Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thermal evolution of trans-Neptunian objects through observations of Centaurs with JWST

Abstract

Centaurs are small bodies orbiting between Jupiter and Neptune and behave as an intermediate population between trans-Neptunian-belt objects and Jupiter-family comets. As such, their surface composition and evolutionary processes are key to understanding the Solar System’s history. However, the mechanisms driving their transformation and the impact of thermal processing on their surfaces remain open questions. Here we examined the surface properties of five Centaurs using the James Webb Space Telescope near-infrared spectrograph reflectance spectra (0.6–5.3 μm). They exhibit considerable diversity in surface composition. Our analysis indicates that Centaurs can be split into two main categories, which is also observed for trans-Neptunian objects: one group has surfaces composed of refractory materials with some water ice, whereas the other is dominated by carbon-based materials. Additionally, two of the five objects have primarily refractory surfaces with minimal volatiles, suggesting a high concentration of primitive, comet-like dust. We suggest that the observed Centaur surfaces reflect their transitional states, as they are shifting from being ice-rich bodies to progressively becoming more dominated by non-volatile materials as they approach the Sun. Such thermal processing may have changed the surface properties of other similar Solar System bodies, like comets, Jupiter trojans and D-type asteroids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of spectra of Centaurs and TNOs.
Fig. 2: Principal component analysis.
Fig. 3: Surface compositional models.
Fig. 4: Comparison of spectra of shallow-type Centaurs and comets.

Similar content being viewed by others

Data availability

The JWST data used in this analysis are publicly available from the STScI MAST Archive (https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html).

References

  1. Gladman, B., Marsden, B. G. & Vanlaerhoven, C. in The Solar System Beyond Neptune (eds Barucci, M. A. et al.) 43–57 (Univ. Arizona Press, 2008).

  2. Fernandez, J. A. On the existence of a comet belt beyond Neptune. Mon. Not. R. Astron. Soc. 192, 481–491 (1980).

    Article  ADS  MATH  Google Scholar 

  3. Levison, H. F. & Duncan, M. J. From the Kuiper belt to Jupiter-family comets: the spatial distribution of ecliptic comets. Icarus 127, 13–32 (1997).

    Article  ADS  MATH  Google Scholar 

  4. Nesvorný, D. et al. Origin and evolution of short-period comets. Astrophys. J. 845, 27 (2017).

    Article  ADS  MATH  Google Scholar 

  5. Pinilla-Alonso, N. et al. A JWST/DiSCo-TNOs portrait of the primordial Solar System through its trans-Neptunian objects. Nat. Astron. https://doi.org/10.1038/s41550-024-02433-2 (in the press).

  6. Closs, M. F. et al. The integral field unit on the James Webb Space Telescope’s near-infrared spectrograph. In Proc. SPIE Conference Series, Space Telescopes and Instrumentation 2008: Optical, Infrared, and Millimeter Vol. 7010 (eds Oschmann, J. et al.) 701011 (SPIE, 2008).

  7. Böker, T. et al. The near-infrared spectrograph (NIRSpec) on the James Webb Space Telescope. III. Integral-field spectroscopy. Astron. Astrophys. 661, A82 (2022).

    Article  MATH  Google Scholar 

  8. De Prá, M. N. et al. Widespread CO2 and CO ices in the trans-Neptunian population revealed by JWST/DiSCo-TNOs. Nat. Astron. https://doi.org/10.1038/s41550-024-02276-x (2024).

  9. Nesvorný, D. et al. OSSOS XX: the meaning of Kuiper belt colors. Astron. J. 160, 46 (2020).

    Article  ADS  MATH  Google Scholar 

  10. Pirani, S., Johansen, A. & Mustill, A. J. How the formation of Neptune shapes the Kuiper belt. Astron. Astrophys. 650, A161 (2021).

    Article  ADS  MATH  Google Scholar 

  11. Marsset, M. et al. Col-OSSOS: evidence for a compositional gradient inherited from the protoplanetary disk? Planet. Sci. J. 4, 160 (2023).

    Article  Google Scholar 

  12. Gil-Hutton, R. Color diversity among Kuiper belt objects: the collisional resurfacing model revisited. Planet. Space Sci. 50, 57–62 (2002).

    Article  ADS  Google Scholar 

  13. Jewitt, D. The active centaurs. Astron. J. 137, 4296–4312 (2009).

    Article  ADS  MATH  Google Scholar 

  14. Guilbert-Lepoutre, A. Survival of amorphous water ice on centaurs. Astron. J. 144, 97 (2012).

    Article  ADS  Google Scholar 

  15. Barkume, K. M., Brown, M. E. & Schaller, E. L. Near-infrared spectra of centaurs and Kuiper belt objects. Astron. J. 135, 55–67 (2008).

    Article  ADS  Google Scholar 

  16. Cruikshank, D. P. et al. The composition of centaur 5145 Pholus. Icarus 135, 389–407 (1998).

    Article  ADS  MATH  Google Scholar 

  17. Raponi, A. et al. Infrared detection of aliphatic organics on a cometary nucleus. Nat. Astron. 4, 500–505 (2020).

    Article  ADS  MATH  Google Scholar 

  18. Bernardinelli, P. H. et al. C/2014 UN271 (Bernardinelli–Bernstein): the nearly spherical cow of comets. Astrophys. J. Lett. 921, L37 (2021).

    Article  ADS  MATH  Google Scholar 

  19. Kelley, M. S. P. et al. A look at outbursts of comet C/2014 UN271 (Bernardinelli–Bernstein) near 20 au. Astrophys. J. Lett. 933, L44 (2022).

    Article  ADS  MATH  Google Scholar 

  20. Hui, M.-T., Farnocchia, D. & Micheli, M. C/2010 U3 (Boattini): a bizarre comet active at record heliocentric distance. Astron. J. 157, 162 (2019).

    Article  ADS  Google Scholar 

  21. Hui, M.-T., Jewitt, D. & Clark, D. Pre-discovery observations and orbit of comet C/2017 K2 (PANSTARRS). Astron. J. 155, 25 (2018).

    Article  ADS  MATH  Google Scholar 

  22. Bolin, B. et al. Multi-cycle monitoring of the volatile evolution of a returning planetesimal as it approaches perihelion. Space Telescope Science Institute https://www.stsci.edu/jwst/science-execution/program-information?id=4198 (2023).

  23. Davidsson, B. J. R. Thermophysical evolution of planetesimals in the primordial disc. Mon. Not. R. Astron. Soc. 505, 5654–5685 (2021).

    Article  ADS  MATH  Google Scholar 

  24. Gkotsinas, A., Guilbert-Lepoutre, A., Raymond, S. N. & Nesvorny, D. Thermal processing of Jupiter-family comets during their chaotic orbital evolution. Astrophys. J. 928, 43 (2022).

    Article  ADS  Google Scholar 

  25. Lisse, C. M. et al. A predicted dearth of majority hypervolatile ices in Oort cloud comets. Planet. Sci. J. 3, 112 (2022).

    Article  Google Scholar 

  26. Parhi, A. & Prialnik, D. Sublimation of ices during the early evolution of Kuiper belt objects. Mon. Not. R. Astron. Soc. 522, 2081–2088 (2023).

    Article  ADS  MATH  Google Scholar 

  27. Wooden, D. H., Ishii, H. A. & Zolensky, M. E. Cometary dust: the diversity of primitive refractory grains. Philos. Trans. R. Soc. Lond. Ser. A 375, 20160260 (2017).

    ADS  Google Scholar 

  28. Martin, A. C. & Emery, J. P. MIR spectra and analysis of Jovian trojan asteroids. Planet. Sci. J. 4, 153 (2023).

    Article  MATH  Google Scholar 

  29. Filacchione, G. et al. Comet 67P/CG nucleus composition and comparison to other comets. Space Sci. Rev. 215, 19 (2019).

    Article  ADS  Google Scholar 

  30. Kelley, M. S. P. et al. Spectroscopic identification of water emission from a main-belt comet. Nature 619, 720–723 (2023).

    Article  ADS  MATH  Google Scholar 

  31. Tegler, S. C. & Romanishin, W. Two distinct populations of Kuiper-belt objects. Nature 392, 49–51 (1998).

    Article  ADS  MATH  Google Scholar 

  32. Peixinho, N. et al. Reopening the TNOs color controversy: centaurs bimodality and TNOs unimodality. Astron. Astrophys. 410, L29–L32 (2003).

    Article  ADS  MATH  Google Scholar 

  33. Jewitt, D. The trojan color conundrum. Astron. J. 155, 56 (2018).

    Article  ADS  MATH  Google Scholar 

  34. Shkuratov, Y., Starukhina, L., Hoffmann, H. & Arnold, G. A model of spectral albedo of particulate surfaces: implications for optical properties of the Moon. Icarus 137, 235–246 (1999).

    Article  ADS  Google Scholar 

  35. Mastrapa, R. M. et al. Optical constants of amorphous and crystalline H2O-ice in the near infrared from 1.1 to 2.6 μm. Icarus 197, 307–320 (2008).

    Article  ADS  MATH  Google Scholar 

  36. Mastrapa, R. M., Sandford, S. A., Roush, T. L., Cruikshank, D. P. & Dalle Ore, C. M. Optical constants of amorphous and crystalline H2O-ice: 2.5–22 μm (4000–455 cm−1) optical constants of H2O-ice. Astrophys. J. 701, 1347–1356 (2009).

    Article  ADS  Google Scholar 

  37. Peixinho, N., Delsanti, A. & Doressoundiram, A. Reanalyzing the visible colors of centaurs and KBOs: what is there and what we might be missing. Astron. Astrophys. 577, A35 (2015).

    Article  ADS  Google Scholar 

  38. Bauer, J. M. et al. Centaurs and scattered disk objects in the thermal infrared: analysis of WISE/NEOWISE observations. Astrophys. J. 773, 22 (2013).

    Article  ADS  MATH  Google Scholar 

  39. Duffard, R. et al. ‘TNOs are cool’: a survey of the trans-Neptunian region. XI. A Herschel-PACS view of 16 centaurs. Astron. Astrophys. 564, A92 (2014).

    Article  MATH  Google Scholar 

  40. Baratta, G. & Palumbo, M. Infrared optical constants of CO and CO2 thin icy films. J. Opt. Soc. Am. A 15, 3076–3085 (1998).

    Article  ADS  MATH  Google Scholar 

  41. Khare, B. N. et al. Optical constants of organic tholins produced in a simulated Titanian atmosphere: from soft X-ray to microwave frequencies. Icarus 60, 127–137 (1984).

    Article  ADS  Google Scholar 

  42. Dorschner, J., Begemann, B., Henning, T., Jaeger, C. & Mutschke, H. Steps toward interstellar silicate mineralogy. II. Study of Mg-Fe-silicate glasses of variable composition. Astron. Astrophys. 300, 503 (1995).

    ADS  Google Scholar 

Download references

Acknowledgements

The DiSCo-TNOs team would like to thank W. Eck and A. Henry of the Space Telescope Science Institute for their help in preparing the observations for execution. This work is based on observations made with the NASA/ESA/CSA JWST under the GO-1 programme 2418. Support for this programme was provided by NASA through a grant from the Space Telescope Science Institute. The data were obtained from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for JWST. J.L. acknowledges support from the Agencia Estatal de Investigación del Ministerio de Ciencia e Innovación (Grant ‘Hydrated Minerals and Organic Compounds in Primitive Asteroids’, Ref. PID2020-120464GB-100). N.P. acknowledges funding from Fundação para a Ciência e a Tecnologia (Research Grant Nos. UIDB/04434/2020 and UIDP/04434/2020). R.B. and E.H. acknowledge support from CNES-France (JWST mission). A.G.-L. received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 802699). J.A.S. acknowledges Lowell Observatory and Northern Arizona University, both in Flagstaff, AZ, for support during his sabbatical tenure there.

Author information

Authors and Affiliations

Authors

Contributions

J.L., N.P.-A., V.L., M.N.D.P., B.J.H. and J.A.S. designed the observational programme. N.P.-A., M.N.D.P., R.B., J.L., Y.J.P., D.P.C., B.J.H., T.M., J.A.S. and J.P.E. conceived the science goals of DiSCo. J.L. and N.P.-A. conceived in particular the goals related to Centaurs. B.J.H., N.P.-A., I.W., A.C.d.S.F., M.N.D.P. and C.A.S. reduced and validated the data. J.L., N.P.-A., E.H., R.B., M.N.D.P., A.C.d.S.F., J.A.S. and T.M. performed the band identification and spectral characterization. R.B., M.N.D.P. and N.P.-A. performed the clustering and the study of the band areas. J.L., R.B., N.P.-A. and A.G.-L. elaborated on and proposed the scenario for interpreting the results. J.L. and N.P.-A. drafted the paper. All authors were involved in the discussion of the results and the finalization of the paper.

Corresponding author

Correspondence to Javier Licandro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Theodore Kareta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Reflectance spectra of the five Centaurs presented in this paper.

Reflectance spectra of the five Centaurs presented in this paper shifted in the y-axis by 1.0. In red is represented the Centaur with a Cliff-type spectrum defined in5, in blue those with a Bowl-type spectrum, and in green the two ones that belong to a spectral class that is unique between the Centaurs. Error bars (computed as the standard deviation of the four dithered exposures of each target) are shown in light-grey.

Extended Data Table 1 Description of the observations
Extended Data Table 2 Optical constants used for the models in this work
Extended Data Table 3 Properties of the materials used in the models

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Licandro, J., Pinilla-Alonso, N., Holler, B.J. et al. Thermal evolution of trans-Neptunian objects through observations of Centaurs with JWST. Nat Astron 9, 245–251 (2025). https://doi.org/10.1038/s41550-024-02417-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-024-02417-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing