Table 4 Synaptic connectivity of the multicompartment network model

From: A Python toolbox for neural circuit parameter inference

Symbol

Value/definition

Description

\({\bar{{\rm{G}}}}_{{\rm{synYX}}}\)

\(\left\{\begin{array}{l}0.15{\rm{nS}}\; {\rm{for}}{\rm{X}}={\rm{E}},{\rm{Y}}={\rm{E}}\\ 0.125{\rm{nS}}\; {\rm{for}}{\rm{X}}={\rm{E}},{\rm{Y}}={\rm{I}}\\ 4.5{\rm{nS}}\; {\rm{for}}{\rm{X}}={\rm{I}},{\rm{Y}}={\rm{E}}\\ 2.0{\rm{nS}}\; {\rm{for}}{\rm{X}}={\rm{I}},{\rm{Y}}={\rm{I}}\end{array}\right.\)

Mean of the normal distribution that defines the maximum synaptic conductance of recurrent connections

σ(GsynYX)

\(0.1{\bar{{\rm{G}}}}_{{\rm{synYX}}}\)

Standard deviation of the maximum synaptic conductance

CYX

0.05 for all X, Y

Connection probability (pairwise Bernoulli, no autapses)

EsynX

0 mV for X = E, -80 mV for X = I

Synaptic reversal potential

fYX (t)

\(\left(\frac{{{\rm{e}}}^{-({\rm{t}}-{{\rm{t}}}_{{\rm{s}}})/{{\rm{\tau }}}_{1}}-{{\rm{e}}}^{-({\rm{t}}-{{\rm{t}}}_{{\rm{s}}})/{{\rm{\tau }}}_{2}}}{{{\rm{e}}}^{-{{\rm{\tau }}}_{{\rm{peak}}}/{{\rm{\tau }}}_{1}}-{{\rm{e}}}^{-{{\rm{\tau }}}_{{\rm{peak}}}/{{\rm{\tau }}}_{2}}}\right){\rm{where}}\) \({{\rm{\tau }}}_{{\rm{peak}}}=\frac{{{\rm{\tau }}}_{2}{{\rm{\tau }}}_{1}}{{{\rm{\tau }}}_{2}-{{\rm{\tau }}}_{1}}\log \left(\frac{{{\rm{\tau }}}_{2}}{{{\rm{\tau }}}_{1}}\right)\)

Synaptic temporal kernel

τ1

0.2 ms for X = E, 0.1 ms for X = I

Synaptic rise time constant

τ2

1.8 ms for X = E, 9.0 ms for X = I

Synaptic decay time constant

\({\bar{\Delta }}_{{\rm{YX}}}\)

\(\left\{\begin{array}{c}1.5{\rm{ms\; for\; X}}={\rm{E}},{\rm{Y}}={\rm{E}}\\ 1.4{\rm{ms\; for\; X}}={\rm{E}},{\rm{Y}}={\rm{I}}\\ 1.3{\rm{ms\; for\; X}}={\rm{I}},{\rm{Y}}={\rm{E}}\\ 1.2{\rm{ms\; for\; X}}={\rm{I}},{\rm{Y}}={\rm{I}}\end{array}\right.\)

Mean of the truncated normal distribution that defines the conduction delay (truncated at 0.3 ms)

σ(ΔYX)

\(\left\{\begin{array}{c}0.3{\rm{ms\; for\; X}}={\rm{E}},{\rm{Y}}={\rm{E}}\\ 0.4{\rm{ms\; for\; X}}={\rm{E}},{\rm{Y}}={\rm{I}}\\ 0.5{\rm{ms\; for\; X}}={\rm{I}},{\rm{Y}}={\rm{E}}\\ 0.6{\rm{ms\; for\; X}}={\rm{I}},{\rm{Y}}={\rm{I}}\end{array}\right.\)

Standard deviation of conduction delays

LYX (z)

\(\left\{\begin{array}{l}\begin{array}{c}\frac{{\mathcal{N}}\left(0,100\right)}{2}{\mathcal{+}}{\mathcal{N}}\left(500,100\right),{\rm{for}}\; {\rm{X}}={\rm{E}},{\rm{Y}}={\rm{E}},\,{\mathcal{S}}\,\{{\rm{soma}}\}\,\\ \,\end{array}\\ {\mathcal{N}}\left(50,100\right){\rm{for}}\; {\rm{X}}={\rm{E}},{\rm{Y}}={\rm{I}},\,{\mathcal{S}}\,\{{\rm{soma}}\}\\ {\mathcal{N}}\left(-50,100\right){\rm{for}}\; {\rm{X}}={\rm{I}},{\rm{Y}}={\rm{E}}\\ {\mathcal{N}}\left(-100,100\right){\rm{for}}\; {\rm{X}}={\rm{I}},{\rm{Y}}={\rm{I}}\end{array}\right.\)

Normal distributions that define synaptic density in the z-axis

\({\bar{{\rm{G}}}}_{{\rm{synYext}}}\)

0.2 nS

External synapse conductance

Eext

0 mV

Ext. synapse rev. potential

fYext (t)

fYX (t)

Ext. synapse temporal kernel

τ1

0.2 ms

Ext. synapse rise time constant

τ2

1.8 ms

Ext. synapse decay time constant

kYext

{465, 160}

Number of ext. synapses per neuron

\(\left\langle {{\rm{\upsilon }}}_{{\rm{ext}}}\right\rangle\)

40 s−1 (Poisson statistics)

Ext. syn. activation rate

\({\bar{\Delta }}_{{\rm{Yext}}}\)

δ(t)

Ext. syn. conduction delay

LYext

1

Ext. syn. depth dependence