Abstract
Radio detections of stellar systems provide a window onto stellar magnetic activity and the space weather conditions of extrasolar planets — information that is difficult to obtain at other wavelengths. The maturation of low-frequency radio instruments and the plethora of wide-field radio surveys have driven recent advances in observing auroral emissions from radio-bright low-mass stars and exoplanets. To guide us in putting these recent results in context, we introduce the foremost local analogues for the field: solar bursts and the aurorae found on Jupiter. We detail how radio bursts associated with stellar flares are foundational to the study of stellar coronae, and time-resolved radio dynamic spectra offer one of the best prospects for detecting and characterizing coronal mass ejections from other stars. We highlight the possibility of directly detecting coherent radio emission from exoplanetary magnetospheres, as well as early tentative results. We bridge this discussion with the field of brown dwarf radio emission — the larger and stronger magnetospheres of these stars are amenable to detailed study with current instruments. Bright, coherent radio emission is also predicted from magnetic interactions between stars and close-in planets. We discuss the underlying physics of these interactions and the implications of recent provisional detections for exoplanet characterization. We conclude with an overview of outstanding questions in the theory of stellar, star–planet interaction and exoplanet radio emission and the potential of future facilities to answer them.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Gaudi, B. S., Meyer, M. & Christiansen, J. in ExoFrontiers: Big Questions in Exoplanetary Science (ed. Madhusudhan, N.) Ch. 2 (IOP Publishing, 2021).
Madhusudhan, N. Exoplanetary atmospheres: key insights, challenges, and prospects. Annu. Rev. Astron. Astrophys. 57, 617–663 (2019).
JWST Transiting Exoplanet Community Early Release Science Team. Identification of carbon dioxide in an exoplanet atmosphere. Nature 614, 649–652 (2023).
Kempton, E. M. R. et al. A reflective, metal-rich atmosphere for GJ 1214b from its JWST phase curve. Nature 620, 67–71 (2023).
Greene, T. P. et al. Thermal emission from the Earth-sized exoplanet TRAPPIST-1 b using JWST. Nature 618, 39–42 (2023).
Zieba, S. et al. No thick carbon dioxide atmosphere on the rocky exoplanet TRAPPIST-1 c. Nature 620, 746–749 (2023).
Kouloumvakos, A. et al. Properties of solar energetic particle events inferred from their associated radio emission. Astron. Astrophys. 580, A80 (2015).
Badruddin, A. & Falak, Z. Study of the geoeffectiveness of coronal mass ejections, corotating interaction regions and their associated structures observed during Solar Cycle 23. Astrophys. Space Sci. 361, 253 (2016).
Lammer, H. Origin and Evolution of Planetary Atmospheres (Springer, 2013).
Scalo, J. et al. M stars as targets for terrestrial exoplanet searches and biosignature detection. Astrobiology 7, 85–166 (2007).
Kulikov, Y. N. et al. A comparative study of the influence of the active young Sun on the early atmospheres of Earth, Venus, and Mars. Space Sci. Rev. 129, 207–243 (2007).
Curry, S. M. et al. Response of Mars O+ pickup ions to the 8 March 2015 ICME: inferences from MAVEN data-based models. Geophys. Res. Lett. 42, 9095–9102 (2015).
Fichtinger, B. et al. Radio emission and mass loss rate limits of four young solar-type stars. Astron. Astrophys. 599, A127 (2017).
Ó Fionnagáin, D. et al. The solar wind in time - II. 3D stellar wind structure and radio emission. Mon. Not. R. Astron. Soc. 483, 873–886 (2019).
Wood, B. E. et al. New observational constraints on the winds of M dwarf stars. Astrophys. J. 915, 37 (2021).
Owen, J. E. & Adams, F. C. Magnetically controlled mass-loss from extrasolar planets in close orbits. Mon. Not. R. Astron. Soc. 444, 3761–3779 (2014).
Vidotto, A. A. & Cleary, A. Stellar wind effects on the atmospheres of close-in giants: a possible reduction in escape instead of increased erosion. Mon. Not. R. Astron. Soc. 494, 2417–2428 (2020).
Dulk, G. A. Radio emission from the Sun and stars. Annu. Rev. Astron. Astrophys. 23, 169–224 (1985).
Villadsen, J. & Hallinan, G. Ultra-wideband detection of 22 coherent radio bursts on M dwarfs. Astrophys. J. 871, 214 (2019).
Lazio, T. J. W. Radio observations as an extrasolar planet discovery and characterization: interior structure and habitability. Preprint at https://arxiv.org/abs/2404.12348 (2024).
McLean, D. J. & Labrum, N. R. Solar Radiophysics: Studies of Emission from the Sun at Metre Wavelengths (Cambridge Univ. Press, 1985).
Dungey, J. W. The steady state of the Chapman-Ferraro problem in two dimensions. J. Geophys. Res. 66, 1043–1047 (1961).
Zarka, P. Plasma interactions of exoplanets with their parent star and associated radio emissions. Planet. Space Sci. 55, 598–617 (2007).
Luger, R. et al. The pale green dot: a method to characterize Proxima Centauri b using exo-aurorae. Astrophys. J. 837, 63 (2017).
Yantis, W. F., Sullivan, I. W. T. & Erickson, W. C. A search for extra-solar Jovian planets by radio techniques. Bull. Am. Astron. Soc. 9, 453 (1977).
Lazio, W. et al. The radiometric Bode’s law and extrasolar planets. Astrophys. J. 612, 511–518 (2004).
Cauley, P. W., Shkolnik, E. L., Llama, J. & Lanza, A. F. Magnetic field strengths of hot Jupiters from signals of star–planet interactions. Nat. Astron. 3, 1128–1134 (2019).
van Haarlem, M. P. et al. LOFAR: the LOw-Frequency ARray. Astron. Astrophys. 556, A2 (2013).
Johnston, S. et al. Science with ASKAP. The Australian square-kilometre-array pathfinder. Exp. Astron. 22, 151–273 (2008).
Driessen, L. N. et al. The Sydney Radio Star Catalogue: properties of radio stars at megahertz to gigahertz frequencies. Preprint at https://arxiv.org/abs/2404.07418 (2024).
Vedantham, H. K. et al. Coherent radio emission from a quiescent red dwarf indicative of star-planet interaction. Nat. Astron. 4, 577–583 (2020).
Zic, A. et al. A flare-type IV burst event from Proxima Centauri and implications for space weather. Astrophys. J. 905, 23 (2020).
Pérez-Torres, M. et al. Monitoring the radio emission of Proxima Centauri. Astron. Astrophys. 645, A77 (2021).
Callingham, J. R. et al. The population of M dwarfs observed at low radio frequencies. Nat. Astron. 5, 1233–1239 (2021).
Turner, J. D. et al. The search for radio emission from the exoplanetary systems 55 Cancri, υ Andromedae, and τ Boötis using LOFAR beam-formed observations. Astron. Astrophys. 645, A59 (2021).
Pritchard, J. et al. A circular polarization survey for radio stars with the Australian SKA Pathfinder. Mon. Not. R. Astron. Soc. 502, 5438–5454 (2021).
Zhang, J. et al. Fine structures of radio bursts from flare star AD Leo with FAST observations. Astrophys. J. 953, 65 (2023).
Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 1, 014003 (2015).
Quirrenbach, A. et al. CARMENES: Calar Alto high-resolution search for M dwarfs with exo-earths with a near-infrared Echelle spectrograph. Proc. SPIE 7735, 773513 (2010).
Mahadevan, S. et al. The habitable-zone planet finder: a stabilized fiber-fed NIR spectrograph for the Hobby-Eberly Telescope. Proc. SPIE 8446, 84461S (2012).
Semel, M. Zeeman-Doppler imaging of active stars. I - basic principles. Astron. Astrophys. 225, 456–466 (1989).
Morin, J. et al. Large-scale magnetic topologies of late M dwarfs*. Mon. Not. R. Astron. Soc. 407, 2269–2286 (2010).
Bastian, T. S., Benz, A. O. & Gary, D. E. Radio emission from solar flares. Annu. Rev. Astron. Astrophys. 36, 131–188 (1998).
Wu, C. S. & Lee, L. C. A theory of the terrestrial kilometric radiation. Astrophys. J. 230, 621–626 (1979).
Treumann, R. A. The electron-cyclotron maser for astrophysical application. Astron. Astrophys. Rev. 13, 229–315 (2006).
Kavanagh, R. D. & Vedantham, H. K. Hunting for exoplanets via magnetic star-planet interactions: geometrical considerations for radio emission. Mon. Not. R. Astron. Soc. 524, 6267–6284 (2023).
Desch, M. D. & Kaiser, M. L. Predictions for Uranus from a radiometric Bode’s law. Nature 310, 755–757 (1984).
Farrell, W. M., Desch, M. D. & Zarka, P. On the possibility of coherent cyclotron emission from extrasolar planets. J. Geophys. Res. 104, 14025–14032 (1999).
Zarka, P., Treumann, R. A., Ryabov, B. P. & Ryabov, V. B. Magnetically-driven planetary radio emissions and application to extrasolar planets. Astrophys. Space Sci. 277, 293–300 (2001).
Nichols, J. D. Magnetosphere-ionosphere coupling at Jupiter-like exoplanets with internal plasma sources: implications for detectability of auroral radio emissions. Mon. Not. R. Astron. Soc. 414, 2125–2138 (2011).
Saur, J., Neubauer, F. M., Connerney, J. E. P., Zarka, P. & Kivelson, M. G. in Jupiter: The Planet, Satellites and Magnetosphere Vol. 1 (eds Bagenal, F. et al.) 537–560 (2004).
Terasawa, T., Maezawa, K. & Machida, S. Solar wind effect on Jupiter’s non-Io-related radio emission. Nature 273, 131–132 (1978).
Zarka, P. & Genova, F. Low-frequency Jovian emission and solar wind magnetic sector structure. Nature 306, 767–768 (1983).
Genova, F., Zarka, P. & Barrow, C. H. Voyager and Nancay observations of the Jovian radio-emission at different frequencies – solar wind effect and source extent. Astron. Astrophys. 182, 159–162 (1987).
Bigg, E. K. Influence of the satellite Io on Jupiter’s decametric emission. Nature 203, 1008–1010 (1964).
Neubauer, F. M. Nonlinear standing Alfvén wave current system at Io: theory. J. Geophys. Res. Space Phys. 85, 1171–1178 (1980).
Marques, M. S. et al. Statistical analysis of 26 yr of observations of decametric radio emissions from Jupiter. Astron. Astrophys. 604, A17 (2017).
Ip, W.-H., Kopp, A. & Hu, J.-H. On the star-magnetosphere interaction of close-in exoplanets. Astrophys. J. Lett. 602, L53–L56 (2004).
Lanza, A. F. Star-planet magnetic interaction and activity in late-type stars with close-in planets. Astron. Astrophys. 544, A23 (2012).
Turnpenney, S., Nichols, J. D., Wynn, G. A. & Burleigh, M. R. Exoplanet-induced radio emission from M dwarfs. Astrophys. J. 854, 72 (2018).
Saur, J., Grambusch, T., Duling, S., Neubauer, F. M. & Simon, S. Magnetic energy fluxes in sub-Alfvénic planet star and moon planet interactions. Astron. Astrophys. 552, A119 (2013).
Zarka, P. et al. Jupiter radio emission induced by Ganymede and consequences for the radio detection of exoplanets. Astron. Astrophys. 618, A84 (2018).
Nichols, J. D. et al. Origin of electron cyclotron maser induced radio emissions at ultracool dwarfs: magnetosphere-ionosphere coupling currents. Astrophys. J. 760, 59 (2012).
Lecavelier des Etangs, A. et al. Temporal variations in the evaporating atmosphere of the exoplanet HD 189733b. Astron. Astrophys. 543, L4 (2012).
Cuntz, M., Saar, S. H. & Musielak, Z. E. On stellar activity enhancement due to interactions with extrasolar giant planets. Astrophys. J. Lett. 533, L151–L154 (2000).
Benz, A. O. & Güdel, M. Physical processes in magnetically driven flares on the Sun, stars, and young stellar objects. Annu. Rev. Astron. Astrophys. 48, 241–287 (2010).
Howard, W. S. et al. The mouse that squeaked: a small flare from Proxima Cen observed in the millimeter, optical, and soft X-Ray with Chandra and ALMA. Astrophys. J. 938, 103 (2022).
Güdel, M. & Benz, A. O. X-ray/microwave relation of different types of active stars. Astrophys. J. Lett. 405, L63 (1993).
Benz, A. O. & Güdel, M. X-ray/microwave ratio of flares and coronae. Astron. Astrophys. 285, 621–630 (1994).
Antonucci, E., Gabriel, A. H. & Dennis, B. R. The energetics of chromospheric evaporation in solar flares. Astrophys. J. 287, 917–925 (1984).
Airapetian, V. S. & Holman, G. D. Atmospheric heating and quiescent radio emission in active stars. Astrophys. J. 501, 805–812 (1998).
Airapetian, V. S. et al. Impact of space weather on climate and habitability of terrestrial-type exoplanets. Int. J. Astrobiol. 19, 136–194 (2020).
Ó Fionnagáin, D. et al. Coronal mass ejections and type II radio emission variability during a magnetic cycle on the solar-type star Eridani. Astrophys. J. 924, 115 (2022).
Crosby, N. B., Aschwanden, M. J. & Dennis, B. R. Frequency distributions and correlations of solar X-ray flare parameters. Sol. Phys. 143, 275–299 (1993).
Audard, M., Güdel, M. & Guinan, E. F. Implications from extreme-ultraviolet observations for coronal heating of active stars. Astrophys. J. Lett. 513, L53–L56 (1999).
Audard, M., Güdel, M., Drake, J. J. & Kashyap, V. L. Extreme-ultraviolet flare activity in late-type stars. Astrophys. J. 541, 396–409 (2000).
Kashyap, V. L., Drake, J. J., Güdel, M. & Audard, M. Flare heating in stellar coronae. Astrophys. J. 580, 1118–1132 (2002).
Güdel, M., Audard, M., Kashyap, V. L., Drake, J. J. & Guinan, E. F. Are coronae of magnetically active stars heated by flares? II. Extreme ultraviolet and X-ray flare statistics and the differential emission measure distribution. Astrophys. J. 582, 423–442 (2003).
Arzner, K. & Güdel, M. Are coronae of magnetically active stars heated by flares? III. Analytical distribution of superposed flares. Astrophys. J. 602, 363–376 (2004).
Stelzer, B. et al. A statistical analysis of X-ray variability in pre-main sequence objects of the Taurus molecular cloud. Astron. Astrophys. 468, 463–475 (2007).
Maehara, H. et al. Superflares on solar-type stars. Nature 485, 478–481 (2012).
Aschwanden, M. J. Thresholded power law size distributions of instabilities in astrophysics. Astrophys. J. 814, 19 (2015).
Yang, H. & Liu, J. The flare catalog and the flare activity in the Kepler mission. Astrophys. J. Suppl. Ser. 241, 29 (2019).
Borucki, W. J. et al. Kepler planet-detection mission: introduction and first results. Science 327, 977 (2010).
Walkowicz, L. M. et al. White-light flares on cool stars in the Kepler Quarter 1 data. Astron. J. 141, 50 (2011).
Hawley, S. L. et al. Kepler flares. I. Active and inactive M dwarfs. Astrophys. J. 797, 121 (2014).
Davenport, J. R. A. The Kepler catalog of stellar flares. Astrophys. J. 829, 23 (2016).
Günther, M. N. et al. Stellar flares from the first TESS data release: exploring a new sample of M dwarfs. Astron. J. 159, 60 (2020).
Feinstein, A. D. et al. Flare statistics for young stars from a convolutional neural network analysis of TESS data. Astron. J. 160, 219 (2020).
Gao, D.-Y., Liu, H.-G., Yang, M. & Zhou, J.-L. Correcting stellar flare frequency distributions detected by TESS and Kepler. Astron. J. 164, 213 (2022).
Pietras, M., Falewicz, R., Siarkowski, M., Bicz, K. & Preś, P. Statistical analysis of stellar flares from the first three years of TESS observations. Astrophys. J. 935, 143 (2022).
Davenport, J. R. A. et al. The evolution of flare activity with stellar age. Astrophys. J. 871, 241 (2019).
Feinstein, A. D., Seligman, D. Z., Günther, M. N. & Adams, F. C. Testing self-organized criticality across the main sequence using stellar flares from TESS. Astrophys. J. Lett. 925, L9 (2022).
Howard, W. S. The flaring TESS objects of interest: flare rates for all two-minute cadence TESS planet candidates. Mon. Not. R. Astron. Soc. 512, L60–L65 (2022).
Gilbert, E. A. et al. Flares, rotation, and planets of the AU Mic system from TESS observations. Astron. J. 163, 147 (2022).
Feinstein, A. D. et al. AU Microscopii in the far-UV: observations in quiescence, during flares, and implications for AU Mic b and c. Astron. J. 164, 110 (2022).
Shibayama, T. et al. Superflares on solar-type stars observed with Kepler. I. Statistical properties of superflares. Astrophys. J. Suppl. Ser. 209, 5 (2013).
Shibata, K. et al. Can superflares occur on our Sun? Publ. Astron. Soc. Jpn 65, 49 (2013).
Maehara, H. et al. Statistical properties of superflares on solar-type stars based on 1-min cadence data. Earth Planets Space 67, 59 (2015).
Notsu, Y. et al. Superflares on solar-type stars observed with Kepler II. Photometric variability of superflare-generating stars: a signature of stellar rotation and starspots. Astrophys. J. 771, 127 (2013).
Notsu, Y. et al. Do Kepler superflare stars really include slowly rotating Sun-like stars?—results using APO 3.5 m telescope spectroscopic observations and Gaia-DR2 data. Astrophys. J. 876, 58 (2019).
Cliver, E. W., Schrijver, C. J., Shibata, K. & Usoskin, I. G. Extreme solar events. Living Rev. Sol. Phys. 19, 2 (2022).
Yashiro, S., Akiyama, S., Gopalswamy, N. & Howard, R. A. Different power-law indices in the frequency distributions of flares with and without coronal mass ejections. Astrophys. J. Lett. 650, L143–L146 (2006).
Donati, J. F. & Landstreet, J. D. Magnetic fields of nondegenerate stars. Annu. Rev. Astron. Astrophys. 47, 333–370 (2009).
Alvarado-Gómez, J. D. et al. Coronal response to magnetically suppressed CME events in M-dwarf stars. Astrophys. J. Lett. 884, L13 (2019).
Rigney, J. et al. Searching for stellar flares from low-mass stars using ASKAP and TESS. Mon. Not. R. Astron. Soc. 516, 540–549 (2022).
Pope, B. J. S. et al. The TESS view of LOFAR radio-emitting stars. Astrophys. J. Lett. 919, L10 (2021).
Crosley, M. K. et al. The search for signatures of transient mass loss in active stars. Astrophys. J. 830, 24 (2016).
Crosley, M. K. & Osten, R. A. Low-frequency radio transients on the active M-dwarf EQ Peg and the search for coronal mass ejections. Astrophys. J. 862, 113 (2018).
Callingham, J. R. et al. Low-frequency monitoring of flare star binary CR Draconis: long-term electron-cyclotron maser emission. Astron. Astrophys. 648, A13 (2021).
Alvarado-Gómez, J. D., Drake, J. J., Cohen, O., Moschou, S. P. & Garraffo, C. Suppression of coronal mass ejections in active stars by an overlying large-scale magnetic field: a numerical study. Astrophys. J. 862, 93 (2018).
Alvarado-Gómez, J. D. et al. Tuning the exospace weather radio for stellar coronal mass ejections. Astrophys. J. 895, 47 (2020).
Zic, A. et al. ASKAP detection of periodic and elliptically polarized radio pulses from UV Ceti. Mon. Not. R. Astron. Soc. 488, 559–571 (2019).
Bastian, T. S., Cotton, W. D. & Hallinan, G. Radio Emission from UV Cet: auroral emission from a stellar magnetosphere. Astrophys. J. 935, 99 (2022).
Veronig, A. M. et al. Indications of stellar coronal mass ejections through coronal dimmings. Nat. Astron. 5, 697–706 (2021).
Güdel, M. Stellar radio astronomy: probing stellar atmospheres from protostars to giants. Annu. Rev. Astron. Astrophys. 40, 217–261 (2002).
Vidotto, A. A. et al. Characterization of the HD 219134 multi-planet system II. Stellar-wind sputtered exospheres in rocky planets b & c. Mon. Not. R. Astron. Soc. 481, 5296–5306 (2018).
Di Francesco, J. et al. The Next Generation Very Large Array White Paper No. 32 (Zenodo, 2019).
Osten, R. A. & Crosley, M. K. Quantifying the ngVLA’s contribution to exo-space weather: results of a community studies report next generation VLA memo #31. Preprint at https://arxiv.org/abs/1711.05113 (2017).
Lynch, C. R., Murphy, T., Kaplan, D. L., Ireland, M. & Bell, M. E. A search for circularly polarized emission from young exoplanets. Mon. Not. R. Astron. Soc. 467, 3447–3453 (2017).
Grießmeier, J.-M., Fischer, G., Mann, G., Panchenko, M. & Zarka, P. in Planetary Radio Emissions VIII (eds Fischer, G. et al.) 285–300 (Austrian Academy of Sciences, 2017).
Zarka, P., Lazio, J. & Hallinan, G. Magnetospheric radio emissions from exoplanets with the SKA. In Proc. Advancing Astrophysics with the Square Kilometre Array 120 (Proceedings of Science, 2015).
Grießmeier, J.-M., Lammer, H. & Khodachenko, M. in Detection Methods and Relevance of Exoplanetary Magnetic Fields Vol. 411 (eds Lammer, H. & Khodachenko, M.) 213–237 (Astrophysics and Space Science Library, 2015).
Zarka, P. et al. in Planetary Radio Emission IV (eds Rucker, H. O. et al.) 101–128 (Austrian Academy of Sciences Press, 1997).
Stevens, I. R. Magnetospheric radio emission from extrasolar giant planets: the role of the host stars. Mon. Not. R. Astron. Soc. 356, 1053–1063 (2005).
Jardine, M. & Collier Cameron, A. Radio emission from exoplanets: the role of the stellar coronal density and magnetic field strength. Astron. Astrophys. 490, 843–851 (2008).
Hess, S. L. G. & Zarka, P. Modeling the radio signature of the orbital parameters, rotation, and magnetic field of exoplanets. Astron. Astrophys. 531, A29 (2011).
Vidotto, A. A. et al. The stellar wind cycles and planetary radio emission of the τ Boo system. Mon. Not. R. Astron. Soc. 423, 3285–3298 (2012).
See, V., Jardine, M., Fares, R., Donati, J.-F. & Moutou, C. Time-scales of close-in exoplanet radio emission variability. Mon. Not. R. Astron. Soc. 450, 4323–4332 (2015).
Vidotto, A. A., Fares, R., Jardine, M., Moutou, C. & Donati, J.-F. On the environment surrounding close-in exoplanets. Mon. Not. R. Astron. Soc. 449, 4117–4130 (2015).
Nichols, J. D. & Milan, S. E. Stellar wind-magnetosphere interaction at exoplanets: computations of auroral radio powers. Mon. Not. R. Astron. Soc. 461, 2353–2366 (2016).
Weber, C. et al. Supermassive hot Jupiters provide more favourable conditions for the generation of radio emission via the cyclotron maser instability – a case study based on Tau Bootis b. Mon. Not. R. Astron. Soc. 480, 3680–3688 (2018).
Lynch, C. R., Murphy, T., Lenc, E. & Kaplan, D. L. The detectability of radio emission from exoplanets. Mon. Not. R. Astron. Soc. 478, 1763–1775 (2018).
Wang, X. & Loeb, A. Nonthermal emission from the interaction of magnetized exoplanets with the wind of their host star. Astrophys. J. Lett. 874, L23 (2019).
Kavanagh, R. D. et al. MOVES – II. Tuning in to the radio environment of HD189733b. Mon. Not. R. Astron. Soc. 485, 4529–4538 (2019).
Turnpenney, S., Nichols, J. D., Wynn, G. A. & Jia, X. Magnetohydrodynamic modelling of star-planet interaction and associated auroral radio emission. Mon. Not. R. Astron. Soc. 494, 5044–5055 (2020).
Noyola, J. P., Satyal, S. & Musielak, Z. E. On the radio detection of multiple-exomoon systems due to plasma torus sharing. Astrophys. J. 821, 97 (2016).
Narang, M. et al. Radio-Loud Exoplanet-Exomoon Survey: GMRT search for electron cyclotron maser emission. Astron. J. 165, 1 (2023).
Narang, M. et al. uGMRT observations of the hot-Saturn WASP-69b: Radio-Loud Exoplanet-Exomoon Survey II (RLEES II). Mon. Not. R. Astron. Soc. 522, 1662–1668 (2023).
Grießmeier, J.-M., Zarka, P. & Spreeuw, H. Predicting low-frequency radio fluxes of known extrasolar planets. Astron. Astrophys. 475, 359–368 (2007).
Zarka, P. in Handbook of Exoplanets (eds Deeg, H. J. & Belmonte, J. A.) Ch. 22 (Springer, 2018).
Winglee, R. M., Dulk, G. A. & Bastian, T. S. A search for cyclotron maser radiation from substellar and planet-like companions of nearby stars. Astrophys. J. Lett. 309, L59–L62 (1986).
Bastian, T. S., Dulk, G. A. & Leblanc, Y. A search for radio emission from extrasolar planets. Astrophys. J. 545, 1058–1063 (2000).
Lazio, T. J. W. & Farrell, W. M. Magnetospheric emissions from the planet orbiting τ Bootis: a multiepoch search. Astrophys. J. 668, 1182–1188 (2007).
Smith, A. M. S. et al. Secondary radio eclipse of the transiting planet HD 189733 b: an upper limit at 307-347 MHz. Mon. Not. R. Astron. Soc. 395, 335–341 (2009).
Lazio, T. J. W. et al. A blind search for magnetospheric emissions from planetary companions to nearby solar-type stars. Astron. J. 139, 96–101 (2010).
Hallinan, G. et al. Looking for a pulse: a search for rotationally modulated radio emission from the hot Jupiter, τ Boötis b. Astrophys. J. 762, 34 (2013).
Murphy, T. et al. Limits on low-frequency radio emission from southern exoplanets with the Murchison Widefield Array. Mon. Not. R. Astron. Soc. 446, 2560–2565 (2015).
Lenc, E., Murphy, T., Lynch, C. R., Kaplan, D. L. & Zhang, S. N. An all-sky survey of circular polarization at 200 MHz. Mon. Not. R. Astron. Soc. 478, 2835–2849 (2018).
O’Gorman, E. et al. A search for radio emission from exoplanets around evolved stars. Astron. Astrophys. 612, A52 (2018).
de Gasperin, F., Lazio, T. J. W. & Knapp, M. Radio observations of HD80606 near planetary periastron: II. LOFAR low band antenna observations at 30-78 MHz. Astron. Astrophys. 644, A157 (2020).
Cendes, Y., Williams, P. K. G. & Berger, E. A pilot radio search for magnetic activity in directly imaged exoplanets. Astron. J. 163, 15 (2022).
Route, M. & Wolszczan, A. ROME. III. The Arecibo search for star-planet interactions at 5 GHz. Astrophys. J. 952, 118 (2023).
Bloot, S. et al. Phenomenology and periodicity of radio emission from the stellar system AU Microscopii. Astron. Astrophys. 682, A170 (2024).
Lecavelier des Etangs, A., Sirothia, S. K. & Zarka, P. Hint of 150 MHz radio emission from the Neptune-mass extrasolar transiting planet HAT-P-11b. Astron. Astrophys. 552, A65 (2013).
Sirothia, S. K., Lecavelier des Etangs, A., Kantharia, N. G. & Ishwar-Chandra, C. H. Search for 150 MHz radio emission from extrasolar planets in the TIFR GMRT Sky Survey. Astron. Astrophys. 562, A108 (2014).
Vasylieva, I. Pulsars and Transients Survey, and Exoplanet Search at Low-Frequencies with the UTR-2 Radio Telescope: Methods and First Results. PhD thesis, Paris Observatory (2015).
Pineda, J. S. & Villadsen, J. Coherent radio bursts from known M-dwarf planet-host YZ Ceti. Nat. Astron. 7, 569–578 (2023).
Ortiz Ceballos, K. N., Cendes, Y., Berger, E. & Williams, P. K. G. A volume-limited radio search for magnetic activity in 140 exoplanets with the Very Large Array. Astron. J. 168, 127 (2024).
Ashtari, R., Sciola, A., Turner, J. D. & Stevenson, K. Detecting magnetospheric radio emission from giant exoplanets. Astrophys. J. 939, 24 (2022).
Fischer, C. & Saur, J. Time-variable electromagnetic star-planet interaction: the TRAPPIST-1 system as an exemplary case. Astrophys. J. 872, 113 (2019).
Elekes, F. & Saur, J. Space environment and magnetospheric Poynting fluxes of the exoplanet τ Boötis b. Astron. Astrophys. 671, A133 (2023).
Weber, C. et al. How expanded ionospheres of hot Jupiters can prevent escape of radio emission generated by the cyclotron maser instability. Mon. Not. R. Astron. Soc. 469, 3505–3517 (2017).
Weber, C. et al. in Planetary Radio Emissions VIII (eds Fischer, G. et al.) 317–329 (Austrian Academy of Sciences, 2017).
Daley-Yates, S. & Stevens, I. R. Inhibition of the electron cyclotron maser instability in the dense magnetosphere of a hot Jupiter. Mon. Not. R. Astron. Soc. 479, 1194–1209 (2018).
Erkaev, N. V. et al. Can radio emission escape from the magnetosphere of υ Andromedae b – a new method to constrain the minimum mass of hot Jupiters. Mon. Not. R. Astron. Soc. 512, 4869–4876 (2022).
Brain, D. A., Kao, M. M. & O’Rourke, J. G. Exoplanet magnetic fields. Preprint at https://arxiv.org/abs/2404.15429 (2024).
Connerney, J. E. P. et al. A new model of Jupiter’s magnetic field at the completion of Juno’s prime mission. J. Geophys. Res. Planets 127, e07055 (2022).
Berger, E. et al. Discovery of radio emission from the brown dwarf LP944-20. Nature 410, 338–340 (2001).
Hallinan, G. et al. Periodic bursts of coherent radio emission from an ultracool dwarf. Astrophys. J. Lett. 663, L25–L28 (2007).
Hallinan, G. et al. Magnetospherically driven optical and radio aurorae at the end of the stellar main sequence. Nature 523, 568–571 (2015).
Kao, M. M. et al. Auroral radio emission from late L and T dwarfs: a new constraint on dynamo theory in the substellar regime. Astrophys. J. 818, 24 (2016).
Pineda, J. S., Hallinan, G. & Kao, M. M. A panchromatic view of brown dwarf aurorae. Astrophys. J. 846, 75 (2017).
Kao, M. M., Mioduszewski, A. J., Villadsen, J. & Shkolnik, E. L. Resolved imaging confirms a radiation belt around an ultracool dwarf. Nature 619, 272–275 (2023).
Climent, J. B., Guirado, J. C., Pérez-Torres, M., Marcaide, J. M. & Peña-Moñino, L. Evidence of a radiation belt around a brown dwarf. Science 381, 1120–1124 (2023).
Berger, E. et al. The magnetic properties of an L Dwarf derived from simultaneous radio, X-ray, and Hα observations. Astrophys. J. 627, 960–973 (2005).
Williams, P. K. G., Cook, B. A. & Berger, E. Trends in ultracool dwarf magnetism. I. X-ray suppression and radio enhancement. Astrophys. J. 785, 9 (2014).
Hallinan, G. et al. Rotational modulation of the radio emission from the M9 dwarf TVLM 513-46546: broadband coherent emission at the substellar boundary? Astrophys. J. 653, 690–699 (2006).
Osten, R. A., Hawley, S. L., Allred, J. C., Johns-Krull, C. M. & Roark, C. From radio to X-ray: flares on the dMe flare star EV Lacertae. Astrophys. J. 621, 398–416 (2005).
Osten, R. A. & Jayawardhana, R. Radio constraints on activity in young brown dwarfs. Astrophys. J. Lett. 644, L67–L70 (2006).
Berger, E. et al. Simultaneous multi-wavelength observations of magnetic activity in ultracool dwarfs. III. X-ray, radio, and Hα activity trends in M and L dwarfs. Astrophys. J. 709, 332–341 (2010).
Antonova, A. et al. Volume-limited radio survey of ultracool dwarfs. Astron. Astrophys. 549, A131 (2013).
Burgasser, A. J., Melis, C., Zauderer, B. A. & Berger, E. Detection of radio emission from the hyperactive L dwarf 2MASS J13153094-2649513AB. Astrophys. J. Lett. 762, L3 (2013).
Route, M. & Wolszczan, A. The Arecibo detection of the coolest radio-flaring brown dwarf. Astrophys. J. Lett. 747, L22 (2012).
Route, M. & Wolszczan, A. The 5 GHz Arecibo search for radio flares from ultracool dwarfs. Astrophys. J. 773, 18 (2013).
Route, M. & Wolszczan, A. The second Arecibo search for 5 GHz radio flares from ultracool dwarfs. Astrophys. J. 830, 85 (2016).
Lynch, C. et al. Radio detections of southern ultracool dwarfs. Mon. Not. R. Astron. Soc. 457, 1224–1232 (2016).
Kao, M. M. & Shkolnik, E. L. The occurrence rate of quiescent radio emission for ultracool dwarfs using a generalized semi-analytical Bayesian framework. Mon. Not. R. Astron. Soc. 527, 6835–6866 (2024).
Vedantham, H. K. et al. Direct radio discovery of a cold brown dwarf. Astrophys. J. Lett. 903, L33 (2020).
Kao, M. M., Hallinan, G., Pineda, J. S., Stevenson, D. & Burgasser, A. The strongest magnetic fields on the coolest brown dwarfs. Astrophys. J. Suppl. Ser. 237, 25 (2018).
Vedantham, H. K. et al. Polarised radio pulsations from a new T-dwarf binary. Astron. Astrophys. 675, L6 (2023).
Rose, K. et al. Periodic radio emission from the T8 dwarf WISE J062309.94-045624.6. Astrophys. J. Lett. 951, L43 (2023).
Best, W. M. J., Sanghi, A., Liu, M. C., Magnier, E. A. & Dupuy, T. J. A volume-limited sample of ultracool dwarfs. II. The substellar age and mass functions in the solar neighborhood. Astrophys. J. 967, 115 (2024).
Kao, M. M., Hallinan, G. & Pineda, J. S. Constraints on magnetospheric radio emission from Y dwarfs. Mon. Not. R. Astron. Soc. 487, 1994–2004 (2019).
Delrez, L. et al. SPECULOOS: a network of robotic telescopes to hunt for terrestrial planets around the nearest ultracool dwarfs. Proc. SPIE 10700, 107001I (2018).
Tamburo, P. et al. The Perkins INfrared Exosatellite Survey (PINES) I. Survey overview, reduction pipeline, and early results. Astron. J. 163, 253 (2022).
Limbach, M. A. et al. On the detection of exomoons transiting isolated planetary-mass objects. Astrophys. J. Lett. 918, L25 (2021).
Gillon, M. et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542, 456–460 (2017).
Curiel, S., Ortiz-León, G. N., Mioduszewski, A. J. & Torres, R. M. An astrometric planetary companion candidate to the M9 dwarf TVLM 513-46546. Astron. J. 160, 97 (2020).
Saur, J. et al. Brown dwarfs as ideal candidates for detecting UV aurora outside the Solar System: Hubble Space Telescope observations of 2MASS J1237+6526. Astron. Astrophys. 655, A75 (2021).
Griessmeier, J. M. in Handbook of Exoplanets (eds Deeg, H. J. & Belmonte, J. A.) 3269–3283 (Springer, 2018).
Preusse, S., Kopp, A., Büchner, J. & Motschmann, U. A magnetic communication scenario for hot Jupiters. Astron. Astrophys. 460, 317–322 (2006).
Kopp, A., Schilp, S. & Preusse, S. Magnetohydrodynamic simulations of the magnetic interaction of hot Jupiters with their host stars: a numerical experiment. Astrophys. J. 729, 116 (2011).
Louis, C. K., Louarn, P., Allegrini, F., Kurth, W. S. & Szalay, J. R. Ganymede-induced decametric radio emission: in situ observations and measurements by Juno. Geophys. Res. Lett. 47, e90021 (2020).
Scharf, C. A. Possible constraints on exoplanet magnetic field strengths from planet-star interaction. Astrophys. J. 722, 1547–1555 (2010).
Shkolnik, E., Walker, G. A. H., Bohlender, D. A., Gu, P.-G. & Kürster, M. Hot Jupiters and hot spots: the short- and long-term chromospheric activity on stars with giant planets. Astrophys. J. 622, 1075–1090 (2005).
Shkolnik, E., Bohlender, D. A., Walker, G. A. H. & Collier Cameron, A. The on/off nature of star-planet interactions. Astrophys. J. 676, 628–638 (2008).
Klein, B. et al. One year of AU Mic with HARPS - II. Stellar activity and star-planet interaction. Mon. Not. R. Astron. Soc. 512, 5067–5084 (2022).
Poppenhaeger, K. & Schmitt, J. H. M. M. A correlation between host star activity and planet mass for close-in extrasolar planets? Astrophys. J. 735, 59 (2011).
Scandariato, G. et al. A coordinated optical and X-ray spectroscopic campaign on HD 179949: searching for planet-induced chromospheric and coronal activity. Astron. Astrophys. 552, A7 (2013).
Miller, B. P., Gallo, E., Wright, J. T. & Pearson, E. G. A comprehensive statistical assessment of star-planet interaction. Astrophys. J. 799, 163 (2015).
Viswanath, G., Narang, M., Manoj, P., Mathew, B. & Kartha, S. S. A statistical search for star-planet interaction in the ultraviolet using GALEX. Astron. J. 159, 194 (2020).
Pope, B. J. S. et al. No massive companion to the coherent radio-emitting M dwarf GJ 1151. Astrophys. J. Lett. 890, L19 (2020).
Mahadevan, S. et al. The habitable-zone planet finder detects a terrestrial-mass planet candidate closely orbiting Gliese 1151: the likely source of coherent low-frequency radio emission from an inactive star. Astrophys. J. Lett. 919, L9 (2021).
Perger, M. et al. The CARMENES search for exoplanets around M dwarfs. No evidence for a super-Earth in a 2-day orbit around GJ 1151. Astron. Astrophys. 649, L12 (2021).
Blanco-Pozo, J. et al. The CARMENES search for exoplanets around M dwarfs. A long-period planet around GJ 1151 measured with CARMENES and HARPS-N data. Astron. Astrophys. 671, A50 (2023).
Trigilio, C. et al. Star-planet interaction at radio wavelengths in YZ Ceti: inferring planetary magnetic field. Preprint at https://arxiv.org/abs/2305.00809 (2023).
Zarka, P. Auroral radio emissions at the outer planets: observations and theories. J. Geophys. Res. 103, 20159–20194 (1998).
Lamy, L. et al. The low-frequency source of Saturn’s kilometric radiation. Science 362, aat2027 (2018).
Louis, C. K. et al. ExPRES: an exoplanetary and planetary radio emissions simulator. Astron. Astrophys. 627, A30 (2019).
Sulaiman, A. H. et al. Jupiter’s low-altitude auroral zones: fields, particles, plasma waves, and density depletions. J. Geophys. Res. Space Phys. 127, e30334 (2022).
Lamy, L. et al. Determining the beaming of Io decametric emissions: a remote diagnostic to probe the Io-Jupiter interaction. J. Geophys. Res. Space Phys. 127, e30160 (2022).
Fares, R. et al. Searching for star-planet interactions within the magnetosphere of HD189733. Mon. Not. R. Astron. Soc. 406, 409–419 (2010).
Lanza, A. F. Stellar coronal magnetic fields and star-planet interaction. Astron. Astrophys. 505, 339–350 (2009).
Strugarek, A. Physics of star-planet magnetic interactions. Preprint at https://arxiv.org/abs/2104.05968 (2021).
Kivelson, M. G. et al. in Jupiter: The Planet, Satellites and Magnetosphere Vol. 1 (eds Bagenal, F. et al.) 513–536 (2004).
Strugarek, A., Brun, A. S., Matt, S. P. & Réville, V. Magnetic games between a planet and its host star: the key role of topology. Astrophys. J. 815, 111 (2015).
Goldreich, P. & Lynden-Bell, D. Io, a Jovian unipolar inductor. Astrophys. J. 156, 59–78 (1969).
Lanza, A. F. Star-planet magnetic interaction and evaporation of planetary atmospheres. Astron. Astrophys. 557, A31 (2013).
Strugarek, A. et al. MOVES – V. Modelling star-planet magnetic interactions of HD 189733. Mon. Not. R. Astron. Soc. 512, 4556–4572 (2022).
Shoda, M. et al. Alfvén-wave-driven magnetic rotator winds from low-mass stars. I. Rotation dependences of magnetic braking and mass-loss rate. Astrophys. J. 896, 123 (2020).
Fossati, L. et al. Absorbing gas around the WASP-12 planetary system. Astrophys. J. Lett. 766, L20 (2013).
Osten, R. A. & Wolk, S. J. Connecting flares and transient mass-loss events in magnetically active stars. Astrophys. J. 809, 79 (2015).
Vidotto, A. A. The evolution of the solar wind. Living Rev. Sol. Phys. 18, 3 (2021).
Wood, B. E. Astrospheres and solar-like stellar winds. Living Rev. Sol. Phys. 1, 2 (2004).
Jardine, M. & Collier Cameron, A. Slingshot prominences: nature’s wind gauges. Mon. Not. R. Astron. Soc. 482, 2853–2860 (2019).
Kavanagh, R. D. et al. Planet-induced radio emission from the coronae of M dwarfs: the case of Prox Cen and AU Mic. Mon. Not. R. Astron. Soc. 504, 1511–1518 (2021).
Dewdney, P. E., Hall, P. J., Schilizzi, R. T. & Lazio, T. J. L. W. The Square Kilometre Array. Proc. IEEE 97, 1482–1496 (2009).
Callingham, J. R. et al. V-LoTSS: the circularly polarised LOFAR Two-metre Sky Survey. Astron. Astrophys. 670, A124 (2023).
Pope, B. J. S., Withers, P., Callingham, J. R. & Vogt, M. F. Exoplanet transits with next-generation radio telescopes. Mon. Not. R. Astron. Soc. 484, 648–658 (2019).
Burns, J. O. Transformative science from the lunar farside: observations of the dark ages and exoplanetary systems at low radio frequencies. Phil. Trans. R. Soc. A 379, 20190564 (2021).
Burns, J. O. et al. Low radio frequency observations from the Moon enabled by NASA landed payload missions. Planet. Sci. J. 2, 44 (2021).
Bellotti, S. et al. Monitoring the large-scale magnetic field of AD Leo with SPIRou, ESPaDOnS, and Narval. Towards a magnetic polarity reversal? Astron. Astrophys. 676, A56 (2023).
Aigrain, S. & Foreman-Mackey, D. Gaussian process regression for astronomical time-series. Annu. Rev. Astron. Astrophys. 61, 329–371 (2023).
VanderPlas, J. T. Understanding the Lomb-Scargle periodogram. Astrophys. J. Suppl. Ser. 236, 16 (2018).
Artigau, É. et al. SPIRou: the near-infrared spectropolarimeter/high-precision velocimeter for the Canada-France-Hawaii telescope. Proc. SPIE 9147, 914715 (2014).
Vidotto, A. A., Feeney, N. & Groh, J. H. Can we detect aurora in exoplanets orbiting M dwarfs? Mon. Not. R. Astron. Soc. 488, 633–644 (2019).
Johnstone, C. P. & Güdel, M. The coronal temperatures of low-mass main-sequence stars. Astron. Astrophys. 578, A129 (2015).
Vedantham, H. K. Prospects for radio detection of stellar plasma beams. Astron. Astrophys. 639, L7 (2020).
Acknowledgements
This project was initiated at the Lorentz Center workshop Life Around a Radio Star, held from 27 June to 1 July 2022 in Leiden, the Netherlands. J.R.C. thanks the following graduate students and postdoctoral scholars for providing comments on the manuscript from the perspective of scientists new to the field: S. Bloot (ASTRON), C. Cordun (ASTRON), E. Fitzmaurice (Penn. State), D. Konijn (ASTRON), K. Ment (Penn. State) and T. Yiu (ASTRON). This research made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. B.J.S.P. acknowledges and pays respect to the traditional owners of the land on which the University of Queensland is situated, and to their Ancestors and descendants, who continue cultural and spiritual connections to Country. He acknowledges funding from the ARC DECRA DE21 scheme and the Big Questions Institute. R.D.K. acknowledges funding from the Dutch Research Council (NWO) for the e-MAPS (exploring magnetism on the planetary scale) project (project number VI.Vidi.203.093) under the NWO talent scheme Vidi. S.B. acknowledges funding from the NWO for the ‘Exo-space weather and contemporaneous signatures of star-planet interactions’ project of the research programme ‘Open Competition Domain Science- M’ (project number OCENW.M.22.215). M.D. acknowledges support from the INAF funding scheme Fundamental Research in Astrophysics 2022 (mini grant ‘A pilot study to explore the potential of SRT in detecting nearby radio-emitting stars with confirmed or candidate exoplanets, supported by a radial velocity follow-up’). P.Z. acknowledges funding from the European Research Council (ERC) under grant number number 101020459 − Exoradio. S.M. acknowledges funding from NSF AST-2108512 for a precision NIR M dwarf radial velocity survey with HPF from NASA XRP investigating radio detected M dwarfs. J.M. acknowledges funding from the French National Research Agency (ANR) under contract number ANR-18-CE31-0019 (SPlaSH). A.A.V. acknowledges funding from the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 817540, ASTROFLOW). G.S. and J.D.T. acknowledge support provided by NASA through the NASA Hubble Fellowship grant number HST-HF2-51519.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA under contract number NAS5-26555. B.K. acknowledges funding from the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 865624, GPRV). J.S. received funding from the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 884711). J.-M.G. acknowledges support from the “Programme National de Planétologie” (PNP) of CNRS/INSU co-funded by CNES and by the “Programme National de Physique Stellaire” (PNPS) of CNRS/INSU co-funded by CEA and CNES. M.M.K. acknowledges support from the Heising-Simons Foundation through 51 Pegasi b Fellowship grant number 2021-2943. This project was partly funded by the Lorentz Centre at Leiden University.
Author information
Authors and Affiliations
Contributions
J.R.C. organized the overall structure, acted as primary editor, led the replies to the referees and edited all contributions into a cohesive text with B.J.S.P. and R.D.K. R.D.K. produced Fig. 3. J.R.C., J.D.N., J.R., J.S., J.D.T. and P.Z. were the principal contributors to the section ‘Radio emission in the Solar System’. S.D.-Y., M. Güdel, M. Günther, R.A.O., B.J.S.P. and J.V. were the principal contributors to the ‘Stellar flares and CMEs’ section. J.R.C., R.D.K., M.P.-T., J.S., H.V., A.A.V. and P.Z. were the principal contributors to the ‘Radio emission from SPIs’ section. J.-M.G. and J.D.T. contributed to the section 'Radio emission directly from exoplanets'. All authors reviewed the final text.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Callingham, J.R., Pope, B.J.S., Kavanagh, R.D. et al. Radio signatures of star–planet interactions, exoplanets and space weather. Nat Astron 8, 1359–1372 (2024). https://doi.org/10.1038/s41550-024-02405-6
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41550-024-02405-6