Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cygnus X-3 revealed as a Galactic ultraluminous X-ray source by IXPE

Abstract

The accretion of matter by compact objects can be inhibited by radiation pressure if the luminosity exceeds a critical value known as the Eddington limit. The discovery of ultraluminous X-ray sources has shown that accretion can proceed even when the apparent luminosity considerably exceeds this limit. A high apparent luminosity might be produced due to the geometric beaming of radiation by an outflow. The outflow half-opening angle, which determines the amplification due to beaming, has never been robustly constrained. Using the Imaging X-ray Polarimetry Explorer, we measured the X-ray polarization in the Galactic X-ray binary Cygnus X-3 (Cyg X-3). We found high, >20%, nearly energy-independent linear polarization orthogonal to the direction of the radio ejections. These properties unambiguously indicate the presence of a collimating outflow from the X-ray binary Cyg X-3 and constrain its half-opening angle to 15°. Thus, the source can be used as a laboratory for studying the supercritical accretion regime. This finding underscores the importance of X-ray polarimetry in advancing our understanding of accreting sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Orbital-phase averaged polarization properties from IXPE observations.
Fig. 2: Orbital-phase-folded polarization properties.
Fig. 3: Average spectro-polarimetric data with the best-fitting models for the Main and ToO observations.
Fig. 4: Geometry of the funnel and its polarization properties.

Similar content being viewed by others

Data availability

The IXPE, NuSTAR, NICER, INTEGRAL and Fermi data are freely available in the HEASARC Data Archive (https://heasarc.gsfc.nasa.gov). The SRG ART-XC data are available via ftp://hea.iki.rssi.ru/public/SRG/ART-XC/data/Cyg_X-3/artxc_cygx3_04-20keV_lcurve.qdp. The multiwavelength raw data are available on request from the individual observatories.

Code availability

The analysis and simulation software IXPEOBSSIM developed by the IXPE Collaboration and its documentation is available publicly through the web-page https://ixpeobssim.readthedocs.io/en/latest/?badge=latest.494. XSPEC is distributed and maintained under the aegis of the HEASARC and can be downloaded as part of HEAsoft from http://heasarc.gsfc.nasa.gov/docs/software/lheasoft/download.html. The MIR software package for the SMA data is available at https://lweb.cfa.harvard.edu/~cqi/mircook.html. Models of the polarized emission from the funnel are available via Zenodo at https://zenodo.org/records/10889892 (ref. 106). The STOKES code v.2.07 is available upon reasonable request from the authors.

References

  1. Giacconi, R., Gorenstein, P., Gursky, H. & Waters, J. R. An X-ray survey of the Cygnus region. Astrophys. J. 148, L119–L127 (1967).

    Article  ADS  Google Scholar 

  2. Gregory, P. C. & Kronberg, P. P. Discovery of giant radio outburst from Cygnus X-3. Nature 239, 440–443 (1972).

    Article  ADS  Google Scholar 

  3. McCollough, M. L. et al. Discovery of correlated behavior between the hard X-ray and the radio bands in Cygnus X-3. Astrophys. J. 517, 951–955 (1999).

    Article  ADS  Google Scholar 

  4. Corbel, S. et al. A giant radio flare from Cygnus X-3 with associated γ-ray emission. Mon. Not. R. Astron. Soc. 421, 2947–2955 (2012).

    Article  ADS  Google Scholar 

  5. Atwood, W. B. et al. The large area telescope on the Fermi Gamma-Ray Space Telescope mission. Astrophys. J. 697, 1071–1102 (2009).

    Article  ADS  Google Scholar 

  6. Tavani, M. et al. Extreme particle acceleration in the microquasar Cygnus X-3. Nature 462, 620–623 (2009).

    Article  ADS  Google Scholar 

  7. Lommen, D., Yungelson, L., van den Heuvel, E., Nelemans, G. & Portegies Zwart, S. Cygnus X-3 and the problem of the missing Wolf–Rayet X-ray binaries. Astron. Astrophys. 443, 231–241 (2005).

    Article  ADS  Google Scholar 

  8. Belczynski, K. et al. Cyg X-3: a Galactic double black hole or black-hole-neutron-star progenitor. Astrophys. J. 764, 96 (2013).

    Article  ADS  Google Scholar 

  9. van Kerkwijk, M. H. et al. Infrared helium emission lines from Cygnus X-3 suggesting a Wolf–Rayet star companion. Nature 355, 703–705 (1992).

    Article  ADS  Google Scholar 

  10. van Kerkwijk, M. H., Geballe, T. R., King, D. L., van der Klis, M. & van Paradijs, J. The Wolf–Rayet counterpart of Cygnus X-3. Astron. Astrophys. 314, 521–540 (1996).

    ADS  Google Scholar 

  11. Reid, M. J. & Miller-Jones, J. C. A. On the distances to the X-ray binaries Cygnus X-3 and GRS 1915+105. Astrophys. J. 959, 85 (2023).

  12. McCollough, M. L., Corrales, L. & Dunham, M. M. Cygnus X-3: its little friend’s counterpart, the distance to Cygnus X-3, and outflows/jets. Astrophys. J. Lett. 830, 36 (2016).

    Article  ADS  Google Scholar 

  13. Martí, J., Paredes, J. M. & Peracaula, M. The Cygnus X-3 radio jets at arcsecond scales. Astrophys. J. 545, 939–944 (2000).

    Article  ADS  Google Scholar 

  14. Miller-Jones, J. C. A. et al. Time-sequenced multi-radio frequency observations of Cygnus X-3 in flare. Astrophys. J. 600, 368–389 (2004).

    Article  ADS  Google Scholar 

  15. Jones, T. J., Gehrz, R. D., Kobulnicky, H. A., Molnar, L. A. & Howard, E. M. Infrared photometry and polarimetry of Cygnus X-3. Astron. J. 108, 605–611 (1994).

    Article  ADS  Google Scholar 

  16. Fender, R. P., Hanson, M. M. & Pooley, G. G. Infrared spectroscopic variability of Cygnus X-3 in outburst and quiescence. Mon. Not. R. Astron. Soc. 308, 473–484 (1999).

    Article  ADS  Google Scholar 

  17. Hjellming, R. M. An astronomical puzzle called Cygnus X-3. Science 182, 1089–1095 (1973).

    Article  ADS  Google Scholar 

  18. Vilhu, O., Hakala, P., Hannikainen, D. C., McCollough, M. & Koljonen, K. Orbital modulation of X-ray emission lines in Cygnus X-3. Astron. Astrophys. 501, 679–686 (2009).

    Article  ADS  Google Scholar 

  19. Kallman, T. et al. Photoionization emission models for the Cyg X-3 X-ray spectrum. Astrophys. J. 874, 51 (2019).

    Article  ADS  Google Scholar 

  20. van der Klis, M. & Bonnet-Bidaud, J. M. A change in light curve asymmetry and the ephemeris of CYG X-3. Astron. Astrophys. 95, 5–7 (1981).

    Google Scholar 

  21. Antokhin, I. I. & Cherepashchuk, A. M. The period change of Cyg X-3. Astrophys. J. 871, 244 (2019).

    Article  ADS  Google Scholar 

  22. Antokhin, I. I., Cherepashchuk, A. M., Antokhina, E. A. & Tatarnikov, A. M. Near-IR and X-ray variability of Cyg X-3: evidence for a compact IR source and complex wind structures. Astrophys. J. 926, 123 (2022).

    Article  ADS  Google Scholar 

  23. Mioduszewski, A. J., Rupen, M. P., Hjellming, R. M., Pooley, G. G. & Waltman, E. B. A one-sided highly relativistic jet from Cygnus X-3. Astrophys. J. 553, 766–775 (2001).

    Article  ADS  Google Scholar 

  24. Szostek, A., Zdziarski, A. A. & McCollough, M. L. A classification of the X-ray and radio states of Cyg X-3 and their long-term correlations. Mon. Not. R. Astron. Soc. 388, 1001–1010 (2008).

    ADS  Google Scholar 

  25. Zdziarski, A. A., Misra, R. & Gierliński, M. Compton scattering as the explanation of the peculiar X-ray properties of Cyg X-3. Mon. Not. R. Astron. Soc. 402, 767–775 (2010).

    Article  ADS  Google Scholar 

  26. Hjalmarsdotter, L. et al. The nature of the hard state of Cygnus X-3. Mon. Not. R. Astron. Soc. 384, 278–290 (2008).

    Article  ADS  Google Scholar 

  27. Milgrom, M. & Pines, D. Cygnus X-3: a cocooned X-ray binary pulsar? Astrophys. J. 220, 272–278 (1978).

    Article  ADS  Google Scholar 

  28. White, N. E. & Holt, S. S. Accretion disk coronae. Astrophys. J. 257, 318–337 (1982).

    Article  ADS  Google Scholar 

  29. Weisskopf, M. C. et al. The Imaging X-Ray Polarimetry Explorer (IXPE): pre-launch. J. Astron. Telesc. Instrum. Syst. 8, 026002 (2022).

    Article  ADS  Google Scholar 

  30. Brown, J. C., McLean, I. S. & Emslie, A. G. Polarisation by Thomson scattering in optically thin stellar envelopes. II. Binary and multiple star envelopes and the determination of binary inclinations. Astron. Astrophys. 68, 415–427 (1978).

    ADS  Google Scholar 

  31. Ursini, F. et al. Mapping the circumnuclear regions of the Circinus galaxy with the Imaging X-ray Polarimetry Explorer. Mon. Not. R. Astron. Soc. 519, 50–58 (2023).

    Article  ADS  Google Scholar 

  32. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

    ADS  Google Scholar 

  33. Poutanen, J., Lipunova, G., Fabrika, S., Butkevich, A. G. & Abolmasov, P. Supercritically accreting stellar mass black holes as ultraluminous X-ray sources. Mon. Not. R. Astron. Soc. 377, 1187–1194 (2007).

    Article  ADS  Google Scholar 

  34. Sądowski, A., Narayan, R., McKinney, J. C. & Tchekhovskoy, A. Numerical simulations of super-critical black hole accretion flows in general relativity. Mon. Not. R. Astron. Soc. 439, 503–520 (2014).

    Article  ADS  Google Scholar 

  35. Kaaret, P., Feng, H. & Roberts, T. P. Ultraluminous X-ray sources. Annu. Rev. Astron. Astrophys. 55, 303–341 (2017).

    Article  ADS  Google Scholar 

  36. King, A. R., Davies, M. B., Ward, M. J., Fabbiano, G. & Elvis, M. Ultraluminous X-ray sources in external galaxies. Astrophys. J. Lett. 552, 109–112 (2001).

    Article  ADS  Google Scholar 

  37. King, A. R. Masses, beaming and Eddington ratios in ultraluminous X-ray sources. Mon. Not. R. Astron. Soc. 393, 41–44 (2009).

    Article  ADS  Google Scholar 

  38. Middleton, M. J. et al. NuSTAR reveals the hidden nature of SS433. Mon. Not. R. Astron. Soc. 506, 1045–1058 (2021).

    Article  ADS  Google Scholar 

  39. Fabrika, S. The jets and supercritical accretion disk in SS433. Astrophys. Space Phys. Rev. 12, 1–152 (2004).

    ADS  Google Scholar 

  40. Done, C., Wardziński, G. & Gierliński, M. GRS 1915+105: the brightest Galactic black hole. Mon. Not. R. Astron. Soc. 349, 393–403 (2004).

    Article  ADS  Google Scholar 

  41. Casares, J. & Jonker, P. G. Mass measurements of stellar and intermediate-mass black holes. Space Sci. Rev. 183, 223–252 (2014).

    Article  ADS  Google Scholar 

  42. Motta, S. E. et al. Swift observations of V404 Cyg during the 2015 outburst: X-ray outflows from super-Eddington accretion. Mon. Not. R. Astron. Soc. 471, 1797–1818 (2017).

    Article  ADS  Google Scholar 

  43. Revnivtsev, M., Sunyaev, R., Gilfanov, M. & Churazov, E. V4641Sgr – a super-Eddington source enshrouded by an extended envelope. Astron. Astrophys. 385, 904–908 (2002).

    Article  ADS  Google Scholar 

  44. MacDonald, R. K. D. et al. The black hole binary V4641 Sagitarii: activity in quiescence and improved mass determinations. Astrophys. J. 784, 2 (2014).

    Article  ADS  Google Scholar 

  45. Long, K. S., Chanan, G. A. & Novick, R. The X-ray polarization of the Cygnus sources. Astrophys. J. 238, 710–716 (1980).

    Article  ADS  Google Scholar 

  46. Krawczynski, H. et al. Polarized X-rays constrain the disk-jet geometry in the black hole X-ray binary Cygnus X-1. Science 378, 650–654 (2022).

    Article  ADS  Google Scholar 

  47. Di Marco, A. et al. Handling the background in IXPE polarimetric data. Astron. J. 165, 143 (2023).

    Article  ADS  Google Scholar 

  48. Strohmayer, T. E. X-ray spectro-polarimetry with photoelectric polarimeters. Astrophys. J. 838, 72 (2017).

    Article  ADS  Google Scholar 

  49. Arnaud, K. A. in Astronomical Data Analysis Software and Systems V (eds Jacoby, G. H. and Barnes, J.) 17 (ASP, 1996).

  50. Baldini, L. et al. ixpeobssim: a simulation and analysis framework for the Imaging X-ray Polarimetry Explorer. SoftwareX 19, 101194 (2022).

    Article  Google Scholar 

  51. Kislat, F., Clark, B., Beilicke, M. & Krawczynski, H. Analyzing the data from X-ray polarimeters with Stokes parameters. Astropart. Phys. 68, 45–51 (2015).

    Article  ADS  Google Scholar 

  52. Harrison, F. A. et al. The Nuclear Spectroscopic Telescope Array (NuSTAR) high-energy X-ray mission. Astrophys. J. 770, 103 (2013).

    Article  ADS  Google Scholar 

  53. Madsen, K. K., Forster, K., Grefenstette, B., Harrison, F. A. & Miyasaka, H. Effective area calibration of the Nuclear Spectroscopic Telescope Array. J. Astron. Telesc. Instrum. Syst. 8, 034003 (2022).

    Article  ADS  Google Scholar 

  54. Magdziarz, P. & Zdziarski, A. A. Angle-dependent Compton reflection of X-rays and gamma-rays. Mon. Not. R. Astron. Soc. 273, 837–848 (1995).

    Article  ADS  Google Scholar 

  55. Zdziarski, A. A., Johnson, W. N. & Magdziarz, P. Broad-band γ-ray and X-ray spectra of NGC 4151 and their implications for physical processes and geometry. Mon. Not. R. Astron. Soc. 283, 193–206 (1996).

    Article  ADS  Google Scholar 

  56. Fabrika, S. N., Atapin, K. E., Vinokurov, A. S. & Sholukhova, O. N. Ultraluminous X-ray sources. Astrophys. Bull. 76, 6–38 (2021).

    Article  ADS  Google Scholar 

  57. King, A., Lasota, J.-P. & Middleton, M. Ultraluminous X-ray sources. New Astron. Rev. 96, 101672 (2023).

    Article  Google Scholar 

  58. Koljonen, K. I. I., Hannikainen, D. C., McCollough, M. L., Pooley, G. G. & Trushkin, S. A. The hardness–intensity diagram of Cygnus X-3: revisiting the radio/X-ray states. Mon. Not. R. Astron. Soc. 406, 307–319 (2010).

    Article  ADS  Google Scholar 

  59. Zdziarski, A. A., Mikolajewska, J. & Belczynski, K. Cyg X-3: a low-mass black hole or a neutron star. Mon. Not. R. Astron. Soc. 429, 104–108 (2013).

    Article  ADS  Google Scholar 

  60. Koljonen, K. I. I. & Maccarone, T. J. Gemini/GNIRS infrared spectroscopy of the Wolf–Rayet stellar wind in Cygnus X-3. Mon. Not. R. Astron. Soc. 472, 2181–2195 (2017).

    Article  ADS  Google Scholar 

  61. Suryanarayanan, A., Paerels, F. & Leutenegger, M. The high resolution Fe K spectrum of Cygnus X-3. Preprint at https://arxiv.org/abs/2212.04165 (2022).

  62. Egron, E. et al. Investigating the mini and giant radio flare episodes of Cygnus X-3. Astrophys. J. 906, 10 (2021).

    Article  ADS  Google Scholar 

  63. Parsignault, D. R. et al. Observations of Cygnus X-3 by Uhuru. Nat. Phys. Sci. 239, 123–125 (1972).

    Article  ADS  Google Scholar 

  64. Bonnet-Bidaud, J. M. & van der Klis, M. The X-ray modulation of CYG X-3. Astron. Astrophys. 101, 299–304 (1981).

    ADS  Google Scholar 

  65. Mason, K. O., Cordova, F. A. & White, N. E. Simultaneous X-ray and infrared observations of Cygnus X-3. Astrophys. J. 309, 700–706 (1986).

    Article  ADS  Google Scholar 

  66. Zdziarski, A. A. et al. A comprehensive study of high-energy gamma-ray and radio emission from Cyg X-3. Mon. Not. R. Astron. Soc. 479, 4399–4415 (2018).

    Article  ADS  Google Scholar 

  67. Stark, M. J. & Saia, M. Doppler modulation of X-ray lines in Cygnus X-3. Astrophys. J. Lett. 587, 101–104 (2003).

    Article  ADS  Google Scholar 

  68. Zdziarski, A. A., Maitra, C., Frankowski, A., Skinner, G. K. & Misra, R. Energy-dependent orbital modulation of X-rays and constraints on emission of the jet in Cyg X-3. Mon. Not. R. Astron. Soc. 426, 1031–1042 (2012).

    Article  ADS  Google Scholar 

  69. Willingale, R., King, A. R. & Pounds, K. A. EXOSAT MEDA observations of Cygnus X-3. Mon. Not. R. Astron. Soc. 215, 295–314 (1985).

    Article  ADS  Google Scholar 

  70. Poutanen, J., Nagendra, K. N. & Svensson, R. Green’s matrix for Compton reflection of polarized radiation from cold matter. Mon. Not. R. Astron. Soc. 283, 892–904 (1996).

    Article  ADS  Google Scholar 

  71. Axelsson, M., Larsson, S. & Hjalmarsdotter, L. The aperiodic broad-band X-ray variability of Cygnus X-3. Mon. Not. R. Astron. Soc. 394, 1544–1550 (2009).

    Article  ADS  Google Scholar 

  72. Sunyaev, R. et al. SRG X-ray orbital observatory. Its telescopes and first scientific results. Astron. Astrophys. 656, A132 (2021).

    Article  Google Scholar 

  73. Pavlinsky, M. et al. The ART-XC telescope on board the SRG observatory. Astron. Astrophys. 650, A42 (2021).

    Article  Google Scholar 

  74. Ubertini, P. et al. Bursts from GS 1826-238: a clocked thermonuclear flashes generator. Astrophys. J. Lett. 514, 27–30 (1999).

    Article  ADS  Google Scholar 

  75. Lebrun, F. et al. ISGRI: the INTEGRAL soft gamma-ray imager. Astron. Astrophys. 411, 141–148 (2003).

    Article  Google Scholar 

  76. Courvoisier, T. J.-L. et al. The INTEGRAL Science Data Centre (ISDC). Astron. Astrophys. 411, 53–57 (2003).

    Article  Google Scholar 

  77. Neronov, A. et al. Online data analysis system of the INTEGRAL telescope. Astron. Astrophys. 651, A97 (2021).

    Article  Google Scholar 

  78. Mattox, J. R. et al. The likelihood analysis of EGRET data. Astrophys. J. 461, 396–407 (1996).

    Article  ADS  Google Scholar 

  79. Atwood, W. et al. Pass 8: toward the full realization of the Fermi-LAT scientific potential. Preprint at https://arxiv.org/abs/1303.3514 (2013).

  80. Abdollahi, S. et al. Fermi Large Area Telescope Fourth Source Catalog. Astrophys. J. Suppl. Ser. 247, 33 (2020).

    Article  ADS  Google Scholar 

  81. Tavani, M. et al. The AGILE Mission. Astron. Astrophys. 502, 995–1013 (2009).

    Article  ADS  Google Scholar 

  82. Pittori, C. The AGILE data center and its legacy. Rend. Lincei Sci. Fis. Nat. 30, 217–223 (2019).

    Article  Google Scholar 

  83. Bulgarelli, A. et al. Evaluating the maximum likelihood method for detecting short-term variability of AGILE γ-ray sources. Astron. Astrophys. 540, A79 (2012).

    Article  Google Scholar 

  84. Bulgarelli, A. et al. Second AGILE catalogue of gamma-ray sources. Astron. Astrophys. 627, A13 (2019).

    Article  Google Scholar 

  85. Zwart, J. T. L. et al. The Arcminute Microkelvin Imager. Mon. Not. R. Astron. Soc. 391, 1545–1558 (2008).

    Article  ADS  Google Scholar 

  86. Hickish, J. et al. A digital correlator upgrade for the Arcminute MicroKelvin Imager. Mon. Not. R. Astron. Soc. 475, 5677–5687 (2018).

    Article  ADS  Google Scholar 

  87. Ott, M. et al. An updated list of radio flux density calibrators. Astron. Astrophys. 284, 331–339 (1994).

    ADS  Google Scholar 

  88. Egron, E. et al. Single-dish and VLBI observations of Cygnus X-3 during the 2016 giant flare episode. Mon. Not. R. Astron. Soc. 471, 2703–2714 (2017).

    Article  ADS  Google Scholar 

  89. Trushkin, S. A. et al. Study of the microquasar Cygnus X-3 with the RATAN-600 Radio Telescope in multi-azimuth observing mode. Astrophys. Bull. 78, 225–233 (2023).

    Article  ADS  Google Scholar 

  90. Tsybulev, P. G. et al. C-band radiometer for continuum observations at RATAN-600 Radio Telescope. Astrophys. Bull. 73, 494–500 (2018).

    Article  ADS  Google Scholar 

  91. Kale, R. & Ishwara-Chandra, C. H. CAPTURE: a continuum imaging pipeline for the uGMRT. Exp. Astron. 51, 95–108 (2021).

    Article  ADS  Google Scholar 

  92. Marrone, D. P. & Rao, R. The submillimeter array polarimeter. In Proc. Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV Vol. 7020 (eds Duncan, W. D. et al.) 70202B (SPIE, 2008).

  93. Chandrasekhar, S. Radiative Transfer (Dover, 1960).

  94. Radhakrishnan, V. & Cooke, D. J. Magnetic poles and the polarization structure of pulsar radiation. Astrophys. Lett. 3, 225–229 (1969).

    ADS  Google Scholar 

  95. Poutanen, J. Relativistic rotating vector model for X-ray millisecond pulsars. Astron. Astrophys. 641, A166 (2020).

    Article  ADS  Google Scholar 

  96. Rankin, J. et al. X-ray polarimetry as a tool to constrain orbital parameters in X-ray binaries. Astrophys. J. 962, 34 (2024).

    Article  ADS  Google Scholar 

  97. Goosmann, R. W. & Gaskell, C. M. Modeling optical and UV polarization of AGNs. I. Imprints of individual scattering regions. Astron. Astrophys. 465, 129–145 (2007).

    Article  ADS  Google Scholar 

  98. Marin, F., Dovčiak, M., Muleri, F., Kislat, F. F. & Krawczynski, H. S. Predicting the X-ray polarization of type 2 Seyfert galaxies. Mon. Not. R. Astron. Soc. 473, 1286–1316 (2018).

    Article  ADS  Google Scholar 

  99. Podgorný, J., Marin, F. & Dovčiak, M. X-ray polarization properties of partially ionized equatorial obscurers around accreting compact objects. Mon. Not. R. Astron. Soc. 526, 4929–4951 (2023).

  100. Asplund, M., Grevesse, N. & Sauval, A. J. The solar chemical composition. In Proc. Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis (eds Barnes, T. G. III & Bash, F. N.) 25 (ASP, 2005).

  101. Lipunov, V. M. Why are no X-ray pulsars paired with Wolf–Rayet stars? Sov. Astron. Lett. 8, 194–196 (1982).

    ADS  Google Scholar 

  102. Bogomazov, A. I. A study of the evolution of the close binaries Cyg X-3, IC 10 X-1, NGC 300 X-1, SS 433, and M33 X-7 using the ‘scenario machine’. Astron. Rep. 58, 126–138 (2014).

    Article  ADS  Google Scholar 

  103. Miller-Jones, J. C. A. et al. Cygnus X-1 contains a 21-solar mass black hole—Implications for massive star winds. Science 371, 1046–1049 (2021).

    Article  ADS  Google Scholar 

  104. Dauser, T., Middleton, M. & Wilms, J. Modelling the light curves of ultraluminous X-ray sources as precession. Mon. Not. R. Astron. Soc. 466, 2236–2241 (2017).

    Article  ADS  Google Scholar 

  105. Mushtukov, A. A. & Portegies Zwart, S. Bright X-ray pulsars: how outflows influence beaming, pulsations and pulse phase lags. Mon. Not. R. Astron. Soc. 518, 5457–5464 (2023).

    Article  ADS  Google Scholar 

  106. Poutanen, J. Polarization properties of radiation scattered from a frustrum surface. Zenodo https://zenodo.org/records/10889892 (2024).

  107. Zdziarski, A. A., Segreto, A. & Pooley, G. G. The radio/X-ray correlation in Cyg X-3 and the nature of its hard spectral state. Mon. Not. R. Astron. Soc. 456, 775–789 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

IXPE is a joint US and Italian mission. The US contribution is supported by the National Aeronautics and Space Administration (NASA) and led and managed by its Marshall Space Flight Center, with industry partner Ball Aerospace (Contract NNM15AA18C). The Italian contribution is supported by ASI (Contract ASI-OHBI-2017-12-I.0 and Agreements ASI-INAF-2017-12-H0 and ASI-INFN-2017.13-H0) and its Space Science Data Center and by the Italian National Institute for Astrophysics and the Italian National Institute for Nuclear Physics. For the AMI observations, we thank the staff of the Mullard Radio Astronomy Observatory, University of Cambridge, for their support in the maintenance and operation of the telescope, and we acknowledge support from the European Research Council (Grant No. ERC-2012-StG-307215 LODESTONE). The SMA is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. SMA is on Maunakea, which is a culturally important site for the indigenous Hawaiian people; we are privileged to study the cosmos from its summit. This work is partly based on observations with the 100-m telescope of the Max Planck Institute for Radio Astronomy at Effelsberg. The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 101004719; ORP). The AGILE Mission is funded by ASI with scientific and programmatic participation by the Italian National Institute for Astrophysics and the Italian National Institute for Nuclear Physics. This investigation was supported by the ASI (Grant No. I/028/12/7-2022). We thank H. Feng for providing the data on the representative ULX models. F. Muleri, A.D.M., F.L.M., E. Costa, P. Soffitta, S.F. and R.F. are partially supported by the Italian Ministry of Foreign Affairs (Grant No. CN24GR08, GRBAXP: Guangxi-Rome Bilateral Agreement for X-ray Polarimetry in Astrophysics). A.V., J. Poutanen and S.S.T. acknowledge support from the Academy of Finland (Grant Nos. 333112, 347003, 349144, 349373, 349906 and 355672). A.A.M. is supported by the Stephen Hawking fellowship from UK Research and Innovation. H.K. and N.R.C. acknowledge NASA support (Grant Nos. 80NSSC18K0264, 80NSSC22K1291, 80NSSC21K1817 and NNX16AC42G). V.D. thanks the German Academic Exchange Service (Travel Grant No. 57525212). A.I. acknowledges support from the Royal Society. J. Podgorný, M.D., J.S. and V.K. give thanks for support from the Czech Science Foundation (Project 21-06825X) and institutional support from the Astronomical Institute of the Czech Academy of Sciences (Project RVO:67985815). We thank the staff of the GMRT who made these observations possible. GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research. R.K. acknowledges the support of the Department of Atomic Energy, Government of India (Project No. 12-R&D-TFR-5.02-0700). M.M. is supported by NASA (Contract NAS8-03060). S.A.T. is supported by the Ministry of Science and Higher Education of the Russian Federation (Grant No. 075-15-2022-262; 13.MNPMU.21.0003). A.A.Z. acknowledges support from the Polish National Science Center (Grant No. 2019/35/B/ST9/03944).

Author information

Authors and Affiliations

Authors

Contributions

A.V. led the modelling of the data and the writing of the paper. F. Muleri led the analysis of the IXPE data. J. Poutanen led the analytical modelling and contributed to the writing of the paper. J. Podgorný performed the Monte Carlo simulations in support of the modelling. M.D. led the work of the IXPE Topical Working Group on Accreting Stellar-mass Black Holes. A.D.R., E. Churazov, P.K. and R.A.S. contributed with parts of the paper and its content. F.C., A.D.M., S.V.F., H.K., F.L.M., A.A.L., S.V.M., A.R., N.R.C., J.F.S., S.S.T., A.A.Z. and J.J.E.K., I.A.M., G.P. and C.P. contributed to planning, reducing and analysing the X-ray and γ-ray data. V.L., A.A.M. and D.M. contributed to analytical estimates and modelling. J.S.B., N. Bursov, E.E., D.A.G., M.G., R.K., A.K., M.M., N.N., M. Pilia, R.R., S.R., A.S., J.S., S.A.T. and P.T. contributed with radio and submillimetre data. S.B., E. Costa, J.A.G., A.I., F. Marin, G.M., P. Soffitta, F. Tombesi, F.U., M.C.W. and K.W. contributed with discussions of the methods and conclusions. The remaining authors contributed to the design, science case of the IXPE mission and the planning of observations relevant to the present paper.

Corresponding author

Correspondence to Alexandra Veledina.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Nicholas White and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Variation with time of flux and polarization for the IXPE Main observation.

(A) The total rate in the 2–8 keV energy range, binned in time intervals of 500 s. The PD (B) and the PA (C) are averaged over one orbit, as defined by the ephemeris of21. Dashed horizontal lines are the average values. (D) The hardness ratio defined as the ratio of the difference in the IXPE count rates in the 4–8 and 2–4 keV energy bands to their sum in 1000 s time bins. Alternating vertical bands identify different orbits. Data are presented as mean values over the time bin and the error bars correspond to 1σ confidence levels.

Extended Data Fig. 2 X-ray light curves of Cyg X-3.

X-ray count rates normalised to the average during the Main observation obtained by three X-ray telescopes: NuSTAR (A), SRG/ART-XC (B) and INTEGRAL/ISGRI (C). The IXPE exposure covers the entire duration of the displayed observations.

Extended Data Fig. 3 Radio and sub-mm light curves of Cyg X-3.

The light curves of the source around the dates of Main (panels A-C) and ToO (panels D and E) observations, as obtained with various telescopes. IXPE dates are marked with blue stripes. Note high intraday variations of the radio flux caused by the orbital variability. Data are given as the mean values with error bars corresponding to their variance.

Extended Data Fig. 4 Radio-X-ray evolution track from historical radio and X-ray observations.

Grey points constitute data analysed in107. Spectral states are indicated with red. Blue and orange stars indicate the fluxes during the Main and ToO observations, respectively.

Extended Data Fig. 5 Broadband spectral energy distribution of Cyg X-3.

The SED for the Main (blue) and ToO (orange) observations are from the facilities described in the text. Error bars correspond to 1σ levels.

Extended Data Fig. 6 X-ray SED of Cyg X-3 from NICER.

Orbital phase-folded X-ray spectra are taken during the contemporaneous observations in the Main run. Spectra from different phase intervals are presented in different colours.

Extended Data Fig. 7 Orbital phase dependence of polarization.

The PD (A)–(C) and PA (D)–(F) in different energy bands (2–3.5 keV, A, D; 3.5–6 keV, B, E; 6–8 keV, C, F) for the Main (in blue) and ToO (in orange) observations are shown. Orbital profiles of IXPE flux are shown in each panel as shaded areas. Error bars correspond to 1σ uncertainty level.

Extended Data Fig. 8 Modelling orbital variations of the PD and PA.

(A) Geometry of the reflector. (B) Dependence of the PD and PA in the 3.5–6 keV band on orbital phase for the Main observation is shown with blue crosses. The red curve is the model of the reflection from a bow shock.

Extended Data Fig. 9 Detailed geometry of the reflecting funnel, its polarimetric characteristics, reflection and amplification factors.

(A) Geometry of the funnel is shown with L being the lowest visible point for the given inclination i, and the angle α* is its colatitude. (B) The contour plots of constant PD (in %) for the fixed observer inclination (i = 30), as function of the model parameters (α, R). The region above α = i is not allowed because the central source would be visible. The region below ρ = 1 curve (that is \(R=1/\sin \alpha\)) corresponds to an outflow converging towards the axis, which is not possible. Red contours show the allowed model parameters. (C) Dependence of the solid angle of the reflecting surface (Ωrefl/2π, red solid curve) and the factor determining the intrinsic luminosity (1 + ΩULXrefl, blue dashed curve) on the angle α.

Extended Data Fig. 10 Results of Monte-Carlo simulations.

(A) The geometry of the reflector (elliptical torus in blue) and main parameters of the funnel explored by the Monte-Carlo modelling. (B) The simulated 2–8 keV PD versus observer’s inclination and half-opening angle of the torus for b = ρ/4, τe = 7 and NHe = 8.5 × 1023cm−2 (the same display as in Fig. 4 for the analytical model). The black rectangles and white dashed lines mark the regions where the reprocessed component gives PD = 21 ± 3%.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veledina, A., Muleri, F., Poutanen, J. et al. Cygnus X-3 revealed as a Galactic ultraluminous X-ray source by IXPE. Nat Astron 8, 1031–1046 (2024). https://doi.org/10.1038/s41550-024-02294-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-024-02294-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing