Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Radial-velocity discovery of a second planet in the TOI-1338/BEBOP-1 circumbinary system

Subjects

Abstract

Circumbinary planets, those that orbit around both stars of a central binary star system, challenge our understanding of planet formation. With only 12 binary systems known to host circumbinary planets, identifying more of these planets, along with their physical properties, could help to discern some of the physical processes that govern planet formation. Here we analyse radial-velocity data obtained by the HARPS and ESPRESSO spectrographs and report the detection of BEBOP-1 c, a gas giant planet with a mass of 65.2 ± 11.8 Earth masses (M) orbiting around both stars of an eclipsing binary star system with a period of 215.5 ± 3.3 days. The system TOI-1338, hereafter referred to as BEBOP-1, which also hosts the smaller and inner transiting planet TOI-1338 b, is only the second confirmed multiplanetary circumbinary system. We do not detect TOI-1338 b with radial-velocity data alone, and we can place an upper limit on its mass of 21.8 M with 99% confidence. TOI-1338 b is amenable to atmospheric characterization using JWST, so the BEBOP-1 system has the potential to act as a benchmark for circumbinary exo-atmospheric studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Histogram periodogram of posterior samples obtained from a kima run on the BEBOP-1 system.
Fig. 2: Phased Keplerian radial-velocity models of the BEBOP-1 c signal.
Fig. 3: Overview of the BEBOP-1 system.
Fig. 4: Detection limits for additional undetected planetary signals in the BEBOP-1 radial-velocity data.
Fig. 5: Radius versus Mass plot of all transiting circumbinary planets and planets orbiting single stars.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the Article and the Supplementary Information.

Code availability

This work made use of the kima21, corner64, ACTIN66 Astropy97, numpy98, pandas99, scipy100, and matplotlib101. The custom formation simulation code is available upon reasonable request from co-author Gavin A.L. Coleman, email:gavin.coleman@qmul.ac.uk.

References

  1. Doyle, L. R. et al. Kepler-16: a transiting circumbinary planet. Science 333, 1602–1606 (2011).

    Article  ADS  Google Scholar 

  2. Borucki, W. J. et al. Kepler planet-detection mission: introduction and first results. Science 327, 977–980 (2010).

    Article  ADS  Google Scholar 

  3. Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. 1, 14003-1–14003-10 (2015).

    ADS  Google Scholar 

  4. Orosz, J. A. et al. Discovery of a third transiting planet in the Kepler-47 circumbinary system. Astron. J. 157, 174 (2019).

    Article  ADS  Google Scholar 

  5. Meschiari, S. Circumbinary planet formation in the Kepler-16 system. I. N-body simulations. Astrophys. J. 752, 71 (2012).

    Article  ADS  Google Scholar 

  6. Lines, S., Leinhardt, Z. M., Paardekooper, S., Baruteau, C. & Thebault, P. Forming circumbinary planets: N-body simulations of Kepler-34. Astrophys. J. Lett. 782, L11 (2014).

    Article  ADS  Google Scholar 

  7. Pierens, A., McNally, C. P. & Nelson, R. P. Hydrodynamical turbulence in eccentric circumbinary discs and its impact on the in situ formation of circumbinary planets. Mon. Not. R. Astron. Soc. 496, 2849–2867 (2020).

    Article  ADS  Google Scholar 

  8. Martin, D. V. & Fitzmaurice, E. Running the gauntlet - survival of small circumbinary planets migrating through destabilising resonances. Mon. Not. R. Astron. Soc. 512, 602–616 (2022).

    Article  ADS  Google Scholar 

  9. Fitzmaurice, E., Martin, D. V. & Fabrycky, D. C. Sculpting the circumbinary planet size distribution through resonant interactions with companion planets. Mon. Not. R. Astron. Soc. 512, 5023–5036 (2022).

    Article  ADS  Google Scholar 

  10. Welsh, W. F. et al. Transiting circumbinary planets Kepler-34 b and Kepler-35 b. Nature 481, 475–479 (2012).

    Article  ADS  Google Scholar 

  11. Kostov, V. B. et al. TIC 172900988: a transiting circumbinary planet detected in one sector of TESS data. Astron. J. 162, 234 (2021).

    Article  ADS  Google Scholar 

  12. Triaud, A. H. M. J. et al. BEBOP III. Observations and an independent mass measurement of Kepler-16 (AB) b – the first circumbinary planet detected with radial velocities. Mon. Not. R. Astron. Soc. 511, 3561–3570 (2022).

    Article  ADS  Google Scholar 

  13. Kempton, E. M. R. et al. A framework for prioritizing the TESS planetary candidates most amenable to atmospheric characterization. Publ. Astron. Soc. Pac. 130, 114401 (2018).

    Article  ADS  Google Scholar 

  14. Martin, D. V. et al. The BEBOP radial-velocity survey for circumbinary planets. I. Eight years of CORALIE observations of 47 single-line eclipsing binaries and abundance constraints on the masses of circumbinary planets. Astron. Astrophys. 624, A68 (2019).

    Article  Google Scholar 

  15. Martin, D. V. & Triaud, A. H. M. J. Planets transiting non-eclipsing binaries. Astron. Astrophys. 570, A91 (2014).

    Article  ADS  Google Scholar 

  16. Konacki, M., Muterspaugh, M. W., Kulkarni, S. R. & Hełminiak, K. G. The radial velocity Tatooine search for circumbinary planets: planet detection limits for a sample of double-lined binary stars—initial results from Keck I/Hires, Shane/CAT/Hamspec, and TNG/Sarg Observations. Astrophys. J. 704, 513–521 (2009).

    Article  ADS  Google Scholar 

  17. Kostov, V. B. et al. TOI-1338: TESS’ first transiting circumbinary planet. Astron. J. 159, 253 (2020).

    Article  ADS  Google Scholar 

  18. Triaud, A. H. et al. The EBLM Project. IV. Spectroscopic orbits of over 100 eclipsing M dwarfs masquerading as transiting hot Jupiters. Astron. Astrophys. 608, A129 (2017).

    Article  Google Scholar 

  19. Pepe, F. et al. HARPS: ESO’s coming planet searcher. Chasing exoplanets with the La Silla 3.6-m telescope. Messenger 110, 9–14 (2002).

    ADS  Google Scholar 

  20. Pepe, F. et al. ESPRESSO at VLT. On-sky performance and first results. Astron. Astrophys. 645, A96 (2021).

    Article  Google Scholar 

  21. Faria, J. P., Santos, N. C., Figueira, P. & Brewer, B. J. kima: exoplanet detection in radial velocities. J. Open Sour. Softw. 3, 487 (2018).

    Article  ADS  Google Scholar 

  22. Zucker, S. & Alexander, T. Spectroscopic binary mass determination using relativity. Astrophys. J. 654, L83–L86 (2007).

    Article  ADS  Google Scholar 

  23. Konacki, M., Muterspaugh, M. W., Kulkarni, S. R. & Hełminiak, K. G. High-precision orbital and physical parameters of double-lined spectroscopic binary stars—HD78418, HD123999, HD160922, HD200077, and HD210027. Astrophys. J. 719, 1293–1314 (2010).

    Article  ADS  Google Scholar 

  24. Sybilski, P., Konacki, M., Kozłowski, S. K. & Hełminiak, K. G. Non-Keplerian effects in precision radial velocity measurements of double-line spectroscopic binary stars: numerical simulations. Mon. Not. R. Astron. Soc. 431, 2024–2033 (2013).

    Article  ADS  Google Scholar 

  25. Arras, P., Burkart, J., Quataert, E. & Weinberg, N. N. The radial velocity signature of tides raised in stars hosting exoplanets. Mon. Not. R. Astron. Soc. 422, 1761–1766 (2012).

    Article  ADS  Google Scholar 

  26. Hara, N. C., Unger, N., Delisle, J.-B., Díaz, R. & Ségransan, D. Detecting exoplanets with the false inclusion probability. Comparison with other detection criteria in the context of radial velocities.Astron. Astrophys 663, A14 (2022).

    Article  Google Scholar 

  27. Hara, N. C., de Poyferré, T., Delisle, J.-B. & Hoffmann, M. A continuous multiple hypothesis testing framework for optimal exoplanet detection. Preprint at https://arXiv.org/abs/2203.04957 (2022).

  28. Queloz, D. et al. No planet for HD 166435. Astron. Astrophys. 379, 279–287 (2001).

    Article  ADS  Google Scholar 

  29. Gomes da Silva, J. et al. Long-term magnetic activity of a sample of M-dwarf stars from the HARPS program. I. Comparison of activity indices. Astron. Astrophys. 534, A30 (2011).

    Article  Google Scholar 

  30. Schneider, J. On the occultations of a binary star by a circum-orbiting dark companion. Planet. Space Sci. 42, 539–544 (1994).

    Article  ADS  Google Scholar 

  31. Kostov, V. B. et al. Kepler-413b: a slightly misaligned, Neptune-size transiting circumbinary planet. Astrophys. J. 784, 14 (2014).

    Article  ADS  Google Scholar 

  32. Welsh, W. F. et al. Kepler 453 b – the 10th Kepler transiting circumbinary planet. Astrophys. J. 809, 26 (2015).

    Article  ADS  Google Scholar 

  33. Martin, D. V. & Triaud, A. H. Circumbinary planets – why they are so likely to transit. Mon. Not. R. Astron. Soc. 449, 781–793 (2015).

    Article  ADS  Google Scholar 

  34. Martin, D. V. Circumbinary planets − II. When transits come and go. Mon. Not. R. Astron. Soc. 465, 3235–3253 (2017).

    Article  ADS  Google Scholar 

  35. Pierens, A. & Nelson, R. P. On the migration of protoplanets embedded in circumbinary disks. Astron. Astrophys. 472, 993–1001 (2007).

    Article  ADS  MATH  Google Scholar 

  36. Pierens, A. & Nelson, R. P. On the evolution of multiple low mass planets embedded in a circumbinary disc. Astron. Astrophys. 478, 939–949 (2008).

    Article  ADS  Google Scholar 

  37. Penzlin, A. B. T., Kley, W., Audiffren, H. & Schäfer, C. M. Binary orbital evolution driven by a circumbinary disc. Astron. Astrophys. 660, A101 (2022).

    Article  ADS  Google Scholar 

  38. Chambers, J. E. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999).

    Article  ADS  Google Scholar 

  39. Chambers, J. E., Quintana, E. V., Duncan, M. J. & Lissauer, J. J. Symplectic integrator algorithms for modeling planetary accretion in binary star systems. Astron. J. 123, 2884–2894 (2002).

    Article  ADS  Google Scholar 

  40. Coleman, G. A. L. & Haworth, T. J. Dispersal of protoplanetary discs: how stellar properties and the local environment determine the pathway of evolution. Mon. Not. R. Astron. Soc. 514, 2315–2332 (2022).

    Article  ADS  Google Scholar 

  41. Lambrechts, M. & Johansen, A. Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. Astron. Astophys. 572, A107 (2014).

    Article  ADS  Google Scholar 

  42. Paardekooper, S.-J., Baruteau, C. & Kley, W. A torque formula for non-isothermal Type I planetary migration – II. Effects of diffusion. Mon. Not. R. Astron. Soc. 410, 293–303 (2011).

    Article  ADS  Google Scholar 

  43. Coleman, G. A. L., Papaloizou, J. C. B. & Nelson, R. P. In situ accretion of gaseous envelopes on to planetary cores embedded in evolving protoplanetary discs. Mon. Not. R. Astron. Soc. 470, 3206–3219 (2017).

    Article  ADS  Google Scholar 

  44. Poon, S. T. S., Nelson, R. P. & Coleman, G. A. L. In situ formation of hot Jupiters with companion super-Earths. Mon. Not. R. Astron. Soc. 505, 2500–2516 (2021).

    Article  ADS  Google Scholar 

  45. Martin, D. V., Mazeh, T. & Fabrycky, D. C. No circumbinary planets transiting the tightest Kepler binaries – a possible fingerprint of a third star. Mon. Not. R. Astron. Soc. 453, 3554–3567 (2015).

    Article  ADS  Google Scholar 

  46. Kunovac Hodžić, V. et al. The EBLM project − VII. Spin-orbit alignment for the circumbinary planet host EBLM J0608-59 A/TOI-1338 A. Mon. Not. R. Astron. Soc. 497, 1627–1633 (2020).

    ADS  Google Scholar 

  47. Mayor, M. et al. Setting new standards with HARPS. Messenger 114, 20–24 (2003).

    ADS  Google Scholar 

  48. Baranne, A. et al. ELODIE: a spectrograph for accurate radial velocity measurements. Astron. Astrophys. Suppl. Ser. 119, 373–390 (1996).

    Article  ADS  Google Scholar 

  49. Standing, M. R. et al. BEBOP II: sensitivity to sub-Saturn circumbinary planets using radial-velocities. Mon. Not. R. Astron. Soc. 511, 3571–3583 (2022).

    Article  ADS  Google Scholar 

  50. Triaud, A. H. M. J. in Handbook of Exoplanets (eds Deeg, H. J. & Belmonte, J. A.) 1375–1401 (Springer Cham, 2018).

  51. Kunovac Hodžić, V., Triaud, A. H. M. J., Cegla, H. M., Chaplin, W. J. & Davies, G. R. Orbital misalignment of the super-Earth π Men c with the spin of its star. Mon. Not. R. Astron. Soc. 502, 2893–2911 (2021).

    Article  ADS  Google Scholar 

  52. Faria, J. P. et al. A candidate short-period sub-Earth orbiting Proxima Centauri. Astron. Astrophys. 658, A115 (2022).

    Article  Google Scholar 

  53. Agol, E. et al. Refining the transit-timing and photometric analysis of TRAPPIST-1: masses, radii, densities, dynamics, and ephemerides. Planet. Sci. 2, 1 (2021).

    Article  Google Scholar 

  54. Hogg, D. W., Bovy, J. & Lang, D. Data analysis recipes: fitting a model to data. Preprint at https://arXiv.org/abs/1008.4686 (2010).

  55. Salvatier, J., Wiecki, T. & Fonnesbeck, C. Probabilistic programming in Python using PyMC. Preprint at https://arXiv.org/abs/1507.08050 (2015).

  56. Brewer, B. J., Pártay, L. B. & Csányi, G. Diffusive nested sampling. Stat. Comput. 21, 649–656 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  57. Feroz, F., Balan, S. T. & Hobson, M. P. Detecting extrasolar planets from stellar radial velocities using Bayesian evidence. Mon. Not. R. Astron. Soc. 415, 3462–3472 (2011).

    Article  ADS  Google Scholar 

  58. Brewer, B. J. Inference for trans-dimensional Bayesian models with diffusive nested sampling. Preprint at https://arXiv.org/abs/1411.3921 (2014). 1411.3921.

  59. Baycroft, T. A., Triaud, A. H. M. J., Faria, J., Correia, A. C. M. & Standing, M. R. Improving circumbinary planet detections by fitting their binary’s apsidal precession. Mon. Not. R. Astron. Soc. 521, 1871–1879 (2023).

    Article  ADS  Google Scholar 

  60. Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  61. Trotta, R. Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp. Phys. 49, 71–104 (2008).

    Article  ADS  Google Scholar 

  62. Jeffreys, H. Theory of Probability (Oxford University Press, 1961).

  63. McInnes, L., Healy, J. & Astels, S. hdbscan: hierarchical density based clustering. J. Open Sour. Softw. 2, 205 (2017).

  64. Foreman-Mackey, D. corner.py: scatterplot matrices in python. J. Open Sour. Softw. 1, 24 (2016).

    Article  ADS  Google Scholar 

  65. Tuomi, M., Jones, H. R. A., Barnes, J. R., Anglada-Escudé, G. & Jenkins, J. S. Bayesian search for low-mass planets around nearby M dwarfs – estimates for occurrence rate based on global detectability statistics. Mon. Not. R. Astron. Soc. 441, 1545–1569 (2014).

    Article  ADS  Google Scholar 

  66. Gomes da Silva, J., Figueira, P., Santos, N. & Faria, J. ACTIN: a tool to calculate stellar activity indices. J. Open Sour. Softw. 3, 667 (2018).

    Article  ADS  Google Scholar 

  67. Zechmeister, M., Kürster, M. & Endl, M. The M dwarf planet search programme at the ESO VLT + UVES. A search for terrestrial planets in the habitable zone of M dwarfs. Astron. Astrophys. 505, 859–871 (2009).

    Article  ADS  Google Scholar 

  68. Pojmanski, G. The All Sky Automated Survey. Acta Astron. 47, 467–481 (1997).

    ADS  Google Scholar 

  69. Quarles, B., Satyal, S., Kostov, V., Kaib, N. & Haghighipour, N. Stability limits of circumbinary planets: is there a pile-up in the Kepler CBPs? Astrophys. J. 856, 150 (2018).

    Article  ADS  Google Scholar 

  70. Laskar, J. The chaotic motion of the solar system : a numerical estimate of the size of the chaotic zones. Icarus 88, 266–291 (1990).

    Article  ADS  Google Scholar 

  71. Laskar, J. Frequency analysis for multi-dimensional systems. Global dynamics and diffusion. Phys. D 67, 257–281 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  72. Correia, A. C. M. et al. The CORALIE survey for southern extra-solar planets. XIII. A pair of planets around HD 202206 or a circumbinary planet? Astron. Astrophys. 440, 751–758 (2005).

    Article  ADS  Google Scholar 

  73. Laskar, J. & Robutel, P. High order symplectic integrators for perturbed Hamiltonian systems. Celest. Mech. Dynam. Astron. 80, 39–62 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Farago, F. & Laskar, J. High-inclination orbits in the secular quadrupolar three-body problem. Mon. Not. R. Astron. Soc. 401, 1189–1198 (2010).

    Article  ADS  Google Scholar 

  75. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

    ADS  Google Scholar 

  76. D’Angelo, G. & Marzari, F. Outward migration of Jupiter and Saturn in evolved gaseous disks. Astrophys. J. 757, 50 (2012).

    Article  ADS  Google Scholar 

  77. Dullemond, C. P., Hollenbach, D., Kamp, I. & D’Alessio, P. in Protostars and Planets V (eds Reipurth, B. et al.) 555–572 (University of Arizona Press, 2007).

  78. Matsuyama, I., Johnstone, D. & Hartmann, L. Viscous diffusion and photoevaporation of stellar disks. Astrophys. J. 582, 893–904 (2003).

    Article  ADS  Google Scholar 

  79. Pierens, A. & Nelson, R. P. Migration and gas accretion scenarios for the Kepler 16, 34, and 35 circumbinary planets. Astron. Astrophys. 556, A134 (2013).

    Article  ADS  Google Scholar 

  80. Thun, D., Kley, W. & Picogna, G. Circumbinary discs: numerical and physical behaviour. Astron. Astrophys. 604, A102 (2017).

    Article  ADS  Google Scholar 

  81. Benítez-Llambay, P. & Masset, F. S. FARGO3D: a new GPU-oriented MHD code. Astrophys. J. Suppl. Ser. 223, 11 (2016).

    Article  ADS  Google Scholar 

  82. Coleman, G. A. L. & Nelson, R. P. On the formation of planetary systems via oligarchic growth in thermally evolving viscous discs. Mon. Not. R. Astron. Soc. 445, 479–499 (2014).

    Article  ADS  Google Scholar 

  83. Daisaka, J. K., Tanaka, H. & Ida, S. Orbital evolution and accretion of protoplanets tidally interacting with a gas disk. II. Solid surface density evolution with type-I migration. Icarus 185, 492–507 (2006).

    Article  ADS  Google Scholar 

  84. Cresswell, P. & Nelson, R. P. Three-dimensional simulations of multiple protoplanets embedded in a protostellar disc. Astron. Astrophys. 482, 677–690 (2008).

    Article  ADS  Google Scholar 

  85. Paardekooper, S.-J., Baruteau, C. & Kley, W. A torque formula for non-isothermal type I planetary migration − II. Effects of diffusion. Mon. Not. R. Astron. Soc. 410, 293–303 (2011).

    Article  ADS  Google Scholar 

  86. Crida, A., Morbidelli, A. & Masset, F. On the width and shape of gaps in protoplanetary disks. Icarus 181, 587–604 (2006).

    Article  ADS  Google Scholar 

  87. Lin, D. N. C. & Papaloizou, J. On the tidal interaction between protoplanets and the protoplanetary disk. III. Orbital migration of protoplanets. Astrophys. J. 309, 846 (1986).

    Article  ADS  Google Scholar 

  88. Lambrechts, M. & Johansen, A. Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, A32 (2012).

    Article  ADS  Google Scholar 

  89. Johansen, A. & Lambrechts, M. Forming planets via pebble accretion. Annu Rev. Earth Planet Sci. 45, 359–387 (2017).

    Article  ADS  Google Scholar 

  90. Coleman, G. A. L., Nelson, R. P. & Triaud, A. H. M. J. Dusty circumbinary discs: inner cavity structures and stopping locations of migrating planets. Mon. Not. R. Astron. Soc. 513, 2563–2580 (2022).

    Article  ADS  Google Scholar 

  91. Coleman, G. A. L. From dust to planets − I. Planetesimal and embryo formation. Mon. Not. R. Astron. Soc. 506, 3596–3614 (2021).

    Article  ADS  Google Scholar 

  92. Holman, M. J. & Wiegert, P. A. Long-term stability of planets in binary systems. Astron. J. 117, 621–628 (1999).

    Article  ADS  Google Scholar 

  93. Kane, S. R. & Hinkel, N. R. On the habitable zones of circumbinary planetary systems. Astrophys. J. 762, 7 (2013).

    Article  ADS  Google Scholar 

  94. Cutri, R. M. et al. 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003) no. II/246 (VizieR Online Data Catalog, 2003).

  95. Müller, T. W. A. & Haghighipour, N. Calculating the habitable zones of multiple star systems with a new interactive web site. Astrophys. J. 782, 26 (2014).

    Article  ADS  Google Scholar 

  96. Akeson, R. L. et al. The NASA exoplanet archive: data and tools for exoplanet research. Pub. Astron. Sos. Pac. 125, 989 (2013).

    Article  ADS  Google Scholar 

  97. Astropy Collaboration et al. The Astropy Project: sustaining and growing a community-oriented open-source project and the latest major release (v5.0) of the core package. Astrophys. J. 935, 167 (2020).

  98. Harris, C.R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

  99. McKinney, W. Data structures for statistical computing in Python. In Proc. 9th Python in Science Conference (eds van der Walt, S. & Millman, J.) 56–61 (SciPy, 2010).

  100. Pauli, V. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Meth. 17, 261–272 (2020).

    Article  Google Scholar 

  101. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the ESO staff at La Silla and Paranal for their continued support throughout this work, especially through the COVID-19 pandemic, with special thanks to our ESPRESSO support astronomer M. Wittkowski. We also thank all of the observers who took part in the HARPS timeshare and were instrumental in collecting data for this project. We particularly thank X. Dumusque and F. Bouchy for their work in organizing the timeshare. This Article is based on observations collected at the European Southern Observatory under ESO programmes 103.2024, 106.216B, 1101.C-0721 and 106.212H. This research has made use of the services of the ESO Science Archive Facility. A.H.M.J.T. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 803193/BEBOP) and from the Leverhulme Trust (research project no. RPG-2018-418) to conduct this research. M.R.S. would like to acknowledge the support of the UK Science and Technology Facilities Council (STFC) under grant number ST/T000295/1. A.C.M.C. acknowledges support from CFisUC (grant nos. UIDB/04564/2020 and UIDP/04564/2020), GRAVITY (grant no. PTDC/FIS-AST/7002/2020), PHOBOS (grant no. POCI-01-0145-FEDER-029932) and ENGAGE SKA (grant no. POCI-01-0145-FEDER-022217), funded by COMPETE 2020 and FCT, Portugal. The stability maps were performed at the OBLIVION Supercomputer (HPC Center − University of Évora), funded by ENGAGE SKA and by the BigData@UE project (grant no. ALT20-03-0246-FEDER-000033). Support for D.V.M. was provided by NASA through the NASA Hubble Fellowship grant no. HF2-51464 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract no. NAS5-26555. D.V.M. is a NASA Sagan Fellow. V.K. acknowledges support from NSF award no. AST2009501. A.S. received funding from the French government under the ‘France 2030’ investment plan managed by the French National Research Agency (reference nos. ANR-16-CONV-000X/ANR-17-EURE-00XX) and from Excellence Initiative of Aix-Marseille University–A*MIDEX (reference no. AMX-21-IET-018). This work was supported by the ‘Programme National de Planétologie’ (PNP) of CNRS/INSU. J.P.F. received support in the form of a work contract funded by national funds through Fundação para a Ciência e a Tecnologia (FCT) with reference no. DL57/2016/CP1364/CT0005. A.C.C. acknowledges support from STFC consolidated grant nos. ST/R000824/1 and ST/V000861/1, and UKSA grant no. ST/R003203/1. M.G. is an FNRS Senior Research Associate. R.P.N. and G.A.L.C. utilized Queen Mary’s Apocrita HPC facility, supported by QMUL Research-IT (https://doi.org/10.5281/zenodo.438045). This work was performed using the DiRAC Data Intensive service at Leicester, operated by the University of Leicester IT Services, which forms part of the STFC DiRAC HPC Facility (www.dirac.ac.uk). The equipment was funded by BEIS capital funding via STFC capital grant nos. ST/K000373/1 and ST/R002363/1 and STFC DiRAC Operations grant no. ST/R001014/1. DiRAC is part of the National e-Infrastructure.

Author information

Authors and Affiliations

Authors

Contributions

The BEBOP project was established by A.H.M.J.T. and D.V.M., building on work by the Wide Angle Search for Planets consortium that involved A.H.M.J.T., I.B., A.C.C., M.G., C.H., P.F.L.M., F.P., A.S. and S.U. The radial-velocity data used in this manuscript were secured and obtained by M.R.S., A.H.M.J.T., L.S., D.V.M., V.K., D.S., T.A.B., P.F.L.M., N.J.M. and A.S., and their reduction involved M.R.S., A.H.M.J.T., F.P. and S.U. The observational campaign was led by M.R.S. for ESPRESSO observations and A.H.M.J.T. for HARPS. The radial-velocity analysis was led by M.R.S. with assistance from A.H.M.J.T., D.V.M. and J.P.F. Outliers in the radial-velocity data were identified by T.A.B. and M.R.S. The detection limit analysis was performed by M.R.S., J.H. and E.L. with help from J.P.F. The TIP and FIP analysis was carried out by T.A.B. and N.C.H. The analysis of the stellar activity was carried out by L.S., M.R.S. and A.H.M.J.T. An independent stability analysis on the system was carried out by A.C.M.C. and D.V.M. with input from R.M. Formation pathway simulations were carried out by G.A.L.C. and R.P.N. The TSM was calculated by G.D. The system was determined to have an inner transiting planet TOI-1338 b by D.V.M., J.A.O. and W.F.W. V.K. prepared the majority of figures in the Article. All co-authors assisted in writing and reviewing the manuscript.

Corresponding author

Correspondence to Matthew R. Standing.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Maciej Konacki and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11 and Tables 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Standing, M.R., Sairam, L., Martin, D.V. et al. Radial-velocity discovery of a second planet in the TOI-1338/BEBOP-1 circumbinary system. Nat Astron 7, 702–714 (2023). https://doi.org/10.1038/s41550-023-01948-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-023-01948-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing