Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The interior as the dominant water reservoir in super-Earths and sub-Neptunes

Abstract

Water is an important component of exoplanets, with its distribution, that is, whether at the surface or deep inside, fundamentally influencing the planetary properties. The distribution of water in most exoplanets is determined by yet-unknown partition coefficients at extreme conditions. Here we first conduct ab initio molecular dynamics simulations to investigate the metal–silicate partition coefficients of water up to 1,000 GPa and then model planet interiors by considering the effects of water content on density, melting temperature and water partitioning. Our calculations reveal that water strongly partitions into iron over silicate at high pressures and, thus, would preferentially stay in a planet’s core. The results of our planet interior model challenge the notion of water worlds as imagined before: the majority of the bulk water budget (even more than 95%) can be stored deep within the core and the mantle, and not at the surface. For planets more massive than ~6 M and Earth-size planets (of lower mass and small water budgets), the majority of water resides deep in the cores of planets. Whether water is assumed to be at the surface or at depth can affect the radius up to 15–25% for a given mass. The exoplanets previously believed to be water-poor on the basis of mass–radius data may actually be rich in water.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Partition coefficients of H2O.
Fig. 2: Four model scenarios employed in our study.
Fig. 3: The effect of water partitioning into the core and mantle on mass–radius relationships.
Fig. 4: Water mass fractions stored in the mantle and the core depending on planet mass (thick lines) and bulk water mass fraction (thin lines).
Fig. 5: Mass–radius curves compared with the sample of small transiting planets around M dwarfs from Luque and Pallé29.

Similar content being viewed by others

Data availability

Authors can confirm that all relevant data are included in the Article and Supplementary Information files. Data used in the figures and our raw simulation outputs are available from figshare at https://doi.org/10.6084/m9.figshare.25800577 (ref. 74).

Code availability

The VASP is a proprietary software available for purchase at https://www.vasp.at/. The code for performing planetary interior modelling is available from the corresponding authors on reasonable request.

References

  1. Fegley, B., Lodders, K. & Jacobson, N. S. Volatile element chemistry during accretion of the earth. Geochem. 80, 125594 (2020).

    Google Scholar 

  2. Boley, K. M. et al. Fizzy super-Earths: impacts of magma composition on the bulk density and structure of lava worlds. Astrophys. J. 954, 202 (2023).

    ADS  Google Scholar 

  3. Raymond, S. N. & Morbidelli, A. in Demographics of Exoplanetary Systems: Lecture Notes of the 3rd Advanced School on Exoplanetary Science (eds Biazzo, K. et al.) 3–82 (Springer, 2022).

  4. Kite, E. S. & Barnett, M. N. Exoplanet secondary atmosphere loss and revival. Proc. Natl Acad. Sci. USA 117, 18264–18271 (2020).

    ADS  Google Scholar 

  5. Vazan, A., Sari, R. & Kessel, R. A new perspective on the interiors of ice-rich planets: ice–rock mixture instead of ice on top of rock. Astrophys. J. 926, 150 (2022).

    ADS  Google Scholar 

  6. Schlichting, H. E. & Young, E. D. Chemical equilibrium between cores, mantles, and atmospheres of super-Earths and sub-Neptunes and implications for their compositions, interiors, and evolution. Planet. Sci. J. 3, 127 (2022).

    Google Scholar 

  7. Lichtenberg, T. et al. Vertically resolved magma ocean-protoatmosphere evolution: H2, H2O, CO2, CH4, CO, O2, and N2 as primary absorbers. J. Geophys. Res. Planets 126, e2020JE006711 (2021).

    ADS  Google Scholar 

  8. Dorn, C. & Lichtenberg, T. Hidden water in magma ocean exoplanets. Astrophys. J. Lett. 922, L4 (2021).

    ADS  Google Scholar 

  9. Li, Y. G., Vocadlo, L., Sun, T. & Brodholt, J. P. The Earth’s core as a reservoir of water. Nat. Geosci. 13, 453–458 (2020).

    ADS  Google Scholar 

  10. Yuan, L. & Steinle-Neumann, G. Strong sequestration of hydrogen into the Earth’s core during planetary differentiation. Geophys. Res. Lett. 47, e2020GL088303 (2020).

    ADS  Google Scholar 

  11. Tagawa, S. et al. Experimental evidence for hydrogen incorporation into Earth’s core. Nat. Commun. 12, 2588 (2021).

    ADS  Google Scholar 

  12. Yuan, L. & Steinle-Neumann, G. Possible control of Earth’s boron budget by metallic iron. Geophys. Res. Lett. 49, e2021GL096923 (2022).

    ADS  Google Scholar 

  13. Li, Y. G., Vocadlo, L., Ballentine, C. & Brodholt, J. P. Primitive noble gases sampled from ocean island basalts cannot be from the Earth’s core. Nat. Commun. 13, 3770 (2022).

    ADS  Google Scholar 

  14. Deng, J. & Du, Z. Primordial helium extracted from the Earth’s core through magnesium oxide exsolution. Nat. Geosci. 16, 541–545 (2023).

    ADS  Google Scholar 

  15. Stixrude, L. Melting in super-Earths. Phil. Trans. R. Soc. A 372, 20130076 (2014).

    ADS  Google Scholar 

  16. Fei, Y. W. et al. Melting and density of MgSiO3 determined by shock compression of bridgmanite to 1254GPa. Nat. Commun. 12, 876 (2021).

    ADS  Google Scholar 

  17. Kraus, R. G. et al. Measuring the melting curve of iron at super-Earth core conditions. Science 375, 202–205 (2022).

    ADS  Google Scholar 

  18. Unterborn, C. T. et al. The nominal ranges of rocky planet masses, radii, surface gravities, and bulk densities. Astrophys. J. 944, 42 (2023).

    ADS  Google Scholar 

  19. Luger, R. & Barnes, R. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 15, 119–143 (2015).

    ADS  Google Scholar 

  20. Crida, A., Ligi, R., Dorn, C. & Lebreton, Y. Mass, radius, and composition of the transiting planet 55 Cnc e: using interferometry and correlations. Astrophys. J. 860, 122 (2018).

    ADS  Google Scholar 

  21. Ridden-Harper, A. R. et al. Search for an exosphere in sodium and calcium in the transmission spectrum of exoplanet 55 Cancri e. Astron. Astrophys. 593, A129 (2016).

    Google Scholar 

  22. Hammond, M. & Pierrehumbert, R. T. Linking the climate and thermal phase curve of 55 Cancri e. Astrophys. J. 849, 152 (2017).

    ADS  Google Scholar 

  23. Dorn, C., Mosegaard, K., Grimm, S. L. & Alibert, Y. Interior characterization in multiplanetary systems: TRAPPIST-1. Astrophys. J. 865, 20 (2018).

    ADS  Google Scholar 

  24. Bourrier, V. et al. The 55 Cancri system reassessed. Astron. Astrophys. 619, A1 (2018).

    Google Scholar 

  25. Bean, J. L., Raymond, S. N. & Owen, J. E. The nature and origins of sub-Neptune size planets. J. Geophys. Res. Planets 126, e2020JE006639 (2021).

    ADS  Google Scholar 

  26. Mousis, O. et al. Irradiated ocean planets bridge super-Earth and sub-Neptune populations. Astrophys. J. Lett. 896, L22 (2020).

    ADS  Google Scholar 

  27. Emsenhuber, A. et al. Realistic on-the-fly outcomes of planetary collisions. II. Bringing machine learning to N-body simulations. Astrophys. J. 891, 6 (2020).

    ADS  Google Scholar 

  28. Cloutier, R., Charbonneau, D., Deming, D., Bonfils, X. & Astudillo-Defru, N. A more precise mass for GJ 1214 b and the frequency of multiplanet systems around mid-M dwarfs. Astron. J. 162, 174 (2021).

    ADS  Google Scholar 

  29. Luque, R. & Pallé, E. Density, not radius, separates rocky and water-rich small planets orbiting M dwarf stars. Science 377, 1211–1214 (2022).

    ADS  Google Scholar 

  30. Hu, R., Gaillard, F. & Kite, E. S. Narrow loophole for H2-dominated atmospheres on habitable rocky planets around M dwarfs. Astrophys. J. Lett. 948, L20 (2023).

    ADS  Google Scholar 

  31. Maruyama, S. et al. The naked planet Earth: most essential pre-requisite for the origin and evolution of life. Geosci. Front. 4, 141–165 (2013).

    Google Scholar 

  32. Noack, L. et al. Water-rich planets: how habitable is a water layer deeper than on Earth? Icarus 277, 215–236 (2016).

    ADS  Google Scholar 

  33. Léger, A. et al. A new family of planets? ‘Ocean-Planets’. Icarus 169, 499–504 (2004).

    ADS  Google Scholar 

  34. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    ADS  Google Scholar 

  35. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    ADS  Google Scholar 

  36. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    ADS  Google Scholar 

  37. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Google Scholar 

  38. Mermin, N. D. Thermal properties of the inhomogeneous electron gas. Phys. Rev. 137, A1441–A1443 (1965).

    ADS  MathSciNet  Google Scholar 

  39. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    ADS  Google Scholar 

  40. Dorner, F., Sukurma, Z., Dellago, C. & Kresse, G. Melting Si: beyond density functional theory. Phys. Rev. Lett. 121, 195701 (2018).

    ADS  Google Scholar 

  41. Flyvbjerg, H. & Petersen, H. G. Error estimates on averages of correlated data. J. Chem. Phys. 91, 461–466 (1989).

    ADS  MathSciNet  Google Scholar 

  42. González-Cataldo, F. & Militzer, B. Ab initio determination of iron melting at terapascal pressures and super-Earths core crystallization. Phys. Rev. Res. 5, 033194 (2023).

    Google Scholar 

  43. Hakim, K. et al. A new ab initio equation of state of hcp–Fe and its implication on the interior structure and mass–radius relations of rocky super-Earths. Icarus 313, 61–78 (2018).

    ADS  Google Scholar 

  44. Miozzi, F. et al. A new reference for the thermal equation of state of iron. Minerals 10, 100 (2020).

    ADS  Google Scholar 

  45. Anzellini, S., Dewaele, A., Mezouar, M., Loubeyre, P. & Morard, G. Melting of iron at Earth’s inner core boundary based on fast X-ray diffraction. Science 340, 464–466 (2013).

    ADS  Google Scholar 

  46. He, Y. et al. Superionic iron alloys and their seismic velocities in Earth’s inner core. Nature 602, 258–262 (2022).

    ADS  Google Scholar 

  47. Connolly, J. A. D. The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst. 10, Q10014 (2009).

    ADS  Google Scholar 

  48. Stixrude, L. & Lithgow-Bertelloni, C. Thermal expansivity, heat capacity and bulk modulus of the mantle. Geophys. J. Int. 228, 1119–1149 (2022).

    ADS  Google Scholar 

  49. Fischer, R. A. et al. Equation of state and phase diagram of FeO. Earth Planet. Sci. Lett. 304, 496–502 (2011).

    ADS  Google Scholar 

  50. Musella, R., Mazevet, S. & Guyot, F. Physical properties of MgO at deep planetary conditions. Phys. Rev. B 99, 064110 (2019).

    ADS  Google Scholar 

  51. Faik, S., Tauschwitz, A. & Iosilevskiy, I. The equation of state package FEOS for high energy density matter. Comput. Phys. Commun. 227, 117–125 (2018).

    ADS  Google Scholar 

  52. Hemley, R. J., Stixrude, L., Fei, Y. & Mao, H. K. Constraints on lower mantle composition from P-V-T measurements of (Fe, Mg)SiO3-perovskite and (Fe, Mg)O. Geophys. Monogr. Ser. 67, 183–189 (1992).

    ADS  Google Scholar 

  53. Stewart, S. et al. The shock physics of giant impacts: key requirements for the equations of state. AIP Conf. Proc. 2272, 080003 (2020).

    Google Scholar 

  54. Melosh, H. J. A hydrocode equation of state for SiO2. Meteorit. Planet. Sci. 42, 2079–2098 (2007).

    ADS  Google Scholar 

  55. Ichikawa, H. & Tsuchiya, T. Ab initio thermoelasticity of liquid iron-nickel-light element alloys. Minerals 10, 59 (2020).

    ADS  Google Scholar 

  56. Bajgain, S., Ghosh, D. B. & Karki, B. B. Structure and density of basaltic melts at mantle conditions from first-principles simulations. Nat. Commun. 6, 8578 (2015).

    ADS  Google Scholar 

  57. Belonoshko, A. B. et al. High-pressure melting of MgSiO3. Phys. Rev. Lett. 94, 195701 (2005).

    ADS  Google Scholar 

  58. Katz, R. F., Spiegelman, M. & Langmuir, C. H. A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 4, 1073 (2003).

    ADS  Google Scholar 

  59. Haldemann, J., Alibert, Y., Mordasini, C. & Benz, W. AQUA: a collection of H2O equations of state for planetary models. Astron. Astrophys. 643, A105 (2020).

    ADS  Google Scholar 

  60. Turbet, M. et al. A review of possible planetary atmospheres in the TRAPPIST-1 system. Space Sci. Rev. 216, 100 (2020).

    ADS  Google Scholar 

  61. Bower, D. J., Hakim, K., Sossi, P. A. & Sanan, P. Retention of water in terrestrial magma oceans and carbon-rich early atmospheres. Planet. Sci. J. 3, 93 (2022).

    Google Scholar 

  62. Kessel, R., Ulmer, P., Pettke, T., Schmidt, M. W. & Thompson, A. B. The water-basalt system at 4 to 6 GPa: phase relations and second critical endpoint in a K-free eclogite at 700 to 1400 degrees C. Earth Planet. Sci. Lett. 237, 873–892 (2005).

    ADS  Google Scholar 

  63. Shah, O., Alibert, Y., Helled, R. & Mezger, K. Internal water storage capacity of terrestrial planets and the effect of hydration on the M-R relation. Astron. Astrophys. 646, A162 (2021).

    ADS  Google Scholar 

  64. Elkins-Tanton, L. T. & Seager, S. Coreless terrestrial exoplanets. Astrophys. J. 688, 628–635 (2008).

    ADS  Google Scholar 

  65. Johansen, A., Ronnet, T., Schiller, M., Deng, Z. B. & Bizzarro, M. Anatomy of rocky planets formed by rapid pebble accretion. I. How icy pebbles determine the core fraction and FeO contents. Astron. Astrophys. 671, A74 (2023).

    ADS  Google Scholar 

  66. Fu, R. R. & Elkins-Tanton, L. T. The fate of magmas in planetesimals and the retention of primitive chondritic crusts. Earth Planet. Sci. Lett. 390, 128–137 (2014).

    ADS  Google Scholar 

  67. Karki, B. B., Ghosh, D. B., Maharjan, C., Karato, S. & Park, J. Density–pressure profiles of Fe-bearing MgSiO3 liquid: effects of valence and spin states, and implications for the chemical evolution of the lower mantle. Geophys. Res. Lett. 45, 3959–3966 (2018).

    ADS  Google Scholar 

  68. Marounina, N. & Rogers, L. A. Internal structure and CO2 reservoirs of habitable water worlds. Astrophys. J. 890, 107 (2020).

    ADS  Google Scholar 

  69. Dorn, C. et al. Can we constrain the interior structure of rocky exoplanets from mass and radius measurements? Astron. Astrophys. 577, A83 (2015).

    Google Scholar 

  70. Dorn, C. et al. A generalized Bayesian inference method for constraining the interiors of super Earths and sub-Neptunes. Astron. Astrophys. 597, A37 (2017).

    Google Scholar 

  71. Otegi, J. F., Bouchy, F. & Helled, R. Revisited mass–radius relations for exoplanets below 120 M. Astron. Astrophys. 634, A43 (2020).

    ADS  Google Scholar 

  72. Lacedelli, G. et al. Investigating the architecture and internal structure of the TOI-561 system planets with CHEOPS, HARPS-N, and TESS. Mon. Not. R. Astron. Soc. 511, 4551–4571 (2022).

    ADS  Google Scholar 

  73. Piaulet, C. et al. Evidence for the volatile-rich composition of a 1.5-Earth-radius planet. Nat. Astron. 7, 206–222 (2023).

    ADS  Google Scholar 

  74. Luo, H., Dorn, C. & Deng, J. Data and MD output for H2O partitioning. figshare https://doi.org/10.6084/m9.figshare.25800577 (2024).

Download references

Acknowledgements

The work reported in this paper was conducted using the Princeton Research Computing, which is a consortium of groups led by the Princeton Institute for Computational Science and Engineering (PICSciE) and the Office of Information Technology’s Research Computing. J.D. acknowledges support from the National Science Foundation under grant no. EAR-2242946. C.D. acknowledges support from the Swiss National Science Foundation under grant TMSGI2_211313. In parts, this work has been carried out within the framework of the NCCR PlanetS supported by the Swiss National Science Foundation under grants 51NF40_182901 and 51NF40_205606 to C.D.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: J.D. and C.D. Methodology: H.L. and C.D. Investigation: H.L. and C.D. Formal analysis: H.L., C.D. and J.D. Writing—original draft: H.L. and C.D. Writing—review and editing: H.L., C.D. and J.D. Supversion: J.D. Funding acquistion: J.D. and C.D.

Corresponding authors

Correspondence to Haiyang Luo, Caroline Dorn or Jie Deng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Gibbs free energies.

Calculated Gibbs free energies of \({{\rm{Fe}}}_{1-x}{\left({{\rm{H}}}_{2}{\rm{O}}\right)}_{x}\) (a) and \({\left({{\rm{MgSiO}}}_{3}\right)}_{1-x}{\left({{\rm{H}}}_{2}{\rm{O}}\right)}_{x}\) (b) melts as a function of H2O mole fractions (\({X}_{{{\rm{H}}}_{2}{\rm{O}}}\)).

Extended Data Fig. 2 Chemical potentials of H2O.

Calculated chemical potentials of H2O in iron (Fe) and silicate (MgSiO3) melts and their differences (MgSiO3-Fe) at different temperatures under 500 GPa (a) and 1000 GPa (b). The 1 s.d. uncertainties of chemical potentials are shown. Lines connecting the data points are shown for clarity.

Extended Data Fig. 3 Partition coefficients of H2O.

Calculated partition coefficients of H2O between iron and silicate melts (\({D}_{{{\rm{H}}}_{2}{\rm{O}}}^{{\rm{Fe}}/{\rm{MgSi}}{{\rm{O}}}_{3}}\)) as a function of its concentrations in iron melt (\({X}_{{{\rm{H}}}_{2}{\rm{O}}}^{{\rm{Fe}}}\)) at different temperatures under 500 GPa (a) and 1000 GPa (b). The 1 s.d. uncertainties of \({D}_{{{\rm{H}}}_{2}{\rm{O}}}^{{\rm{Fe}}/{\rm{MgSi}}{{\rm{O}}}_{3}}\) at 8600 and 13000 K are represented by the shaded area.

Extended Data Fig. 4 Molecular dynamics simulations of water partitioning.

Two-phase coexistence simulations of water (\({X}_{{{\rm{H}}}_{2}{\rm{O}}}=1.54\) wt%) partitioning between iron (Fe) and silicate (MgSiO3) melts at 500 GPa/9000 K and 1000 GPa/14000 K. a, The initial configurations and the snapshots at 5000 femtoseconds (fs) are shown. b, The corresponding instantaneous coarse-grained density profile (filled circles) along the z-axis of the simulation box at 5000 fs and the best fitting curve (solid line). The dashed vertical lines represent the locations of Gibbs dividing surfaces.

Extended Data Fig. 5 Density profiles for planets of 2 M and 20 % bulk water mass fraction at Teq of 700 K.

The total radius for each of the scenarios is highlighted as a vertical line (red: B, lilac: C, blue: D). The different distributions of water in planets change density structure, thermal structure (not shown), melting temperatures (not shown), and hence the extent of molten layers. Wherever the density profiles seem to flatten, we checked that all densities increase at all pressures. The density difference at the core-mantle boundary here is larger than that shown in the Extended Data Fig. 4b due to pressure differences.

Extended Data Table 1 Calculated Gibbs free energies
Extended Data Table 2 Calculated Gibbs free energies as a function of temperature at 500 and 1000 GPa

Supplementary information

Supplementary Information

Supplementary discussion, Figs. 1–3 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Dorn, C. & Deng, J. The interior as the dominant water reservoir in super-Earths and sub-Neptunes. Nat Astron 8, 1399–1407 (2024). https://doi.org/10.1038/s41550-024-02347-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-024-02347-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing