Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Computational Materials
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj computational materials
  3. articles
  4. article
Graph atomic cluster expansion for foundational machine learning interatomic potentials
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 08 February 2026

Graph atomic cluster expansion for foundational machine learning interatomic potentials

  • Yury Lysogorskiy1,
  • Anton Bochkarev1 &
  • Ralf Drautz1 

npj Computational Materials , Article number:  (2026) Cite this article

  • 1391 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Materials science
  • Mathematics and computing
  • Physics

Abstract

Foundational machine learning interatomic potentials that can accurately and efficiently model a vast range of materials are critical for accelerating atomistic discovery. We introduce universal potentials based on the graph atomic cluster expansion (GRACE) framework, trained on several of the largest available materials datasets. Through comprehensive benchmarks, we demonstrate that the GRACE models establish a new Pareto front for accuracy versus efficiency among foundational interatomic potentials. We further showcase their exceptional versatility by adapting them to specialized tasks and simpler architectures via fine-tuning and knowledge distillation, achieving high accuracy while preventing catastrophic forgetting. This work establishes GRACE as a robust and adaptable foundation for the next generation of atomistic modeling, enabling high-fidelity simulations across the periodic table.

Similar content being viewed by others

Fine-tuning foundation models of materials interatomic potentials with frozen transfer learning

Article Open access 18 July 2025

Cartesian atomic cluster expansion for machine learning interatomic potentials

Article Open access 18 July 2024

Fast and Fourier features for transfer learning of interatomic potentials

Article Open access 25 September 2025

Data availability

Training datasets (MPTrj, sAlex and OMat24) are publicly available. GRACE foundational potentials are available at https://gracemaker.readthedocs.io/en/latest/gracemaker/foundation.

Code availability

Code for GRACE potential is available at github.com/ICAMS/grace-tensorpotential.

References

  1. Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Google Scholar 

  2. Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).

    Google Scholar 

  3. Shapeev, A. V. Moment tensory potentials: a class of systematically improvable interatomic potentials. Multiscale Model. Simul. 14, 1153 (2016).

    Google Scholar 

  4. Drautz, R. Atomic cluster expansion for accurate and transferable interatomic potentials. Phys. Rev. B 99, 014104 (2019).

    Google Scholar 

  5. Unke, O. T. et al. Machine learning force fields. Chem. Rev. 121, 10142–10186 (2021).

    Google Scholar 

  6. Musaelian, A. et al. Learning local equivariant representations for large-scale atomistic dynamics. Nat. Commun. 14, 579 (2023).

    Google Scholar 

  7. Jacobs, R. et al. A practical guide to machine learning interatomic potentials–status and future. Curr. Opin. Solid State Mater. Sci. 35, 101214 (2025).

    Google Scholar 

  8. Kulichenko, M. et al. Data generation for machine learning interatomic potentials and beyond. Chem. Rev. 124, 13681–13714 (2024).

    Google Scholar 

  9. Wang, G. et al. Machine learning interatomic potential: bridge the gap between small-scale models and realistic device-scale simulations. iScience 27, 109673 (2024).

    Google Scholar 

  10. Thiemann, F. L., O’Neill, N., Kapil, V., Michaelides, A. & Schran, C. Introduction to machine learning potentials for atomistic simulations. J. Phys. Condens. Matter 37, 073002 (2024).

    Google Scholar 

  11. Yuan, E. C. Y. et al. Foundation models for atomistic simulation of chemistry and materials https://arxiv.org/abs/2503.10538 (2025).

  12. Pettifor, D. G. Theory of the crystal structures of transition metals. J. Phys. C Solid State Phys. 3, 367 (1970).

    Google Scholar 

  13. Pettifor, D. G. The structures of binary compounds. I. Phenomenological structure maps. J. Phys. C Solid State Phys. 19, 285 (1986).

    Google Scholar 

  14. Pettifor, D. G. Bonding and Structure in Molecules and Solids (Oxford University Press, 1995).

  15. Seiser, B., Drautz, R. & Pettifor, D. TCP phase predictions in Ni-based superalloys: structure maps revisited. Acta Materialia 59, 749–763 (2011).

    Google Scholar 

  16. Bialon, A. F., Hammerschmidt, T. & Drautz, R. Three-parameter crystal-structure prediction for sp-d-valent compounds. Chem. Mater. 28, 2550–2556 (2016).

    Google Scholar 

  17. Faber, F., Lindmaa, A., von Lilienfeld, O. A. & Armiento, R. Crystal structure representations for machine learning models of formation energies. Int. J. Quantum Chem. 115, 1094–1101 (2015).

    Google Scholar 

  18. Parsaeifard, B. et al. An assessment of the structural resolution of various fingerprints commonly used in machine learning. Mach. Learn. Sci. Technol. 2, 015018 (2021).

    Google Scholar 

  19. Lopanitsyna, N., Fraux, G., Springer, M. A., De, S. & Ceriotti, M. Modeling high-entropy transition metal alloys with alchemical compression. Phys. Rev. Mater. 7, 045802 (2023).

    Google Scholar 

  20. Cerqueira, T. F. T., Wang, H., Botti, S. & Marques, M. A. L. A non-orthogonal representation of the chemical space https://arxiv.org/abs/2406.19761 (2025).

  21. Rappé, A. K., Casewit, C. J., Colwell, K., Goddard III, W. A. & Skiff, W. M. Uff, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    Google Scholar 

  22. Chen, C. & Ong, S. P. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci. 2, 718–728 (2022).

    Google Scholar 

  23. Deng, B. et al. Chgnet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 5, 1031–1041 (2023).

    Google Scholar 

  24. Batatia, I. et al. A foundation model for atomistic materials chemistry. J. Chem. Phys. 163, 184110 (2025).

    Google Scholar 

  25. Barroso-Luque, L. et al. Open materials 2024 (omat24) inorganic materials dataset and models. arXiv preprint arXiv:2410.12771 (2024).

  26. Yang, H. et al. Mattersim: A deep learning atomistic model across elements, temperatures and pressures. arXiv preprint arXiv:2405.04967 (2024).

  27. Kim, J. et al. Data-efficient multifidelity training for high-fidelity machine learning interatomic potentials. J. Am. Chem. Soc. 147, 1042–1054 (2024).

    Google Scholar 

  28. Yin, B. et al. AlphaNet: scaling up local-frame-based neural network interatomic potentials. npj Comput Mater 11, 332 (2020).

    Google Scholar 

  29. Zhang, D. et al. Graph neural network model for the era of large atomistic models. arXiv preprint arXiv:2506.01686 (2025).

  30. Fu, X. et al. Learning smooth and expressive interatomic potentials for physical property prediction. arXiv preprint arXiv:2502.12147 (2025).

  31. Mazitov, A. et al. PET-MAD, a universal interatomic potential for advanced materials modeling. Nat. Commun. 16, 10653 (2025).

    Google Scholar 

  32. Liang, T. et al. Nep89: Universal neuroevolution potential for inorganic and organic materials across 89 elements. arXiv preprint arXiv:2504.21286 (2025).

  33. Gasteiger, J., Groß, J. & Günnemann, S. Directional message passing for molecular graphs 2003.03123 (2020).

  34. Anderson, B., Hy, T.-S. & Kondor, R. Cormorant: Covariant molecular neural networks. In Wallach, H. et al. (eds.) Advances in Neural Information Processing Systems 32, Neural Information Processing Systems Conference, 9596 (Neural Information Processing Systems Foundation, Inc., 2019).

  35. Lubbers, N., Smith, J. S. & Barros, K. Hierarchical modeling of molecular energies using a deep neural network. J. Chem. Phys. 148, 241715 (2018).

    Google Scholar 

  36. Thomas, N. et al. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point clouds. arXiv preprint arXiv:1802.08219 (2018).

  37. Batzner, S. et al. E (3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun. 13, 2453 (2022).

    Google Scholar 

  38. Satorras, V. G., Hoogeboom, E. & Welling, M. E (n) equivariant graph neural networks. In International Conference on Machine Learning, 9323–9332 (PMLR, 2021).

  39. Unke, O. T. & Meuwly, M. Physnet: a neural network for predicting energies, forces, dipole moments, and partial charges. J. Chem. Theory Comput. 15, 3678–3693 (2019).

    Google Scholar 

  40. Schütt, K. et al. Schnet: a continuous-filter convolutional neural network for modeling quantum interactions. Adv. Neural Inf. Process. Syst. 30 (2017).

  41. Haghighatlari, M. et al. Newtonnet: a newtonian message passing network for deep learning of interatomic potentials and forces. Digit. Discov. 1, 333–343 (2022).

    Google Scholar 

  42. Schütt, K. T., Unke, O. T. & Gastegger, M. Equivariant message passing for the prediction of tensorial properties and molecular spectra 2102.03150 (PMLR, 2021)

  43. Gasteiger, J., Becker, F. & Günnemann, S. Gemnet: universal directional graph neural networks for molecules 2106.08903 (NIPS, 2022).

  44. Chmiela, S. et al. Machine learning of accurate energy-conserving molecular force fields. Sci. Adv. 3, e1603015 (2017).

    Google Scholar 

  45. Pozdnyakov, S. & Ceriotti, M. Smooth, exact rotational symmetrization for deep learning on point clouds. Adv. Neural Inf. Process. Syst. 36, 79469–79501 (2023).

    Google Scholar 

  46. Nigam, J., Pozdnyakov, S., Fraux, G. & Ceriotti, M. Unified theory of atom-centered representations and message-passing machine-learning schemes. J. Chem. Phys. 156, 204115 (2022).

    Google Scholar 

  47. Batatia, I. et al. The design space of e (3)-equivariant atom-centred interatomic potentials. Nat. Mach. Intell. 7, 56–67 (2025).

    Google Scholar 

  48. Bochkarev, A., Lysogorskiy, Y., Ortner, C., Csányi, G. & Drautz, R. Multilayer atomic cluster expansion for semilocal interactions. Phys. Rev. Res. 4, L042019 (2022).

    Google Scholar 

  49. Bochkarev, A., Lysogorskiy, Y. & Drautz, R. Graph atomic cluster expansion for semilocal interactions beyond equivariant message passing. Phys. Rev. X 14, 021036 (2024).

    Google Scholar 

  50. Batatia, I., Kovacs, D. P., Simm, G., Ortner, C. & Csányi, G. Mace: higher order equivariant message passing neural networks for fast and accurate force fields. Adv. neural Inf. Process. Syst. 35, 11423–11436 (2022).

    Google Scholar 

  51. Jain, A. et al. The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Google Scholar 

  52. Schmidt, J. et al. Machine-learning-assisted determination of the global zero-temperature phase diagram of materials. Adv. Mater. 35, 2210788 (2023).

    Google Scholar 

  53. Wang, H.-C., Schmidt, J., Marques, M. A., Wirtz, L. & Romero, A. H. Symmetry-based computational search for novel binary and ternary 2D materials. 2D Mater. 10, 035007 (2023).

    Google Scholar 

  54. Barroso-Luque, L. et al. Open materials 2024 (omat24) inorganic materials dataset and models https://arxiv.org/abs/2410.12771 (2024).

  55. Kirklin, S. et al. The open quantum materials database (OQMD): assessing the accuracy of dft formation energies. npj Comput. Mater. 1, 1–15 (2015).

    Google Scholar 

  56. Curtarolo, S. et al. Aflowlib. org: a distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227–235 (2012).

    Google Scholar 

  57. Kaplan, A. D. et al. A foundational potential energy surface dataset for materials. arXiv preprint arXiv:2503.04070 (2025).

  58. Kuner, M. C., Kaplan, A. D., Persson, K. A., Asta, M. & Chrzan, D. C. An r2SCAN dataset for universal machine learninginteratomic potentials. npj Comput. Mater. 11, 352 (2025).

    Google Scholar 

  59. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Google Scholar 

  60. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Google Scholar 

  61. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Google Scholar 

  62. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Google Scholar 

  63. Wang, H.-C., Botti, S. & Marques, M. A. Predicting stable crystalline compounds using chemical similarity. npj Comput. Mater. 7, 12 (2021).

    Google Scholar 

  64. Riebesell, J. et al. A framework to evaluate machine learning crystal stability predictions. Nat. Mach. Intell. 7, 836–847 (2025).

    Google Scholar 

  65. Póta, B., Ahlawat, P., Csányi, G. & Simoncelli, M. Thermal conductivity predictions with foundation atomistic models. arXiv preprint arXiv:2408.00755 (2024).

  66. Thompson, A. P. et al. Lammps-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Phys. Commun. 271, 108171 (2022).

    Google Scholar 

  67. Togo, A., Chaput, L. & Tanaka, I. Distributions of phonon lifetimes in brillouin zones. Phys. Rev. B 91, 094306 (2015).

    Google Scholar 

  68. Togo, A., Chaput, L., Tadano, T. & Tanaka, I. Implementation strategies in phonopy and phono3py. J. Phys. Condens. Matter 35, 353001 (2023).

    Google Scholar 

  69. Kraß, H., Huang, J. & Moosavi, S. M. Mofsimbench: Evaluating universal machine learning interatomic potentials in metal-organic framework molecular modeling https://arxiv.org/abs/2507.11806 (2025).

  70. De Jong, M. et al. Charting the complete elastic properties of inorganic crystalline compounds. Sci. data 2, 1–13 (2015).

    Google Scholar 

  71. Zheng, H. et al. Grain boundary properties of elemental metals. Acta Materialia 186, 40–49 (2020).

    Google Scholar 

  72. Tran, R. et al. Surface energies of elemental crystals. Sci. Data 3, 1–13 (2016).

    Google Scholar 

  73. Ma, P.-W. & Dudarev, S. Universality of point defect structure in body-centered cubic metals. Phys. Rev. Mater. 3, 013605 (2019).

    Google Scholar 

  74. Ma, P.-W. & Dudarev, S. Nonuniversal structure of point defects in face-centered cubic metals. Phys. Rev. Mater. 5, 013601 (2021).

    Google Scholar 

  75. Lam, S. T., Li, Q.-J., Ballinger, R., Forsberg, C. & Li, J. Modeling lif and flibe molten salts with robust neural network interatomic potential. ACS Appl. Mater. Interfaces 13, 24582–24592 (2021).

    Google Scholar 

  76. Rodriguez, A., Lam, S. & Hu, M. Thermodynamic and transport properties of lif and flibe molten salts with deep learning potentials. ACS Appl. Mater. Interfaces 13, 55367–55379 (2021).

    Google Scholar 

  77. Larsen, A. H. et al. The atomic simulation environment–a python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Google Scholar 

  78. Menon, S. et al. From electrons to phase diagrams with machine learning potentials using pyiron based automated workflows. npj Comput. Mater. 10, 261 (2024).

    Google Scholar 

  79. Guan, X. et al. A benchmark dataset for hydrogen combustion. Sci. Data 9, 215 (2022).

    Google Scholar 

  80. Lysogorskiy, Y. et al. Performant implementation of the atomic cluster expansion. Npj Comput. Mater. 7, 97 (2021).

    Google Scholar 

  81. Bochkarev, A. et al. Efficient parametrization of the atomic cluster expansion. Phys. Rev. Mater. 6, 013804 (2022).

    Google Scholar 

  82. Peng, A. et al. LAMbench: A benchmark for large atomic models. npj Comput. Mater. 12, 62 (2026).

  83. AI Squared. OpenLAM Benchmark Introduction. https://www.aissquare.com/openlam?tab=Benchmark&type=Introduction Accessed: 2025-07-02 (2024).

  84. Morrow, J. D. & Deringer, V. L. Indirect learning and physically guided validation of interatomic potential models. J. Chem. Phys. 157, 104105 (2022).

  85. Gardner, J. L. et al. Distillation of atomistic foundation models across architectures and chemical domains. arXiv preprint arXiv:2506.10956 (2025).

  86. Mazitov, A. et al. Surface segregation in high-entropy alloys from alchemical machine learning. J. Phys. Mater. 7, 025007 (2024).

    Google Scholar 

  87. Abadi, M. et al. {TensorFlow}: a system for {Large-Scale} machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 265–283 (OSDI, 2016).

  88. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).

  89. Golesorkhtabar, R., Pavone, P., Spitaler, J., Puschnig, P. & Draxl, C. Elastic: a tool for calculating second-order elastic constants from first principles. Comp. Phys. Commun. 184, 1861–1873 (2013).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) through the CRC1394 “Structural and Chemical Atomic Complexity – From Defect Phase Diagrams to Material Properties”, project ID 409476157. The authors gratefully acknowledge the computing time made available to them on the high-performance computer Noctua2 at the NHR Center Paderborn Center for Parallel Computing (PC2). This center is jointly supported by the Federal Ministry of Research, Technology and Space and the state governments participating in the National High-Performance Computing (NHR) joint funding program (www.nhr-verein.de/en/our-partners). Calculations (or parts of them) for this publication were performed on the HPC cluster Elysium of the Ruhr University Bochum, subsidised by the DFG (INST 213/1055-1).

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

  1. Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-University Bochum, Bochum, Germany

    Yury Lysogorskiy, Anton Bochkarev & Ralf Drautz

Authors
  1. Yury Lysogorskiy
    View author publications

    Search author on:PubMed Google Scholar

  2. Anton Bochkarev
    View author publications

    Search author on:PubMed Google Scholar

  3. Ralf Drautz
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization and Project Administration: All authors. Y.L. and A.B. developed the software and parameterized the models. Writing - original draft: Y.L. Writing-review and editing: All authors. Resources and funding acquisition: Y.L. and R.D.

Corresponding author

Correspondence to Yury Lysogorskiy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysogorskiy, Y., Bochkarev, A. & Drautz, R. Graph atomic cluster expansion for foundational machine learning interatomic potentials. npj Comput Mater (2026). https://doi.org/10.1038/s41524-026-01979-1

Download citation

  • Received: 28 August 2025

  • Accepted: 24 January 2026

  • Published: 08 February 2026

  • DOI: https://doi.org/10.1038/s41524-026-01979-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • Open Access
  • About the Editors
  • Contact
  • Editorial policies
  • Journal Metrics
  • About the partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Computational Materials (npj Comput Mater)

ISSN 2057-3960 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics