Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Radio signatures of star–planet interactions, exoplanets and space weather

Subjects

Abstract

Radio detections of stellar systems provide a window onto stellar magnetic activity and the space weather conditions of extrasolar planets — information that is difficult to obtain at other wavelengths. The maturation of low-frequency radio instruments and the plethora of wide-field radio surveys have driven recent advances in observing auroral emissions from radio-bright low-mass stars and exoplanets. To guide us in putting these recent results in context, we introduce the foremost local analogues for the field: solar bursts and the aurorae found on Jupiter. We detail how radio bursts associated with stellar flares are foundational to the study of stellar coronae, and time-resolved radio dynamic spectra offer one of the best prospects for detecting and characterizing coronal mass ejections from other stars. We highlight the possibility of directly detecting coherent radio emission from exoplanetary magnetospheres, as well as early tentative results. We bridge this discussion with the field of brown dwarf radio emission — the larger and stronger magnetospheres of these stars are amenable to detailed study with current instruments. Bright, coherent radio emission is also predicted from magnetic interactions between stars and close-in planets. We discuss the underlying physics of these interactions and the implications of recent provisional detections for exoplanet characterization. We conclude with an overview of outstanding questions in the theory of stellar, star–planet interaction and exoplanet radio emission and the potential of future facilities to answer them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of a CME and a dynamic spectrum of the event that shows type II and III bursts.
Fig. 2: Schematic for distinguishing the emission mechanism operating when a radio stellar system is detected.
Fig. 3: Sketch illustrating the two putative sources of ECM emission in exoplanetary systems.

Similar content being viewed by others

References

  1. Gaudi, B. S., Meyer, M. & Christiansen, J. in ExoFrontiers: Big Questions in Exoplanetary Science (ed. Madhusudhan, N.) Ch. 2 (IOP Publishing, 2021).

  2. Madhusudhan, N. Exoplanetary atmospheres: key insights, challenges, and prospects. Annu. Rev. Astron. Astrophys. 57, 617–663 (2019).

    ADS  Google Scholar 

  3. JWST Transiting Exoplanet Community Early Release Science Team. Identification of carbon dioxide in an exoplanet atmosphere. Nature 614, 649–652 (2023).

    ADS  Google Scholar 

  4. Kempton, E. M. R. et al. A reflective, metal-rich atmosphere for GJ 1214b from its JWST phase curve. Nature 620, 67–71 (2023).

    ADS  Google Scholar 

  5. Greene, T. P. et al. Thermal emission from the Earth-sized exoplanet TRAPPIST-1 b using JWST. Nature 618, 39–42 (2023).

    ADS  Google Scholar 

  6. Zieba, S. et al. No thick carbon dioxide atmosphere on the rocky exoplanet TRAPPIST-1 c. Nature 620, 746–749 (2023).

    ADS  Google Scholar 

  7. Kouloumvakos, A. et al. Properties of solar energetic particle events inferred from their associated radio emission. Astron. Astrophys. 580, A80 (2015).

    Google Scholar 

  8. Badruddin, A. & Falak, Z. Study of the geoeffectiveness of coronal mass ejections, corotating interaction regions and their associated structures observed during Solar Cycle 23. Astrophys. Space Sci. 361, 253 (2016).

    ADS  Google Scholar 

  9. Lammer, H. Origin and Evolution of Planetary Atmospheres (Springer, 2013).

  10. Scalo, J. et al. M stars as targets for terrestrial exoplanet searches and biosignature detection. Astrobiology 7, 85–166 (2007).

    ADS  Google Scholar 

  11. Kulikov, Y. N. et al. A comparative study of the influence of the active young Sun on the early atmospheres of Earth, Venus, and Mars. Space Sci. Rev. 129, 207–243 (2007).

    ADS  Google Scholar 

  12. Curry, S. M. et al. Response of Mars O+ pickup ions to the 8 March 2015 ICME: inferences from MAVEN data-based models. Geophys. Res. Lett. 42, 9095–9102 (2015).

    ADS  Google Scholar 

  13. Fichtinger, B. et al. Radio emission and mass loss rate limits of four young solar-type stars. Astron. Astrophys. 599, A127 (2017).

    Google Scholar 

  14. Ó Fionnagáin, D. et al. The solar wind in time - II. 3D stellar wind structure and radio emission. Mon. Not. R. Astron. Soc. 483, 873–886 (2019).

    ADS  Google Scholar 

  15. Wood, B. E. et al. New observational constraints on the winds of M dwarf stars. Astrophys. J. 915, 37 (2021).

    ADS  Google Scholar 

  16. Owen, J. E. & Adams, F. C. Magnetically controlled mass-loss from extrasolar planets in close orbits. Mon. Not. R. Astron. Soc. 444, 3761–3779 (2014).

    ADS  Google Scholar 

  17. Vidotto, A. A. & Cleary, A. Stellar wind effects on the atmospheres of close-in giants: a possible reduction in escape instead of increased erosion. Mon. Not. R. Astron. Soc. 494, 2417–2428 (2020).

    ADS  Google Scholar 

  18. Dulk, G. A. Radio emission from the Sun and stars. Annu. Rev. Astron. Astrophys. 23, 169–224 (1985).

    ADS  Google Scholar 

  19. Villadsen, J. & Hallinan, G. Ultra-wideband detection of 22 coherent radio bursts on M dwarfs. Astrophys. J. 871, 214 (2019).

    ADS  Google Scholar 

  20. Lazio, T. J. W. Radio observations as an extrasolar planet discovery and characterization: interior structure and habitability. Preprint at https://arxiv.org/abs/2404.12348 (2024).

  21. McLean, D. J. & Labrum, N. R. Solar Radiophysics: Studies of Emission from the Sun at Metre Wavelengths (Cambridge Univ. Press, 1985).

  22. Dungey, J. W. The steady state of the Chapman-Ferraro problem in two dimensions. J. Geophys. Res. 66, 1043–1047 (1961).

    ADS  Google Scholar 

  23. Zarka, P. Plasma interactions of exoplanets with their parent star and associated radio emissions. Planet. Space Sci. 55, 598–617 (2007).

    ADS  Google Scholar 

  24. Luger, R. et al. The pale green dot: a method to characterize Proxima Centauri b using exo-aurorae. Astrophys. J. 837, 63 (2017).

    ADS  Google Scholar 

  25. Yantis, W. F., Sullivan, I. W. T. & Erickson, W. C. A search for extra-solar Jovian planets by radio techniques. Bull. Am. Astron. Soc. 9, 453 (1977).

    ADS  Google Scholar 

  26. Lazio, W. et al. The radiometric Bode’s law and extrasolar planets. Astrophys. J. 612, 511–518 (2004).

    ADS  Google Scholar 

  27. Cauley, P. W., Shkolnik, E. L., Llama, J. & Lanza, A. F. Magnetic field strengths of hot Jupiters from signals of star–planet interactions. Nat. Astron. 3, 1128–1134 (2019).

    ADS  Google Scholar 

  28. van Haarlem, M. P. et al. LOFAR: the LOw-Frequency ARray. Astron. Astrophys. 556, A2 (2013).

    Google Scholar 

  29. Johnston, S. et al. Science with ASKAP. The Australian square-kilometre-array pathfinder. Exp. Astron. 22, 151–273 (2008).

    ADS  Google Scholar 

  30. Driessen, L. N. et al. The Sydney Radio Star Catalogue: properties of radio stars at megahertz to gigahertz frequencies. Preprint at https://arxiv.org/abs/2404.07418 (2024).

  31. Vedantham, H. K. et al. Coherent radio emission from a quiescent red dwarf indicative of star-planet interaction. Nat. Astron. 4, 577–583 (2020).

    ADS  Google Scholar 

  32. Zic, A. et al. A flare-type IV burst event from Proxima Centauri and implications for space weather. Astrophys. J. 905, 23 (2020).

    ADS  Google Scholar 

  33. Pérez-Torres, M. et al. Monitoring the radio emission of Proxima Centauri. Astron. Astrophys. 645, A77 (2021).

    Google Scholar 

  34. Callingham, J. R. et al. The population of M dwarfs observed at low radio frequencies. Nat. Astron. 5, 1233–1239 (2021).

    ADS  Google Scholar 

  35. Turner, J. D. et al. The search for radio emission from the exoplanetary systems 55 Cancri, υ Andromedae, and τ Boötis using LOFAR beam-formed observations. Astron. Astrophys. 645, A59 (2021).

    Google Scholar 

  36. Pritchard, J. et al. A circular polarization survey for radio stars with the Australian SKA Pathfinder. Mon. Not. R. Astron. Soc. 502, 5438–5454 (2021).

    ADS  Google Scholar 

  37. Zhang, J. et al. Fine structures of radio bursts from flare star AD Leo with FAST observations. Astrophys. J. 953, 65 (2023).

    ADS  Google Scholar 

  38. Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 1, 014003 (2015).

    ADS  Google Scholar 

  39. Quirrenbach, A. et al. CARMENES: Calar Alto high-resolution search for M dwarfs with exo-earths with a near-infrared Echelle spectrograph. Proc. SPIE 7735, 773513 (2010).

    Google Scholar 

  40. Mahadevan, S. et al. The habitable-zone planet finder: a stabilized fiber-fed NIR spectrograph for the Hobby-Eberly Telescope. Proc. SPIE 8446, 84461S (2012).

    Google Scholar 

  41. Semel, M. Zeeman-Doppler imaging of active stars. I - basic principles. Astron. Astrophys. 225, 456–466 (1989).

    ADS  Google Scholar 

  42. Morin, J. et al. Large-scale magnetic topologies of late M dwarfs*. Mon. Not. R. Astron. Soc. 407, 2269–2286 (2010).

    ADS  Google Scholar 

  43. Bastian, T. S., Benz, A. O. & Gary, D. E. Radio emission from solar flares. Annu. Rev. Astron. Astrophys. 36, 131–188 (1998).

    ADS  Google Scholar 

  44. Wu, C. S. & Lee, L. C. A theory of the terrestrial kilometric radiation. Astrophys. J. 230, 621–626 (1979).

    ADS  Google Scholar 

  45. Treumann, R. A. The electron-cyclotron maser for astrophysical application. Astron. Astrophys. Rev. 13, 229–315 (2006).

    ADS  Google Scholar 

  46. Kavanagh, R. D. & Vedantham, H. K. Hunting for exoplanets via magnetic star-planet interactions: geometrical considerations for radio emission. Mon. Not. R. Astron. Soc. 524, 6267–6284 (2023).

    ADS  Google Scholar 

  47. Desch, M. D. & Kaiser, M. L. Predictions for Uranus from a radiometric Bode’s law. Nature 310, 755–757 (1984).

    ADS  Google Scholar 

  48. Farrell, W. M., Desch, M. D. & Zarka, P. On the possibility of coherent cyclotron emission from extrasolar planets. J. Geophys. Res. 104, 14025–14032 (1999).

    ADS  Google Scholar 

  49. Zarka, P., Treumann, R. A., Ryabov, B. P. & Ryabov, V. B. Magnetically-driven planetary radio emissions and application to extrasolar planets. Astrophys. Space Sci. 277, 293–300 (2001).

    ADS  Google Scholar 

  50. Nichols, J. D. Magnetosphere-ionosphere coupling at Jupiter-like exoplanets with internal plasma sources: implications for detectability of auroral radio emissions. Mon. Not. R. Astron. Soc. 414, 2125–2138 (2011).

    ADS  Google Scholar 

  51. Saur, J., Neubauer, F. M., Connerney, J. E. P., Zarka, P. & Kivelson, M. G. in Jupiter: The Planet, Satellites and Magnetosphere Vol. 1 (eds Bagenal, F. et al.) 537–560 (2004).

  52. Terasawa, T., Maezawa, K. & Machida, S. Solar wind effect on Jupiter’s non-Io-related radio emission. Nature 273, 131–132 (1978).

    ADS  Google Scholar 

  53. Zarka, P. & Genova, F. Low-frequency Jovian emission and solar wind magnetic sector structure. Nature 306, 767–768 (1983).

    ADS  Google Scholar 

  54. Genova, F., Zarka, P. & Barrow, C. H. Voyager and Nancay observations of the Jovian radio-emission at different frequencies – solar wind effect and source extent. Astron. Astrophys. 182, 159–162 (1987).

    ADS  Google Scholar 

  55. Bigg, E. K. Influence of the satellite Io on Jupiter’s decametric emission. Nature 203, 1008–1010 (1964).

    ADS  Google Scholar 

  56. Neubauer, F. M. Nonlinear standing Alfvén wave current system at Io: theory. J. Geophys. Res. Space Phys. 85, 1171–1178 (1980).

    ADS  Google Scholar 

  57. Marques, M. S. et al. Statistical analysis of 26 yr of observations of decametric radio emissions from Jupiter. Astron. Astrophys. 604, A17 (2017).

    Google Scholar 

  58. Ip, W.-H., Kopp, A. & Hu, J.-H. On the star-magnetosphere interaction of close-in exoplanets. Astrophys. J. Lett. 602, L53–L56 (2004).

    ADS  Google Scholar 

  59. Lanza, A. F. Star-planet magnetic interaction and activity in late-type stars with close-in planets. Astron. Astrophys. 544, A23 (2012).

    ADS  Google Scholar 

  60. Turnpenney, S., Nichols, J. D., Wynn, G. A. & Burleigh, M. R. Exoplanet-induced radio emission from M dwarfs. Astrophys. J. 854, 72 (2018).

    ADS  Google Scholar 

  61. Saur, J., Grambusch, T., Duling, S., Neubauer, F. M. & Simon, S. Magnetic energy fluxes in sub-Alfvénic planet star and moon planet interactions. Astron. Astrophys. 552, A119 (2013).

    ADS  Google Scholar 

  62. Zarka, P. et al. Jupiter radio emission induced by Ganymede and consequences for the radio detection of exoplanets. Astron. Astrophys. 618, A84 (2018).

    Google Scholar 

  63. Nichols, J. D. et al. Origin of electron cyclotron maser induced radio emissions at ultracool dwarfs: magnetosphere-ionosphere coupling currents. Astrophys. J. 760, 59 (2012).

    ADS  Google Scholar 

  64. Lecavelier des Etangs, A. et al. Temporal variations in the evaporating atmosphere of the exoplanet HD 189733b. Astron. Astrophys. 543, L4 (2012).

    ADS  Google Scholar 

  65. Cuntz, M., Saar, S. H. & Musielak, Z. E. On stellar activity enhancement due to interactions with extrasolar giant planets. Astrophys. J. Lett. 533, L151–L154 (2000).

    ADS  Google Scholar 

  66. Benz, A. O. & Güdel, M. Physical processes in magnetically driven flares on the Sun, stars, and young stellar objects. Annu. Rev. Astron. Astrophys. 48, 241–287 (2010).

    ADS  Google Scholar 

  67. Howard, W. S. et al. The mouse that squeaked: a small flare from Proxima Cen observed in the millimeter, optical, and soft X-Ray with Chandra and ALMA. Astrophys. J. 938, 103 (2022).

    ADS  Google Scholar 

  68. Güdel, M. & Benz, A. O. X-ray/microwave relation of different types of active stars. Astrophys. J. Lett. 405, L63 (1993).

    ADS  Google Scholar 

  69. Benz, A. O. & Güdel, M. X-ray/microwave ratio of flares and coronae. Astron. Astrophys. 285, 621–630 (1994).

    ADS  Google Scholar 

  70. Antonucci, E., Gabriel, A. H. & Dennis, B. R. The energetics of chromospheric evaporation in solar flares. Astrophys. J. 287, 917–925 (1984).

    ADS  Google Scholar 

  71. Airapetian, V. S. & Holman, G. D. Atmospheric heating and quiescent radio emission in active stars. Astrophys. J. 501, 805–812 (1998).

    ADS  Google Scholar 

  72. Airapetian, V. S. et al. Impact of space weather on climate and habitability of terrestrial-type exoplanets. Int. J. Astrobiol. 19, 136–194 (2020).

    ADS  Google Scholar 

  73. Ó Fionnagáin, D. et al. Coronal mass ejections and type II radio emission variability during a magnetic cycle on the solar-type star Eridani. Astrophys. J. 924, 115 (2022).

    ADS  Google Scholar 

  74. Crosby, N. B., Aschwanden, M. J. & Dennis, B. R. Frequency distributions and correlations of solar X-ray flare parameters. Sol. Phys. 143, 275–299 (1993).

    ADS  Google Scholar 

  75. Audard, M., Güdel, M. & Guinan, E. F. Implications from extreme-ultraviolet observations for coronal heating of active stars. Astrophys. J. Lett. 513, L53–L56 (1999).

    ADS  Google Scholar 

  76. Audard, M., Güdel, M., Drake, J. J. & Kashyap, V. L. Extreme-ultraviolet flare activity in late-type stars. Astrophys. J. 541, 396–409 (2000).

    ADS  Google Scholar 

  77. Kashyap, V. L., Drake, J. J., Güdel, M. & Audard, M. Flare heating in stellar coronae. Astrophys. J. 580, 1118–1132 (2002).

    ADS  Google Scholar 

  78. Güdel, M., Audard, M., Kashyap, V. L., Drake, J. J. & Guinan, E. F. Are coronae of magnetically active stars heated by flares? II. Extreme ultraviolet and X-ray flare statistics and the differential emission measure distribution. Astrophys. J. 582, 423–442 (2003).

    ADS  Google Scholar 

  79. Arzner, K. & Güdel, M. Are coronae of magnetically active stars heated by flares? III. Analytical distribution of superposed flares. Astrophys. J. 602, 363–376 (2004).

    ADS  Google Scholar 

  80. Stelzer, B. et al. A statistical analysis of X-ray variability in pre-main sequence objects of the Taurus molecular cloud. Astron. Astrophys. 468, 463–475 (2007).

    ADS  Google Scholar 

  81. Maehara, H. et al. Superflares on solar-type stars. Nature 485, 478–481 (2012).

    ADS  Google Scholar 

  82. Aschwanden, M. J. Thresholded power law size distributions of instabilities in astrophysics. Astrophys. J. 814, 19 (2015).

    ADS  Google Scholar 

  83. Yang, H. & Liu, J. The flare catalog and the flare activity in the Kepler mission. Astrophys. J. Suppl. Ser. 241, 29 (2019).

    ADS  Google Scholar 

  84. Borucki, W. J. et al. Kepler planet-detection mission: introduction and first results. Science 327, 977 (2010).

    ADS  Google Scholar 

  85. Walkowicz, L. M. et al. White-light flares on cool stars in the Kepler Quarter 1 data. Astron. J. 141, 50 (2011).

    ADS  Google Scholar 

  86. Hawley, S. L. et al. Kepler flares. I. Active and inactive M dwarfs. Astrophys. J. 797, 121 (2014).

    ADS  Google Scholar 

  87. Davenport, J. R. A. The Kepler catalog of stellar flares. Astrophys. J. 829, 23 (2016).

    ADS  Google Scholar 

  88. Günther, M. N. et al. Stellar flares from the first TESS data release: exploring a new sample of M dwarfs. Astron. J. 159, 60 (2020).

    ADS  Google Scholar 

  89. Feinstein, A. D. et al. Flare statistics for young stars from a convolutional neural network analysis of TESS data. Astron. J. 160, 219 (2020).

    ADS  Google Scholar 

  90. Gao, D.-Y., Liu, H.-G., Yang, M. & Zhou, J.-L. Correcting stellar flare frequency distributions detected by TESS and Kepler. Astron. J. 164, 213 (2022).

    ADS  Google Scholar 

  91. Pietras, M., Falewicz, R., Siarkowski, M., Bicz, K. & Preś, P. Statistical analysis of stellar flares from the first three years of TESS observations. Astrophys. J. 935, 143 (2022).

    ADS  Google Scholar 

  92. Davenport, J. R. A. et al. The evolution of flare activity with stellar age. Astrophys. J. 871, 241 (2019).

    ADS  Google Scholar 

  93. Feinstein, A. D., Seligman, D. Z., Günther, M. N. & Adams, F. C. Testing self-organized criticality across the main sequence using stellar flares from TESS. Astrophys. J. Lett. 925, L9 (2022).

    ADS  Google Scholar 

  94. Howard, W. S. The flaring TESS objects of interest: flare rates for all two-minute cadence TESS planet candidates. Mon. Not. R. Astron. Soc. 512, L60–L65 (2022).

    ADS  Google Scholar 

  95. Gilbert, E. A. et al. Flares, rotation, and planets of the AU Mic system from TESS observations. Astron. J. 163, 147 (2022).

    ADS  Google Scholar 

  96. Feinstein, A. D. et al. AU Microscopii in the far-UV: observations in quiescence, during flares, and implications for AU Mic b and c. Astron. J. 164, 110 (2022).

    ADS  Google Scholar 

  97. Shibayama, T. et al. Superflares on solar-type stars observed with Kepler. I. Statistical properties of superflares. Astrophys. J. Suppl. Ser. 209, 5 (2013).

    ADS  Google Scholar 

  98. Shibata, K. et al. Can superflares occur on our Sun? Publ. Astron. Soc. Jpn 65, 49 (2013).

    ADS  Google Scholar 

  99. Maehara, H. et al. Statistical properties of superflares on solar-type stars based on 1-min cadence data. Earth Planets Space 67, 59 (2015).

    ADS  Google Scholar 

  100. Notsu, Y. et al. Superflares on solar-type stars observed with Kepler II. Photometric variability of superflare-generating stars: a signature of stellar rotation and starspots. Astrophys. J. 771, 127 (2013).

    ADS  Google Scholar 

  101. Notsu, Y. et al. Do Kepler superflare stars really include slowly rotating Sun-like stars?—results using APO 3.5 m telescope spectroscopic observations and Gaia-DR2 data. Astrophys. J. 876, 58 (2019).

    ADS  Google Scholar 

  102. Cliver, E. W., Schrijver, C. J., Shibata, K. & Usoskin, I. G. Extreme solar events. Living Rev. Sol. Phys. 19, 2 (2022).

    ADS  Google Scholar 

  103. Yashiro, S., Akiyama, S., Gopalswamy, N. & Howard, R. A. Different power-law indices in the frequency distributions of flares with and without coronal mass ejections. Astrophys. J. Lett. 650, L143–L146 (2006).

    ADS  Google Scholar 

  104. Donati, J. F. & Landstreet, J. D. Magnetic fields of nondegenerate stars. Annu. Rev. Astron. Astrophys. 47, 333–370 (2009).

    ADS  Google Scholar 

  105. Alvarado-Gómez, J. D. et al. Coronal response to magnetically suppressed CME events in M-dwarf stars. Astrophys. J. Lett. 884, L13 (2019).

    ADS  Google Scholar 

  106. Rigney, J. et al. Searching for stellar flares from low-mass stars using ASKAP and TESS. Mon. Not. R. Astron. Soc. 516, 540–549 (2022).

    ADS  Google Scholar 

  107. Pope, B. J. S. et al. The TESS view of LOFAR radio-emitting stars. Astrophys. J. Lett. 919, L10 (2021).

    ADS  Google Scholar 

  108. Crosley, M. K. et al. The search for signatures of transient mass loss in active stars. Astrophys. J. 830, 24 (2016).

    ADS  Google Scholar 

  109. Crosley, M. K. & Osten, R. A. Low-frequency radio transients on the active M-dwarf EQ Peg and the search for coronal mass ejections. Astrophys. J. 862, 113 (2018).

    ADS  Google Scholar 

  110. Callingham, J. R. et al. Low-frequency monitoring of flare star binary CR Draconis: long-term electron-cyclotron maser emission. Astron. Astrophys. 648, A13 (2021).

    Google Scholar 

  111. Alvarado-Gómez, J. D., Drake, J. J., Cohen, O., Moschou, S. P. & Garraffo, C. Suppression of coronal mass ejections in active stars by an overlying large-scale magnetic field: a numerical study. Astrophys. J. 862, 93 (2018).

    ADS  Google Scholar 

  112. Alvarado-Gómez, J. D. et al. Tuning the exospace weather radio for stellar coronal mass ejections. Astrophys. J. 895, 47 (2020).

    ADS  Google Scholar 

  113. Zic, A. et al. ASKAP detection of periodic and elliptically polarized radio pulses from UV Ceti. Mon. Not. R. Astron. Soc. 488, 559–571 (2019).

    ADS  Google Scholar 

  114. Bastian, T. S., Cotton, W. D. & Hallinan, G. Radio Emission from UV Cet: auroral emission from a stellar magnetosphere. Astrophys. J. 935, 99 (2022).

    ADS  Google Scholar 

  115. Veronig, A. M. et al. Indications of stellar coronal mass ejections through coronal dimmings. Nat. Astron. 5, 697–706 (2021).

    ADS  Google Scholar 

  116. Güdel, M. Stellar radio astronomy: probing stellar atmospheres from protostars to giants. Annu. Rev. Astron. Astrophys. 40, 217–261 (2002).

    ADS  Google Scholar 

  117. Vidotto, A. A. et al. Characterization of the HD 219134 multi-planet system II. Stellar-wind sputtered exospheres in rocky planets b & c. Mon. Not. R. Astron. Soc. 481, 5296–5306 (2018).

    ADS  Google Scholar 

  118. Di Francesco, J. et al. The Next Generation Very Large Array White Paper No. 32 (Zenodo, 2019).

  119. Osten, R. A. & Crosley, M. K. Quantifying the ngVLA’s contribution to exo-space weather: results of a community studies report next generation VLA memo #31. Preprint at https://arxiv.org/abs/1711.05113 (2017).

  120. Lynch, C. R., Murphy, T., Kaplan, D. L., Ireland, M. & Bell, M. E. A search for circularly polarized emission from young exoplanets. Mon. Not. R. Astron. Soc. 467, 3447–3453 (2017).

    ADS  Google Scholar 

  121. Grießmeier, J.-M., Fischer, G., Mann, G., Panchenko, M. & Zarka, P. in Planetary Radio Emissions VIII (eds Fischer, G. et al.) 285–300 (Austrian Academy of Sciences, 2017).

  122. Zarka, P., Lazio, J. & Hallinan, G. Magnetospheric radio emissions from exoplanets with the SKA. In Proc. Advancing Astrophysics with the Square Kilometre Array 120 (Proceedings of Science, 2015).

  123. Grießmeier, J.-M., Lammer, H. & Khodachenko, M. in Detection Methods and Relevance of Exoplanetary Magnetic Fields Vol. 411 (eds Lammer, H. & Khodachenko, M.) 213–237 (Astrophysics and Space Science Library, 2015).

  124. Zarka, P. et al. in Planetary Radio Emission IV (eds Rucker, H. O. et al.) 101–128 (Austrian Academy of Sciences Press, 1997).

  125. Stevens, I. R. Magnetospheric radio emission from extrasolar giant planets: the role of the host stars. Mon. Not. R. Astron. Soc. 356, 1053–1063 (2005).

    ADS  Google Scholar 

  126. Jardine, M. & Collier Cameron, A. Radio emission from exoplanets: the role of the stellar coronal density and magnetic field strength. Astron. Astrophys. 490, 843–851 (2008).

    ADS  Google Scholar 

  127. Hess, S. L. G. & Zarka, P. Modeling the radio signature of the orbital parameters, rotation, and magnetic field of exoplanets. Astron. Astrophys. 531, A29 (2011).

    ADS  Google Scholar 

  128. Vidotto, A. A. et al. The stellar wind cycles and planetary radio emission of the τ Boo system. Mon. Not. R. Astron. Soc. 423, 3285–3298 (2012).

    ADS  Google Scholar 

  129. See, V., Jardine, M., Fares, R., Donati, J.-F. & Moutou, C. Time-scales of close-in exoplanet radio emission variability. Mon. Not. R. Astron. Soc. 450, 4323–4332 (2015).

    ADS  Google Scholar 

  130. Vidotto, A. A., Fares, R., Jardine, M., Moutou, C. & Donati, J.-F. On the environment surrounding close-in exoplanets. Mon. Not. R. Astron. Soc. 449, 4117–4130 (2015).

    ADS  Google Scholar 

  131. Nichols, J. D. & Milan, S. E. Stellar wind-magnetosphere interaction at exoplanets: computations of auroral radio powers. Mon. Not. R. Astron. Soc. 461, 2353–2366 (2016).

    ADS  Google Scholar 

  132. Weber, C. et al. Supermassive hot Jupiters provide more favourable conditions for the generation of radio emission via the cyclotron maser instability – a case study based on Tau Bootis b. Mon. Not. R. Astron. Soc. 480, 3680–3688 (2018).

    ADS  Google Scholar 

  133. Lynch, C. R., Murphy, T., Lenc, E. & Kaplan, D. L. The detectability of radio emission from exoplanets. Mon. Not. R. Astron. Soc. 478, 1763–1775 (2018).

    ADS  Google Scholar 

  134. Wang, X. & Loeb, A. Nonthermal emission from the interaction of magnetized exoplanets with the wind of their host star. Astrophys. J. Lett. 874, L23 (2019).

    ADS  Google Scholar 

  135. Kavanagh, R. D. et al. MOVES – II. Tuning in to the radio environment of HD189733b. Mon. Not. R. Astron. Soc. 485, 4529–4538 (2019).

    ADS  Google Scholar 

  136. Turnpenney, S., Nichols, J. D., Wynn, G. A. & Jia, X. Magnetohydrodynamic modelling of star-planet interaction and associated auroral radio emission. Mon. Not. R. Astron. Soc. 494, 5044–5055 (2020).

    ADS  Google Scholar 

  137. Noyola, J. P., Satyal, S. & Musielak, Z. E. On the radio detection of multiple-exomoon systems due to plasma torus sharing. Astrophys. J. 821, 97 (2016).

    ADS  Google Scholar 

  138. Narang, M. et al. Radio-Loud Exoplanet-Exomoon Survey: GMRT search for electron cyclotron maser emission. Astron. J. 165, 1 (2023).

    ADS  Google Scholar 

  139. Narang, M. et al. uGMRT observations of the hot-Saturn WASP-69b: Radio-Loud Exoplanet-Exomoon Survey II (RLEES II). Mon. Not. R. Astron. Soc. 522, 1662–1668 (2023).

    ADS  Google Scholar 

  140. Grießmeier, J.-M., Zarka, P. & Spreeuw, H. Predicting low-frequency radio fluxes of known extrasolar planets. Astron. Astrophys. 475, 359–368 (2007).

    ADS  Google Scholar 

  141. Zarka, P. in Handbook of Exoplanets (eds Deeg, H. J. & Belmonte, J. A.) Ch. 22 (Springer, 2018).

  142. Winglee, R. M., Dulk, G. A. & Bastian, T. S. A search for cyclotron maser radiation from substellar and planet-like companions of nearby stars. Astrophys. J. Lett. 309, L59–L62 (1986).

    ADS  Google Scholar 

  143. Bastian, T. S., Dulk, G. A. & Leblanc, Y. A search for radio emission from extrasolar planets. Astrophys. J. 545, 1058–1063 (2000).

    ADS  Google Scholar 

  144. Lazio, T. J. W. & Farrell, W. M. Magnetospheric emissions from the planet orbiting τ Bootis: a multiepoch search. Astrophys. J. 668, 1182–1188 (2007).

    ADS  Google Scholar 

  145. Smith, A. M. S. et al. Secondary radio eclipse of the transiting planet HD 189733 b: an upper limit at 307-347 MHz. Mon. Not. R. Astron. Soc. 395, 335–341 (2009).

    ADS  Google Scholar 

  146. Lazio, T. J. W. et al. A blind search for magnetospheric emissions from planetary companions to nearby solar-type stars. Astron. J. 139, 96–101 (2010).

    ADS  Google Scholar 

  147. Hallinan, G. et al. Looking for a pulse: a search for rotationally modulated radio emission from the hot Jupiter, τ Boötis b. Astrophys. J. 762, 34 (2013).

    ADS  Google Scholar 

  148. Murphy, T. et al. Limits on low-frequency radio emission from southern exoplanets with the Murchison Widefield Array. Mon. Not. R. Astron. Soc. 446, 2560–2565 (2015).

    ADS  Google Scholar 

  149. Lenc, E., Murphy, T., Lynch, C. R., Kaplan, D. L. & Zhang, S. N. An all-sky survey of circular polarization at 200 MHz. Mon. Not. R. Astron. Soc. 478, 2835–2849 (2018).

    ADS  Google Scholar 

  150. O’Gorman, E. et al. A search for radio emission from exoplanets around evolved stars. Astron. Astrophys. 612, A52 (2018).

    Google Scholar 

  151. de Gasperin, F., Lazio, T. J. W. & Knapp, M. Radio observations of HD80606 near planetary periastron: II. LOFAR low band antenna observations at 30-78 MHz. Astron. Astrophys. 644, A157 (2020).

    ADS  Google Scholar 

  152. Cendes, Y., Williams, P. K. G. & Berger, E. A pilot radio search for magnetic activity in directly imaged exoplanets. Astron. J. 163, 15 (2022).

    ADS  Google Scholar 

  153. Route, M. & Wolszczan, A. ROME. III. The Arecibo search for star-planet interactions at 5 GHz. Astrophys. J. 952, 118 (2023).

    ADS  Google Scholar 

  154. Bloot, S. et al. Phenomenology and periodicity of radio emission from the stellar system AU Microscopii. Astron. Astrophys. 682, A170 (2024).

    Google Scholar 

  155. Lecavelier des Etangs, A., Sirothia, S. K. & Zarka, P. Hint of 150 MHz radio emission from the Neptune-mass extrasolar transiting planet HAT-P-11b. Astron. Astrophys. 552, A65 (2013).

    Google Scholar 

  156. Sirothia, S. K., Lecavelier des Etangs, A., Kantharia, N. G. & Ishwar-Chandra, C. H. Search for 150 MHz radio emission from extrasolar planets in the TIFR GMRT Sky Survey. Astron. Astrophys. 562, A108 (2014).

    Google Scholar 

  157. Vasylieva, I. Pulsars and Transients Survey, and Exoplanet Search at Low-Frequencies with the UTR-2 Radio Telescope: Methods and First Results. PhD thesis, Paris Observatory (2015).

  158. Pineda, J. S. & Villadsen, J. Coherent radio bursts from known M-dwarf planet-host YZ Ceti. Nat. Astron. 7, 569–578 (2023).

    ADS  Google Scholar 

  159. Ortiz Ceballos, K. N., Cendes, Y., Berger, E. & Williams, P. K. G. A volume-limited radio search for magnetic activity in 140 exoplanets with the Very Large Array. Astron. J. 168, 127 (2024).

    Google Scholar 

  160. Ashtari, R., Sciola, A., Turner, J. D. & Stevenson, K. Detecting magnetospheric radio emission from giant exoplanets. Astrophys. J. 939, 24 (2022).

    ADS  Google Scholar 

  161. Fischer, C. & Saur, J. Time-variable electromagnetic star-planet interaction: the TRAPPIST-1 system as an exemplary case. Astrophys. J. 872, 113 (2019).

    ADS  Google Scholar 

  162. Elekes, F. & Saur, J. Space environment and magnetospheric Poynting fluxes of the exoplanet τ Boötis b. Astron. Astrophys. 671, A133 (2023).

    ADS  Google Scholar 

  163. Weber, C. et al. How expanded ionospheres of hot Jupiters can prevent escape of radio emission generated by the cyclotron maser instability. Mon. Not. R. Astron. Soc. 469, 3505–3517 (2017).

    ADS  Google Scholar 

  164. Weber, C. et al. in Planetary Radio Emissions VIII (eds Fischer, G. et al.) 317–329 (Austrian Academy of Sciences, 2017).

  165. Daley-Yates, S. & Stevens, I. R. Inhibition of the electron cyclotron maser instability in the dense magnetosphere of a hot Jupiter. Mon. Not. R. Astron. Soc. 479, 1194–1209 (2018).

    ADS  Google Scholar 

  166. Erkaev, N. V. et al. Can radio emission escape from the magnetosphere of υ Andromedae b – a new method to constrain the minimum mass of hot Jupiters. Mon. Not. R. Astron. Soc. 512, 4869–4876 (2022).

    ADS  Google Scholar 

  167. Brain, D. A., Kao, M. M. & O’Rourke, J. G. Exoplanet magnetic fields. Preprint at https://arxiv.org/abs/2404.15429 (2024).

  168. Connerney, J. E. P. et al. A new model of Jupiter’s magnetic field at the completion of Juno’s prime mission. J. Geophys. Res. Planets 127, e07055 (2022).

    Google Scholar 

  169. Berger, E. et al. Discovery of radio emission from the brown dwarf LP944-20. Nature 410, 338–340 (2001).

    ADS  Google Scholar 

  170. Hallinan, G. et al. Periodic bursts of coherent radio emission from an ultracool dwarf. Astrophys. J. Lett. 663, L25–L28 (2007).

    ADS  Google Scholar 

  171. Hallinan, G. et al. Magnetospherically driven optical and radio aurorae at the end of the stellar main sequence. Nature 523, 568–571 (2015).

    ADS  Google Scholar 

  172. Kao, M. M. et al. Auroral radio emission from late L and T dwarfs: a new constraint on dynamo theory in the substellar regime. Astrophys. J. 818, 24 (2016).

    ADS  Google Scholar 

  173. Pineda, J. S., Hallinan, G. & Kao, M. M. A panchromatic view of brown dwarf aurorae. Astrophys. J. 846, 75 (2017).

    ADS  Google Scholar 

  174. Kao, M. M., Mioduszewski, A. J., Villadsen, J. & Shkolnik, E. L. Resolved imaging confirms a radiation belt around an ultracool dwarf. Nature 619, 272–275 (2023).

    ADS  Google Scholar 

  175. Climent, J. B., Guirado, J. C., Pérez-Torres, M., Marcaide, J. M. & Peña-Moñino, L. Evidence of a radiation belt around a brown dwarf. Science 381, 1120–1124 (2023).

    ADS  Google Scholar 

  176. Berger, E. et al. The magnetic properties of an L Dwarf derived from simultaneous radio, X-ray, and Hα observations. Astrophys. J. 627, 960–973 (2005).

    ADS  Google Scholar 

  177. Williams, P. K. G., Cook, B. A. & Berger, E. Trends in ultracool dwarf magnetism. I. X-ray suppression and radio enhancement. Astrophys. J. 785, 9 (2014).

    ADS  Google Scholar 

  178. Hallinan, G. et al. Rotational modulation of the radio emission from the M9 dwarf TVLM 513-46546: broadband coherent emission at the substellar boundary? Astrophys. J. 653, 690–699 (2006).

    ADS  Google Scholar 

  179. Osten, R. A., Hawley, S. L., Allred, J. C., Johns-Krull, C. M. & Roark, C. From radio to X-ray: flares on the dMe flare star EV Lacertae. Astrophys. J. 621, 398–416 (2005).

    ADS  Google Scholar 

  180. Osten, R. A. & Jayawardhana, R. Radio constraints on activity in young brown dwarfs. Astrophys. J. Lett. 644, L67–L70 (2006).

    ADS  Google Scholar 

  181. Berger, E. et al. Simultaneous multi-wavelength observations of magnetic activity in ultracool dwarfs. III. X-ray, radio, and Hα activity trends in M and L dwarfs. Astrophys. J. 709, 332–341 (2010).

    ADS  Google Scholar 

  182. Antonova, A. et al. Volume-limited radio survey of ultracool dwarfs. Astron. Astrophys. 549, A131 (2013).

    Google Scholar 

  183. Burgasser, A. J., Melis, C., Zauderer, B. A. & Berger, E. Detection of radio emission from the hyperactive L dwarf 2MASS J13153094-2649513AB. Astrophys. J. Lett. 762, L3 (2013).

    ADS  Google Scholar 

  184. Route, M. & Wolszczan, A. The Arecibo detection of the coolest radio-flaring brown dwarf. Astrophys. J. Lett. 747, L22 (2012).

    ADS  Google Scholar 

  185. Route, M. & Wolszczan, A. The 5 GHz Arecibo search for radio flares from ultracool dwarfs. Astrophys. J. 773, 18 (2013).

    ADS  Google Scholar 

  186. Route, M. & Wolszczan, A. The second Arecibo search for 5 GHz radio flares from ultracool dwarfs. Astrophys. J. 830, 85 (2016).

    ADS  Google Scholar 

  187. Lynch, C. et al. Radio detections of southern ultracool dwarfs. Mon. Not. R. Astron. Soc. 457, 1224–1232 (2016).

    ADS  Google Scholar 

  188. Kao, M. M. & Shkolnik, E. L. The occurrence rate of quiescent radio emission for ultracool dwarfs using a generalized semi-analytical Bayesian framework. Mon. Not. R. Astron. Soc. 527, 6835–6866 (2024).

    ADS  Google Scholar 

  189. Vedantham, H. K. et al. Direct radio discovery of a cold brown dwarf. Astrophys. J. Lett. 903, L33 (2020).

    ADS  Google Scholar 

  190. Kao, M. M., Hallinan, G., Pineda, J. S., Stevenson, D. & Burgasser, A. The strongest magnetic fields on the coolest brown dwarfs. Astrophys. J. Suppl. Ser. 237, 25 (2018).

    ADS  Google Scholar 

  191. Vedantham, H. K. et al. Polarised radio pulsations from a new T-dwarf binary. Astron. Astrophys. 675, L6 (2023).

    ADS  Google Scholar 

  192. Rose, K. et al. Periodic radio emission from the T8 dwarf WISE J062309.94-045624.6. Astrophys. J. Lett. 951, L43 (2023).

    ADS  Google Scholar 

  193. Best, W. M. J., Sanghi, A., Liu, M. C., Magnier, E. A. & Dupuy, T. J. A volume-limited sample of ultracool dwarfs. II. The substellar age and mass functions in the solar neighborhood. Astrophys. J. 967, 115 (2024).

    ADS  Google Scholar 

  194. Kao, M. M., Hallinan, G. & Pineda, J. S. Constraints on magnetospheric radio emission from Y dwarfs. Mon. Not. R. Astron. Soc. 487, 1994–2004 (2019).

    ADS  Google Scholar 

  195. Delrez, L. et al. SPECULOOS: a network of robotic telescopes to hunt for terrestrial planets around the nearest ultracool dwarfs. Proc. SPIE 10700, 107001I (2018).

  196. Tamburo, P. et al. The Perkins INfrared Exosatellite Survey (PINES) I. Survey overview, reduction pipeline, and early results. Astron. J. 163, 253 (2022).

    ADS  Google Scholar 

  197. Limbach, M. A. et al. On the detection of exomoons transiting isolated planetary-mass objects. Astrophys. J. Lett. 918, L25 (2021).

    ADS  Google Scholar 

  198. Gillon, M. et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542, 456–460 (2017).

    ADS  Google Scholar 

  199. Curiel, S., Ortiz-León, G. N., Mioduszewski, A. J. & Torres, R. M. An astrometric planetary companion candidate to the M9 dwarf TVLM 513-46546. Astron. J. 160, 97 (2020).

    ADS  Google Scholar 

  200. Saur, J. et al. Brown dwarfs as ideal candidates for detecting UV aurora outside the Solar System: Hubble Space Telescope observations of 2MASS J1237+6526. Astron. Astrophys. 655, A75 (2021).

    Google Scholar 

  201. Griessmeier, J. M. in Handbook of Exoplanets (eds Deeg, H. J. & Belmonte, J. A.) 3269–3283 (Springer, 2018).

  202. Preusse, S., Kopp, A., Büchner, J. & Motschmann, U. A magnetic communication scenario for hot Jupiters. Astron. Astrophys. 460, 317–322 (2006).

    ADS  Google Scholar 

  203. Kopp, A., Schilp, S. & Preusse, S. Magnetohydrodynamic simulations of the magnetic interaction of hot Jupiters with their host stars: a numerical experiment. Astrophys. J. 729, 116 (2011).

    ADS  Google Scholar 

  204. Louis, C. K., Louarn, P., Allegrini, F., Kurth, W. S. & Szalay, J. R. Ganymede-induced decametric radio emission: in situ observations and measurements by Juno. Geophys. Res. Lett. 47, e90021 (2020).

    ADS  Google Scholar 

  205. Scharf, C. A. Possible constraints on exoplanet magnetic field strengths from planet-star interaction. Astrophys. J. 722, 1547–1555 (2010).

    ADS  Google Scholar 

  206. Shkolnik, E., Walker, G. A. H., Bohlender, D. A., Gu, P.-G. & Kürster, M. Hot Jupiters and hot spots: the short- and long-term chromospheric activity on stars with giant planets. Astrophys. J. 622, 1075–1090 (2005).

    ADS  Google Scholar 

  207. Shkolnik, E., Bohlender, D. A., Walker, G. A. H. & Collier Cameron, A. The on/off nature of star-planet interactions. Astrophys. J. 676, 628–638 (2008).

    ADS  Google Scholar 

  208. Klein, B. et al. One year of AU Mic with HARPS - II. Stellar activity and star-planet interaction. Mon. Not. R. Astron. Soc. 512, 5067–5084 (2022).

    ADS  Google Scholar 

  209. Poppenhaeger, K. & Schmitt, J. H. M. M. A correlation between host star activity and planet mass for close-in extrasolar planets? Astrophys. J. 735, 59 (2011).

    ADS  Google Scholar 

  210. Scandariato, G. et al. A coordinated optical and X-ray spectroscopic campaign on HD 179949: searching for planet-induced chromospheric and coronal activity. Astron. Astrophys. 552, A7 (2013).

    Google Scholar 

  211. Miller, B. P., Gallo, E., Wright, J. T. & Pearson, E. G. A comprehensive statistical assessment of star-planet interaction. Astrophys. J. 799, 163 (2015).

    ADS  Google Scholar 

  212. Viswanath, G., Narang, M., Manoj, P., Mathew, B. & Kartha, S. S. A statistical search for star-planet interaction in the ultraviolet using GALEX. Astron. J. 159, 194 (2020).

    ADS  Google Scholar 

  213. Pope, B. J. S. et al. No massive companion to the coherent radio-emitting M dwarf GJ 1151. Astrophys. J. Lett. 890, L19 (2020).

    ADS  Google Scholar 

  214. Mahadevan, S. et al. The habitable-zone planet finder detects a terrestrial-mass planet candidate closely orbiting Gliese 1151: the likely source of coherent low-frequency radio emission from an inactive star. Astrophys. J. Lett. 919, L9 (2021).

    ADS  Google Scholar 

  215. Perger, M. et al. The CARMENES search for exoplanets around M dwarfs. No evidence for a super-Earth in a 2-day orbit around GJ 1151. Astron. Astrophys. 649, L12 (2021).

    ADS  Google Scholar 

  216. Blanco-Pozo, J. et al. The CARMENES search for exoplanets around M dwarfs. A long-period planet around GJ 1151 measured with CARMENES and HARPS-N data. Astron. Astrophys. 671, A50 (2023).

    Google Scholar 

  217. Trigilio, C. et al. Star-planet interaction at radio wavelengths in YZ Ceti: inferring planetary magnetic field. Preprint at https://arxiv.org/abs/2305.00809 (2023).

  218. Zarka, P. Auroral radio emissions at the outer planets: observations and theories. J. Geophys. Res. 103, 20159–20194 (1998).

    ADS  Google Scholar 

  219. Lamy, L. et al. The low-frequency source of Saturn’s kilometric radiation. Science 362, aat2027 (2018).

    ADS  Google Scholar 

  220. Louis, C. K. et al. ExPRES: an exoplanetary and planetary radio emissions simulator. Astron. Astrophys. 627, A30 (2019).

    Google Scholar 

  221. Sulaiman, A. H. et al. Jupiter’s low-altitude auroral zones: fields, particles, plasma waves, and density depletions. J. Geophys. Res. Space Phys. 127, e30334 (2022).

    ADS  Google Scholar 

  222. Lamy, L. et al. Determining the beaming of Io decametric emissions: a remote diagnostic to probe the Io-Jupiter interaction. J. Geophys. Res. Space Phys. 127, e30160 (2022).

    ADS  Google Scholar 

  223. Fares, R. et al. Searching for star-planet interactions within the magnetosphere of HD189733. Mon. Not. R. Astron. Soc. 406, 409–419 (2010).

    ADS  Google Scholar 

  224. Lanza, A. F. Stellar coronal magnetic fields and star-planet interaction. Astron. Astrophys. 505, 339–350 (2009).

    ADS  Google Scholar 

  225. Strugarek, A. Physics of star-planet magnetic interactions. Preprint at https://arxiv.org/abs/2104.05968 (2021).

  226. Kivelson, M. G. et al. in Jupiter: The Planet, Satellites and Magnetosphere Vol. 1 (eds Bagenal, F. et al.) 513–536 (2004).

  227. Strugarek, A., Brun, A. S., Matt, S. P. & Réville, V. Magnetic games between a planet and its host star: the key role of topology. Astrophys. J. 815, 111 (2015).

    ADS  Google Scholar 

  228. Goldreich, P. & Lynden-Bell, D. Io, a Jovian unipolar inductor. Astrophys. J. 156, 59–78 (1969).

    ADS  Google Scholar 

  229. Lanza, A. F. Star-planet magnetic interaction and evaporation of planetary atmospheres. Astron. Astrophys. 557, A31 (2013).

    ADS  Google Scholar 

  230. Strugarek, A. et al. MOVES – V. Modelling star-planet magnetic interactions of HD 189733. Mon. Not. R. Astron. Soc. 512, 4556–4572 (2022).

    ADS  Google Scholar 

  231. Shoda, M. et al. Alfvén-wave-driven magnetic rotator winds from low-mass stars. I. Rotation dependences of magnetic braking and mass-loss rate. Astrophys. J. 896, 123 (2020).

    ADS  Google Scholar 

  232. Fossati, L. et al. Absorbing gas around the WASP-12 planetary system. Astrophys. J. Lett. 766, L20 (2013).

    ADS  Google Scholar 

  233. Osten, R. A. & Wolk, S. J. Connecting flares and transient mass-loss events in magnetically active stars. Astrophys. J. 809, 79 (2015).

    ADS  Google Scholar 

  234. Vidotto, A. A. The evolution of the solar wind. Living Rev. Sol. Phys. 18, 3 (2021).

    ADS  Google Scholar 

  235. Wood, B. E. Astrospheres and solar-like stellar winds. Living Rev. Sol. Phys. 1, 2 (2004).

    ADS  Google Scholar 

  236. Jardine, M. & Collier Cameron, A. Slingshot prominences: nature’s wind gauges. Mon. Not. R. Astron. Soc. 482, 2853–2860 (2019).

    ADS  Google Scholar 

  237. Kavanagh, R. D. et al. Planet-induced radio emission from the coronae of M dwarfs: the case of Prox Cen and AU Mic. Mon. Not. R. Astron. Soc. 504, 1511–1518 (2021).

    ADS  Google Scholar 

  238. Dewdney, P. E., Hall, P. J., Schilizzi, R. T. & Lazio, T. J. L. W. The Square Kilometre Array. Proc. IEEE 97, 1482–1496 (2009).

    ADS  Google Scholar 

  239. Callingham, J. R. et al. V-LoTSS: the circularly polarised LOFAR Two-metre Sky Survey. Astron. Astrophys. 670, A124 (2023).

    Google Scholar 

  240. Pope, B. J. S., Withers, P., Callingham, J. R. & Vogt, M. F. Exoplanet transits with next-generation radio telescopes. Mon. Not. R. Astron. Soc. 484, 648–658 (2019).

    ADS  Google Scholar 

  241. Burns, J. O. Transformative science from the lunar farside: observations of the dark ages and exoplanetary systems at low radio frequencies. Phil. Trans. R. Soc. A 379, 20190564 (2021).

    ADS  Google Scholar 

  242. Burns, J. O. et al. Low radio frequency observations from the Moon enabled by NASA landed payload missions. Planet. Sci. J. 2, 44 (2021).

    Google Scholar 

  243. Bellotti, S. et al. Monitoring the large-scale magnetic field of AD Leo with SPIRou, ESPaDOnS, and Narval. Towards a magnetic polarity reversal? Astron. Astrophys. 676, A56 (2023).

    Google Scholar 

  244. Aigrain, S. & Foreman-Mackey, D. Gaussian process regression for astronomical time-series. Annu. Rev. Astron. Astrophys. 61, 329–371 (2023).

    ADS  Google Scholar 

  245. VanderPlas, J. T. Understanding the Lomb-Scargle periodogram. Astrophys. J. Suppl. Ser. 236, 16 (2018).

    ADS  Google Scholar 

  246. Artigau, É. et al. SPIRou: the near-infrared spectropolarimeter/high-precision velocimeter for the Canada-France-Hawaii telescope. Proc. SPIE 9147, 914715 (2014).

    Google Scholar 

  247. Vidotto, A. A., Feeney, N. & Groh, J. H. Can we detect aurora in exoplanets orbiting M dwarfs? Mon. Not. R. Astron. Soc. 488, 633–644 (2019).

    ADS  Google Scholar 

  248. Johnstone, C. P. & Güdel, M. The coronal temperatures of low-mass main-sequence stars. Astron. Astrophys. 578, A129 (2015).

    ADS  Google Scholar 

  249. Vedantham, H. K. Prospects for radio detection of stellar plasma beams. Astron. Astrophys. 639, L7 (2020).

    ADS  Google Scholar 

Download references

Acknowledgements

This project was initiated at the Lorentz Center workshop Life Around a Radio Star, held from 27 June to 1 July 2022 in Leiden, the Netherlands. J.R.C. thanks the following graduate students and postdoctoral scholars for providing comments on the manuscript from the perspective of scientists new to the field: S. Bloot (ASTRON), C. Cordun (ASTRON), E. Fitzmaurice (Penn. State), D. Konijn (ASTRON), K. Ment (Penn. State) and T. Yiu (ASTRON). This research made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. B.J.S.P. acknowledges and pays respect to the traditional owners of the land on which the University of Queensland is situated, and to their Ancestors and descendants, who continue cultural and spiritual connections to Country. He acknowledges funding from the ARC DECRA DE21 scheme and the Big Questions Institute. R.D.K. acknowledges funding from the Dutch Research Council (NWO) for the e-MAPS (exploring magnetism on the planetary scale) project (project number VI.Vidi.203.093) under the NWO talent scheme Vidi. S.B. acknowledges funding from the NWO for the ‘Exo-space weather and contemporaneous signatures of star-planet interactions’ project of the research programme ‘Open Competition Domain Science- M’ (project number OCENW.M.22.215). M.D. acknowledges support from the INAF funding scheme Fundamental Research in Astrophysics 2022 (mini grant ‘A pilot study to explore the potential of SRT in detecting nearby radio-emitting stars with confirmed or candidate exoplanets, supported by a radial velocity follow-up’). P.Z. acknowledges funding from the European Research Council (ERC) under grant number number 101020459 − Exoradio. S.M. acknowledges funding from NSF AST-2108512 for a precision NIR M dwarf radial velocity survey with HPF from NASA XRP investigating radio detected M dwarfs. J.M. acknowledges funding from the French National Research Agency (ANR) under contract number ANR-18-CE31-0019 (SPlaSH). A.A.V. acknowledges funding from the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 817540, ASTROFLOW). G.S. and J.D.T. acknowledge support provided by NASA through the NASA Hubble Fellowship grant number HST-HF2-51519.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA under contract number NAS5-26555. B.K. acknowledges funding from the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 865624, GPRV). J.S. received funding from the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 884711). J.-M.G. acknowledges support from the “Programme National de Planétologie” (PNP) of CNRS/INSU co-funded by CNES and by the “Programme National de Physique Stellaire” (PNPS) of CNRS/INSU co-funded by CEA and CNES. M.M.K. acknowledges support from the Heising-Simons Foundation through 51 Pegasi b Fellowship grant number 2021-2943. This project was partly funded by the Lorentz Centre at Leiden University.

Author information

Authors and Affiliations

Authors

Contributions

J.R.C. organized the overall structure, acted as primary editor, led the replies to the referees and edited all contributions into a cohesive text with B.J.S.P. and R.D.K. R.D.K. produced Fig. 3. J.R.C., J.D.N., J.R., J.S., J.D.T. and P.Z. were the principal contributors to the section ‘Radio emission in the Solar System’. S.D.-Y., M. Güdel, M. Günther, R.A.O., B.J.S.P. and J.V. were the principal contributors to the ‘Stellar flares and CMEs’ section. J.R.C., R.D.K., M.P.-T., J.S., H.V., A.A.V. and P.Z. were the principal contributors to the ‘Radio emission from SPIs’ section. J.-M.G. and J.D.T. contributed to the section 'Radio emission directly from exoplanets'. All authors reviewed the final text.

Corresponding author

Correspondence to J. R. Callingham.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Callingham, J.R., Pope, B.J.S., Kavanagh, R.D. et al. Radio signatures of star–planet interactions, exoplanets and space weather. Nat Astron 8, 1359–1372 (2024). https://doi.org/10.1038/s41550-024-02405-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-024-02405-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing