135 (2007).

    Google Scholar 

  22. Kubo, A. & Umeno, Y. Machine-learning-based atomistic model analysis on high-temperature compressive creep properties of amorphous silicon carbide. Materials 14, 1597 (2021).

    Google Scholar 

  23. MacIsaac, M., Bavdekar, S., Spearot, D. & Subhash, G. A genetic algorithm trained machine-learned interatomic potential for the silicon–carbon system. J. Phys. Chem. C. 128, 12213–12226 (2024).

    Google Scholar 

  24. Liu, Y. et al. Deep learning inter-atomic potential for irradiation damage in 3C-SiC. Comput. Mater. Sci. 233, 112693 (2024).

  25. Ishimaru, M., Bae, I.-T. & Hirotsu, Y. Electron-beam-induced amorphization in sic. Phys. Rev. B 68, 144102 (2003).

    Google Scholar 

  26. Vandermause, J. et al. On-the-fly active learning of interpretable bayesian force fields for atomistic rare events. npj Comput. Mater. 6, 1–11 (2020).

    Google Scholar 

  27. Xie, Y., Vandermause, J., Sun, L., Cepellotti, A. & Kozinsky, B. Bayesian force fields from active learning for simulation of inter-dimensional transformation of stanene. npj Comput. Mater. 7, 1–10 (2021).

    Google Scholar 

  28. Larsen, P. M., Schmidt, S. & Schiøtz, J. Robust structural identification via polyhedral template matching. Model. Simul. Mater. Sci. Eng. 24, 055007 (2016).

    Google Scholar 

  29. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).

    Google Scholar 

  30. Gayler, M. Melting point of high-purity silicon. Nature 142, 478–478 (1938).

    Google Scholar 

  31. Dozhdikov, V., Basharin, A. Y. & Levashov, P. Two-phase simulation of the crystalline silicon melting line at pressures from –1 to 3 GPa. J. Chem. Phys. 137, 054502 (2012).

    Google Scholar 

  32. Xie, Y. et al. Uncertainty-aware molecular dynamics from bayesian active learning for phase transformations and thermal transport in sic. npj Comput. Mater. 9, 36 (2023).

    Google Scholar 

  33. Krieger, F. J. The Thermodynamics of the Silicon Carbide/Silicon-Carbon Vapor System. Technical Report (1968).

  34. Daviau, K. & Lee, K. K. Zinc-blende to rocksalt transition in sic in a laser-heated diamond-anvil cell. Phys. Rev. B 95, 134108 (2017).

    Google Scholar 

  35. Kidokoro, Y., Umemoto, K., Hirose, K. & Ohishi, Y. Phase transition in sic from zinc-blende to rock-salt structure and implications for carbon-rich extrasolar planets. Am. Mineralogist J. Earth Planet. Mater. 102, 2230–2234 (2017).

    Google Scholar 

  36. Miozzi, F. et al. Equation of state of SiC at extreme conditions: New insight into the interior of carbon-rich exoplanets. J. Geophys. Res. Planets 123, 2295–2309 (2018).

  37. Vandermause, J., Xie, Y., Lim, J. S., Owen, C. J. & Kozinsky, B. Active learning of reactive Bayesian force fields applied to heterogeneous catalysis dynamics of h/pt. Nat. Commun. 13, 5183 (2022).

    Google Scholar 

  38. Batzner, S. et al. E (3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun. 13, 2453 (2022).

    Google Scholar 

  39. Musaelian, A. et al. Learning local equivariant representations for large-scale atomistic dynamics. Nat. Commun. 14, 579 (2023).

    Google Scholar 

  40. Kimoto, T. Bulk and epitaxial growth of silicon carbide. Prog. Cryst. Growth Charact. Mater. 62, 329–351 (2016).

    Google Scholar 

  41. Snead, L., Zinkle, S., Hay, J. & Osborne, M. Amorphization of SiC under ion and neutron irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 141, 123–132 (1998).

    Google Scholar 

  42. Zhou, J., Odqvist, J., Thuvander, M. & Hedström, P. Quantitative evaluation of spinodal decomposition in fe-cr by atom probe tomography and radial distribution function analysis. Microsc. Microanal. 19, 665–675 (2013).

    Google Scholar 

  43. Sarkar, S. K., Ray, D., Sen, D. & Biswas, A. Nucleation–growth versus spinodal decomposition in fe–cr alloys: An experimental verification by atom probe tomography and small-angle neutron scattering. Microsc. Microanal. 29, 437–450 (2023).

    Google Scholar 

  44. Herrero, C. P., Ramírez, R. & Herrero-Saboya, G. Cubic silicon carbide under tensile pressure: Spinodal instability. Chem. Phys. 573, 112005 (2023).

    Google Scholar 

  45. Maras, E., Trushin, O., Stukowski, A., Ala-Nissila, T. & Jonsson, H. Global transition path search for dislocation formation in ge on si (001). Comput. Phys. Commun. 205, 13–21 (2016).

    Google Scholar 

  46. Li, W., Yao, X. & Zhang, X. Planar impacts on nanocrystalline sic: a comparison of different potentials. J. Mater. Sci. 53, 6637–6651 (2018).

    Google Scholar 

  47. Branicio, P. S. et al. Shock-induced microstructural response of mono-and nanocrystalline sic ceramics. Journal of Applied Physics123 (2018).

  48. Li, W., Yao, X., Branicio, P., Zhang, X. & Zhang, N. Shock-induced spall in single and nanocrystalline sic. Acta Mater. 140, 274–289 (2017).

    Google Scholar 

  49. Bartók, A. P. & Csányi, G. Gaussian approximation potentials: a brief tutorial introduction. Int. J. Quantum Chem. 115, 1051–1057 (2015).

    Google Scholar 

  50. Thompson, A., Swiler, L., Trott, C., Foiles, S. & Tucker, G. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J. Comput. Phys. 285, 316–330 (2015).

    Google Scholar 

  51. Drautz, R. Atomic cluster expansion for accurate and transferable interatomic potentials. Phys. Rev. B 99 (2019).

  52. Thompson, A. P. et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Google Scholar 

  53. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

  54. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Google Scholar 

  55. Ramakers, S. et al. Effects of thermal, elastic, and surface properties on the stability of SiC polytypes. Phys. Rev. B 106, 075201 (2022).

    Google Scholar 

  56. Trott, C. R. et al. Kokkos 3: programming model extensions for the exascale era. IEEE Trans. Parallel Distrib. Syst. 33, 805–817 (2022).

    Google Scholar 

  57. Johansson, A. et al. Micron-scale heterogeneous catalysis with Bayesian force fields from first principles and active learning. Preprint at: https://doi.org/10.48550/arXiv.2204.12573 (2022).

  58. Sekine, T. & Kobayashi, T. Shock compression of 6h polytype sic to 160 GPa. Phys. Rev. B 55, 8034 (1997).

    Google Scholar 

  59. Tracy, S. et al. In situ observation of a phase transition in silicon carbide under shock compression using pulsed X-ray diffraction. Phys. Rev. B 99, 214106 (2019).

    Google Scholar 

  60. Yoshida, M., Onodera, A., Ueno, M., Takemura, K. & Shimomura, O. Pressure-induced phase transition in sic. Phys. Rev. B 48, 10587 (1993).

    Google Scholar 

Download references

Acknowledgements

We acknowledge Cameron Owen and Anders Johansson for discussions and help with the large simulation setup and computational resources. We acknowledge Evelyn Hu for helpful discussions and feedback. Y.X. is supported by the "Design & Assembly of Atomically-Precise Quantum Materials & Devices" grant DE-SC0020128 of the Department of Energy. M.W. is supported by the National Science Foundation, Office of Advanced Cyberinfrastructure (OAC), under Award No. 2118201. B.K. and F.S. are supported by the Harvard University Materials Research Science and Engineering Center funded by the National Science Foundation grant DMR-2011754. The simulation and analysis are done on the Harvard Cannon cluster. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 using NERSC award BES-ERCAP0024206.

Author information

Author notes
  1. These authors contributed equally: Yu Xie, Menghang Wang.

Authors and Affiliations

  1. John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA

    Yu Xie, Menghang Wang, Frans Spaepen & Boris Kozinsky

  2. Ruhr-Universität Bochum, Bochum, Germany

    Senja Ramakers

  3. Robert Bosch GmbH, Gerlingen, Germany

    Senja Ramakers

  4. Robert Bosch Research and Technology Center, Watertown, MA, USA

    Boris Kozinsky

Authors
  1. Yu Xie
    View author publications

    Search author on:PubMed Google Scholar

  2. Menghang Wang
    View author publications

    Search author on:PubMed Google Scholar

  3. Senja Ramakers
    View author publications

    Search author on:PubMed Google Scholar

  4. Frans Spaepen
    View author publications

    Search author on:PubMed Google Scholar

  5. Boris Kozinsky
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.X. initiated the project, performed the training of the ML force field, phase transition simulations and post-analysis. M.W. contributed to the dataset and code preparation, phase transition simulations and post-analysis. S.R. contributed to the DFT settings and the collection of experimental results. F.S. guided the analysis of nucleation and decomposition. B.K. supervised all aspects of the project. All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Yu Xie or Boris Kozinsky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Wang, M., Ramakers, S. et al. Incongruent melting and phase diagram of SiC from machine learning molecular dynamics. npj Comput Mater (2026). https://doi.org/10.1038/s41524-026-01976-4

Download citation

  • Received: 28 October 2025

  • Accepted: 16 January 2026

  • Published: 16 February 2026

  • DOI: https://doi.org/10.1038/s41524-026-01976-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Machine Learning Interatomic Potentials in Computational Materials

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • Open Access
  • About the Editors
  • Contact
  • Editorial policies
  • Journal Metrics
  • About the partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Computational Materials (npj Comput Mater)

ISSN 2057-3960 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing