Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Combined analysis of the 12.8 and 15 μm JWST/MIRI eclipse observations of TRAPPIST-1 b

Abstract

The first James Webb Space Telescope/MIRI photometric observations of TRAPPIST-1 b allowed for the detection of the thermal emission of the planet at 15 μm, suggesting that the planet could be a bare rock with a zero albedo and no redistribution of heat. These observations at 15 μm were acquired as part of Guaranteed Time Observer time that included a twin programme at 12.8 μm to obtain measurements inside and outside the CO2 absorption band. Here we present five new occultations of TRAPPIST-1 b observed with MIRI in an additional photometric band at 12.8 μm. We perform a global fit of the ten eclipses and derive a planet-to-star flux ratio and 1σ error of 452 ± 86 ppm and 775 ± 90 ppm at 12.8 μm and 15 μm, respectively. We find that two main scenarios emerge. An airless planet model with an unweathered (fresh) ultramafic surface, that could be indicative of relatively recent geological processes, fits the data well. Alternatively, a thick, pure-CO2 atmosphere with photochemical hazes that create a temperature inversion and result in the CO2 feature being seen in emission also works, although with some caveats. Our results highlight the challenges in accurately determining a planet’s atmospheric or surface nature solely from broadband filter measurements of its emission, but also point towards two very interesting scenarios that will be further investigated with the forthcoming phase curve of TRAPPIST-1 b.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phase-folded JWST/MIRI observations of TRAPPIST-1 b.
Fig. 2: TRAPPIST-1 b’s emission spectrum, compared with bare-surface models.
Fig. 3: Best-fit atmosphere model is a hazy CO2-rich atmosphere.

Similar content being viewed by others

Data availability

The data used in this Article are associated with JWST GTO programmes 1177 (PI: T.G.) and GTO 1279 (PI: P.-O.L.) and are publicly available from the Mikulski Archive for Space Telescopes (https://mast.stsci.edu) on this link. Additional source data, tables and figures from this work are archived on Zenodo at https://doi.org/10.5281/zenodo.13385020 (ref. 62). Source data are provided with this paper.

Code availability

This work was performed using the following codes to process, extract, reduce and analyse the data: STScI’s JWST calibration pipeline38, Eureka!21, trafit40, starry63, exoplanet64, PyMC365, emcee66, dynesty46, NumPy67, Astropy68 and matplotlib69.

References

  1. Kirkpatrick, J. D., Beichman, C. A. & Skrutskie, M. F. The coolest isolated M dwarf and other 2MASS discoveries. Astrophys. J. 476, 311–318 (1997).

    Article  ADS  MATH  Google Scholar 

  2. Anglada-Escudé, G. et al. A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536, 437–440 (2016).

    Article  ADS  MATH  Google Scholar 

  3. Zechmeister, M. et al. The CARMENES search for exoplanets around M dwarfs: two temperate Earth-mass planet candidates around Teegarden’s Star. Astron. Astrophys. 627, A49 (2019).

    Article  MATH  Google Scholar 

  4. Gillon, M. et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542, 456–460 (2017).

    Article  ADS  MATH  Google Scholar 

  5. Ment, K. et al. A second terrestrial planet orbiting the nearby M dwarf LHS 1140. Astron. J. 157, 32 (2019).

    Article  ADS  Google Scholar 

  6. Dreizler, S. et al. RedDots: a temperate 1.5 Earth-mass planet candidate in a compact multiterrestrial planet system around GJ 1061. Mon. Not. R. Astron. Soc. 493, 536–550 (2020).

    Article  ADS  MATH  Google Scholar 

  7. Peterson, M. S. et al. A temperate Earth-sized planet with tidal heating transiting an M6 star. Nature 617, 701–705 (2023).

    Article  ADS  Google Scholar 

  8. Vanderspek, R. et al. TESS discovery of an ultra-short-period planet around the nearby M dwarf LHS 3844. Astrophys. J. 871, L24 (2019).

    Article  ADS  MATH  Google Scholar 

  9. Agol, E. et al. Refining the transit-timing and photometric analysis of TRAPPIST-1: masses, radii, densities, dynamics, and ephemerides. Planet. Sci. J. 2, 1 (2021).

    Article  MATH  Google Scholar 

  10. Gillon, M. et al. The TRAPPIST-1 JWST Community Initiative. Bull. AAS https://doi.org/10.3847/25c2cfeb.afbf0205 (2020).

  11. Morley, C. V., Kreidberg, L., Rustamkulov, Z., Robinson, T. & Fortney, J. J. Observing the atmospheres of known temperate Earth-sized planets with JWST. Astrophys. J. 850, 121 (2017).

    Article  ADS  Google Scholar 

  12. Greene, T. P. et al. Thermal emission from the Earth-sized exoplanet TRAPPIST-1 b using JWST. Nature 618, 39–42 (2023).

    Article  ADS  MATH  Google Scholar 

  13. Zieba, S. et al. No thick carbon dioxide atmosphere on the rocky exoplanet TRAPPIST-1 c. Nature 620, 746–749 (2023).

  14. Mansfield, M. et al. Identifying atmospheres on rocky exoplanets through inferred high albedo. Astrophys. J. 886, 141 (2019).

    Article  ADS  MATH  Google Scholar 

  15. Koll, D. D. B. et al. Identifying candidate atmospheres on rocky M dwarf planets via eclipse photometry. Astrophys. J. 886, 140 (2019).

    Article  ADS  MATH  Google Scholar 

  16. Crossfield, I. J. M. et al. GJ 1252b: a hot terrestrial super-Earth with no atmosphere. Astrophys. J. Lett. 937, L17 (2022).

    Article  ADS  MATH  Google Scholar 

  17. Rackham, B. V., Apai, D. & Giampapa, M. S. The transit light source effect: false spectral features and incorrect densities for M-dwarf transiting planets. Astrophys. J. 853, 122 (2018).

    Article  ADS  MATH  Google Scholar 

  18. Howard, W. S. et al. Characterizing the near-infrared spectra of flares from TRAPPIST-1 during JWST transit spectroscopy. Astrophys. J. 959, 64 (2023).

    Article  ADS  MATH  Google Scholar 

  19. Lim, O. et al. Atmospheric reconnaissance of TRAPPIST-1 b with JWST/NIRISS: evidence for strong stellar contamination in the transmission spectra. Astrophys. J. Lett. 955, L22 (2023).

    Article  ADS  MATH  Google Scholar 

  20. Luger, R., Lustig-Yaeger, J. & Agol, E. Planet–planet occultations in TRAPPIST-1 and other exoplanet systems. Astrophys. J. 851, 94 (2017).

    Article  ADS  MATH  Google Scholar 

  21. Bell, T. J. et al. Eureka!: an end-to-end pipeline for JWST time-series observations. J. Open Source Softw. 7, 4503 (2022).

    Article  ADS  MATH  Google Scholar 

  22. Lyu, X. et al. Super-Earth LHS3844b is tidally locked. Astrophys. J. 964, 152 (2024).

  23. Madden, J. & Kaltenegger, L. A catalog of spectra, albedos, and colors of Solar System bodies for exoplanet comparison. Astrobiology 18, 1559–1573 (2018).

    Article  ADS  MATH  Google Scholar 

  24. Takahashi, J., Itoh, Y. & Takahashi, S. Mid-infrared spectroscopy of 11 main-belt asteroids. Publ. Astron. Soc. Jpn 63, 499–511 (2011).

    Article  ADS  MATH  Google Scholar 

  25. Ih, J., Kempton, E. M.-R., Whittaker, E. A. & Lessard, M. Constraining the thickness of TRAPPIST-1 b’s atmosphere from its JWST secondary eclipse observation at 15 μm. Astrophys. J. Lett. 952, L4 (2023).

    Article  ADS  Google Scholar 

  26. Hu, R., Ehlmann, B. L. & Seager, S. Theoretical spectra of terrestrial exoplanet surfaces. Astrophys. J. 752, 7 (2012).

    Article  ADS  MATH  Google Scholar 

  27. Turbet, M. et al. Modeling climate diversity, tidal dynamics and the fate of volatiles on TRAPPIST-1 planets. Astron. Astrophys. 612, A86 (2018).

    Article  MATH  Google Scholar 

  28. Kislyakova, K. G. et al. Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating. Nat. Astron. 1, 878–885 (2017).

    Article  ADS  MATH  Google Scholar 

  29. Robinson, T. D. & Catling, D. C. Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nat. Geosci. 7, 12–15 (2014).

    Article  ADS  Google Scholar 

  30. Bourrier, V. et al. Temporal evolution of the high-energy irradiation and water content of TRAPPIST-1 exoplanets. Astron. J. 154, 121 (2017).

    Article  ADS  MATH  Google Scholar 

  31. Peacock, S., Barman, T., Shkolnik, E. L., Hauschildt, P. H. & Baron, E. Predicting the extreme ultraviolet radiation environment of exoplanets around low-mass stars: the TRAPPIST-1 system. Astrophys. J. 871, 235 (2019).

    Article  ADS  MATH  Google Scholar 

  32. Wilson, D. J. et al. The Mega-MUSCLES spectral energy distribution of TRAPPIST-1. Astrophys. J. 911, 18 (2021).

    Article  ADS  MATH  Google Scholar 

  33. Thompson, M. A., Krissansen-Totton, J., Wogan, N., Telus, M. & Fortney, J. J. The case and context for atmospheric methane as an exoplanet biosignature. Proc. Natl Acad. Sci. USA 119, e2117933119 (2022).

    Article  Google Scholar 

  34. Wogan, N., Krissansen-Totton, J. & Catling, D. C. Abundant atmospheric methane from volcanism on terrestrial planets is unlikely and strengthens the case for methane as a biosignature. Planet. Sci. J. 1, 58 (2020).

    Article  Google Scholar 

  35. He, C. et al. Sulfur-driven haze formation in warm CO2-rich exoplanet atmospheres. Nat. Astron. 4, 986–993 (2020).

    Article  ADS  MATH  Google Scholar 

  36. Redfield, S. et al. Report of the Working Group on Strategic Exoplanet Initiatives with HST and JWST. Preprint at http://arxiv.org/abs/2404.02932 (2024).

  37. Stetson, P. B. DAOPHOT: a computer program for crowded-field stellar photometry. Publ. Astron. Soc. Pac. 99, 191–222 (1987).

    Article  ADS  MATH  Google Scholar 

  38. Bushouse, H. et al. JWST calibration pipeline. Zenodo https://doi.org/10.5281/zenodo.7577320 (2023).

  39. CRDS: Calibration Reference Data System for HST and JWST. GitHub https://github.com/spacetelescope/crds (2022).

  40. Gillon, M. et al. Improved precision on the radius of the nearby super-Earth 55 Cnc e. Astron. Astrophys. 539, A28 (2012).

    Article  MATH  Google Scholar 

  41. Gillon, M. et al. Search for a habitable terrestrial planet transiting the nearby red dwarf GJ 1214. Astron. Astrophys. 563, A21 (2014).

    Article  MATH  Google Scholar 

  42. Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. 580, L171–L175 (2002).

    Article  ADS  MATH  Google Scholar 

  43. Ducrot, E. et al. TRAPPIST-1: global results of the Spitzer Exploration Science Program Red Worlds. Astron. Astrophys. 640, A112 (2020).

    Article  MATH  Google Scholar 

  44. Foreman-Mackey, D., Agol, E., Ambikasaran, S. & Angus, R. Fast and scalable Gaussian process modeling with applications to astronomical time series. Astron. J. 154, 220 (2017).

    Article  ADS  Google Scholar 

  45. Skilling, J. Nested sampling for general Bayesian computation. Bayesian Anal. 1, 833–859 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  46. Speagle, J. S. dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

    Article  ADS  MATH  Google Scholar 

  47. Iyer, A. R., Line, M. R., Muirhead, P. S., Fortney, J. J. & Gharib-Nezhad, E. The SPHINX M-dwarf spectral grid. I. Benchmarking new model atmospheres to derive fundamental M-dwarf properties. Astrophys. J. 944, 41 (2023).

    Article  ADS  MATH  Google Scholar 

  48. Malik, M. et al. Analyzing atmospheric temperature profiles and spectra of M dwarf rocky planets. Astrophys. J. 886, 142 (2019).

    Article  ADS  MATH  Google Scholar 

  49. Whittaker, E. A. et al. The detectability of rocky planet surface and atmosphere composition with JWST: the case of LHS 3844b. Astron. J. 164, 258 (2022).

    Article  ADS  MATH  Google Scholar 

  50. Lim, O. et al. JWST reconnaissance transmission spectroscopy of the Earth-sized exoplanet TRAPPIST-1 b. Bull. AAS 55, 2023n2i125p06 (2023).

    Google Scholar 

  51. Domingue, D. L. et al. Mercury’s weather-beaten surface: understanding Mercury in the context of lunar and asteroidal space weathering studies. Space Sci. Rev. 181, 121–214 (2014).

    Article  ADS  MATH  Google Scholar 

  52. Jones, A., Noll, S., Kausch, W., Szyszka, C. & Kimeswenger, S. An advanced scattered moonlight model for Cerro Paranal. Astron. Astrophys. 560, A91 (2013).

    Article  ADS  Google Scholar 

  53. He, C. et al. Laboratory simulations of haze formation in the atmospheres of super-Earths and mini-Neptunes: particle color and size distribution. Astrophys. J. Lett. 856, L3 (2018).

    Article  ADS  MATH  Google Scholar 

  54. Min, M., Ormel, C. W., Chubb, K., Helling, C. & Kawashima, Y. The ARCiS framework for exoplanet atmospheres: modelling philosophy and retrieval. Astron. Astrophys. 642, A28 (2020).

    Article  ADS  Google Scholar 

  55. Chubb, K. L. & Min, M. Exoplanet atmosphere retrievals in 3D using phase curve data with ARCiS: application to WASP-43b. Astron. Astrophys. 665, A2 (2022).

    Article  ADS  MATH  Google Scholar 

  56. Tremblin, P. et al. Fingering convection and cloudless models for cool brown dwarf atmospheres. Astrophys. J. 804, L17 (2015).

    Article  ADS  MATH  Google Scholar 

  57. Drummond, B. et al. The effects of consistent chemical kinetics calculations on the pressure–temperature profiles and emission spectra of hot Jupiters. Astron. Astrophys. 594, A69 (2016).

    Article  MATH  Google Scholar 

  58. Kawashima, Y. & Ikoma, M. Theoretical transmission spectra of exoplanet atmospheres with hydrocarbon haze: effect of creation, growth, and settling of haze particles. I. Model description and first results. Astrophys. J. 853, 7 (2018).

    Article  ADS  MATH  Google Scholar 

  59. Luger, R. & Barnes, R. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 15, 119–143 (2015).

    Article  ADS  MATH  Google Scholar 

  60. Hu, R., Peterson, L. & Wolf, E. T. O2- and CO-rich atmospheres for potentially habitable environments on TRAPPIST-1 planets. Astrophys. J. 888, 122 (2020).

    Article  ADS  Google Scholar 

  61. Arney, G. N. et al. Pale orange dots: the impact of organic haze on the habitability and detectability of Earthlike exoplanets. Astrophys. J. 836, 49 (2017).

    Article  ADS  Google Scholar 

  62. Ducrot, E. Products of “Combined analysis of the 12.8 and 15 μm JWST/MIRI eclipse observations of TRAPPIST-1 b” [Data set]. Zenodo https://doi.org/10.5281/zenodo.13385020 (2024).

  63. Luger, R. et al. starry: analytic occultation light curves. Astron. J. 157, 64 (2019).

    Article  ADS  MATH  Google Scholar 

  64. Foreman-Mackey, D. et al. exoplanet: gradient-based probabilistic inference for exoplanet data & other astronomical time series. J. Open Source Softw. 6, 3285 (2021).

    Article  ADS  MATH  Google Scholar 

  65. Salvatier, J., Wiecki, T. V. & Fonnesbeck, C. Probabilistic programming in Python using PyMC3. PeerJ Comput. Sci. 2, e55 (2016).

    Article  MATH  Google Scholar 

  66. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. PASP 125, 306 (2013).

    Article  ADS  MATH  Google Scholar 

  67. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article  ADS  MATH  Google Scholar 

  68. Robitaille, T. P. et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Article  MATH  Google Scholar 

  69. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng 9, 90–95 (2007).

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We thank M. Turbet and F. Selsis for discussion regarding the modelling of a putative atmosphere of TRAPPIST-1 b and its likelihood. We thank B. Charnay for discussion regarding photochemical haze formation processes and comparison with Titan. We thank J. Ih for sharing their bare-surface models published in ref. 25 and for useful discussion regarding the calculation of the Bond albedo. We thank O. Lim for sharing their transmission spectra of TRAPPIST-1 b obtained from the reduction and analysis of JWST/NIRISS data and published in their paper ref. 19. We thank E. Agol for his help on planetary flux estimation equations. Finally, we thank A. Iyer for providing the SPHINX stellar spectrum model extrapolated on TRAPPIST-1’s parameters. This work is based on observations made with the NASA/ESA/CSA JWST. The data were obtained from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for JWST. These observations are associated with programme 1279. MIRI draws on the scientific and technical expertise of the following organizations: NASA Ames Research Center, USA; Airbus Defence and Space, UK; CEA-Irfu, Saclay, France; Centre Spatial de Liège, Belgium; Consejo Superior de Investigaciones Científicas, Spain; Carl Zeiss Optronics, Germany; Chalmers University of Technology, Sweden; Danish Space Research Institute, Denmark; Dublin Institute for Advanced Studies, Ireland; European Space Agency, The Netherlands; ETCA, Belgium; ETH Zurich, Switzerland; Goddard Space Flight Center, USA; Institut d’Astrophysique Spatiale, France; Instituto Nacional de Técnica Aeroespacial, Spain; Institute for Astronomy, Edinburgh, UK; Jet Propulsion Laboratory, USA; Laboratoire d’Astrophysique de Marseille (LAM), France; Leiden University, The Netherlands; NOVA Opt-IR group at Dwingeloo, The Netherlands; Northrop Grumman, USA; Max-Planck-Institut für Astronomie (MPIA), Heidelberg, Germany; Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique (LESIA), France; Paul Scherrer Institut, Switzerland; Raytheon Vision Systems, USA; RUAG Aerospace, Switzerland; Rutherford Appleton Laboratory (RAL Space), UK; Space Telescope Science Institute, USA; Toegepast Natuurwetenschappelijk Onderzoek (TNO-TPD), The Netherlands; UK Astronomy Technology Centre, UK; University College London, UK; University of Amsterdam, The Netherlands; University of Arizona, USA; University of Bern, Switzerland; University of Cardiff, UK; University of Cologne, Germany; University of Ghent, Belgium; University of Groningen, The Netherlands; University of Leicester, UK; University of Leuven, Belgium; University of Stockholm, Sweden. The following national and international funding agencies funded and supported the MIRI development: NASA; European Space Agency (ESA); Belgian Science Policy Office (BELSPO); Centre Nationale d’Etudes Spatiales (CNES); Danish National Space Centre; Deutsches Zentrum für Luft- und Raumfahrt (DLR); Enterprise Ireland; Ministerio De Economalia y Competividad; Netherlands Research School for Astronomy (NOVA); Netherlands Organisation for Scientific Research (NWO); Science and Technology Facilities Council; Swiss Space Office; Swedish National Space Agency; UK Space Agency. E.D. acknowledges support from the innovation and research Horizon 2020 programme in the context of the Marie Sklodowska-Curie subvention 945298 as well as from the Paris Observatory–PSL fellowship. M. Gillon is FRS-FNRS Research Director. His contribution to this work was done in the framework of the PORTAL project funded by the Federal Public Planning Service Science Policy (BELSPO) within its BRAIN-be: Belgian Research Action through the Interdisciplinary Networks programme. P.-O.L., C.C., A.D., R.G. and A.C. acknowledge funding support from CNES. T.G. and T.J.B. acknowledge support from NASA in WBS 411672.07.04.01.02. O.A., I.A., B.V. and P.R. thank the ESA and BELSPO for their support in the framework of the PRODEX Programme. D.B. is supported by Spanish MCIN/AEI/10.13039/501100011033 grants PID2019-107061GB-C61 and MDM-2017-0737. L.D. acknowledges funding from the KU Leuven Interdisciplinary Grant (IDN/19/028), the European Union H2020-MSCA-ITN-2019 under grant 860470 (CHAMELEON) and the FWO research grant G086217N. J.P. acknowledges financial support from the UK Science and Technology Facilities Council and the UK Space Agency. G. Ostlin acknowledges support from the Swedish National Space Board and the Knut and Alice Wallenberg Foundation. P.T. acknowledges support by the European Research Council under grant agreement ATMO 757858. E.D. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie actions grant agreement 945298-ParisRegionFP as well as from the Paris Observatory–PSL fellowship. L.C. acknowledges support by grant PIB2021-127718NB-100 from the Spanish Ministry of Science and Innovation/State Agency of Research MCIN/AEI/10.13039/501100011033. E.F.v.D. acknowledges support from A-ERC grant 101019751 MOLDISK. T.P.R. acknowledges support from the ERC 743029 EASY. G. Olofsson acknowledges support from SNSA. P.P. thanks the Swiss National Science Foundation (SNSF) for financial support under grant number 200020_200399. O.A. is a senior research associate of the Fonds de la Recherche Scientifique—FNRS.

Author information

Authors and Affiliations

Authors

Contributions

All authors played an important role in one or more of the following: development of the original proposal, management of the project, definition of the target list and observation plan, analysis of the data, theoretical modelling and preparation of this Article. Some specific contributions are listed as follows. P.-O.L. is PI of the JWST MIRI GTO European consortium programme dedicated to JWST observations of exoplanet atmospheres; R.W. is co-lead of the programme. E.D. provided overall programme leadership and management of the TRAPPIST-1 b working group. P.-O.L., T.G., J.B. and T.H. designed the observational programme and set the observing parameters. A.D. generated simulated data for prelaunch testing of the data reduction methods. E.D., M. Gillon, T.J.B. and P.-O.L. reduced the data, modelled the light curves and produced the eclipse depth. M.M. and P.T. generated theoretical models to interpret the data. E.D. led the writing of the Article, and M. Gillon, T.J.B., P.-O.L., T.G. and M.M. made notable contributions to the writing. G.W. is the European PI of the JWST MIRI instrument, P.-O.L., T.H., M. Güdel, B.V., L.C., E.F.v.D., T.P.R. and G. Olofsson are European co-PIs and O.A., A.M.G., L.D., R.W., O.K., J.P., G. Ostlin, D.R. and D.B. are European co-Investigators. T.G. is a US co-Investigator of the JWST MIRI instrument. A.G. led the MIRI instrument testing and commissioning effort.

Corresponding author

Correspondence to Elsa Ducrot.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Nicolas Cowan, Nestor Espinoza and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Planetary flux of TRAPPIST-1 b versus wavelength, from measurements and models.

The black dot with its error bar is the measured flux by ref. 12 from the analysis of 5 visits at 15μm, the black dot without an error bar is the expected flux in the F1280W filter for TB = 503 K. The planetary flux computed from this work is shown with red dots at 12.8 μm and 15 μm. Fluxes are derived from our “fiducial" joint analysis and the error bar in flux show their 1σ uncertainties. The error bar in wavelength stands for the width of the filter in each band. The blue curve shows the blackbody curve expected for a dayside temperature of 503 K, the green curve shows the blackbody curve expected for 508 K apparent dayside temperature predicted for zero heat redistribution and no internal heating, and the orange curve shows the blackbody curve expected for Teq = 400 K temperature for isotropic redistribution of stellar heating.

Source data

Extended Data Fig. 2 Comparison of the irradiance at the top of the atmosphere for TRAPPIST-1b, Titan and Venus.

For the spectra of Titan and Venus we used the scaled standard Solar irradiance spectrum at air mass zero (AM0). For TRAPPIST-1b the spectrum from the Mega-MUSCLES project is used32. The UV part of the spectrum is indicated by the violet band.

Source data

Extended Data Table 1 Summary of the observations in JWST program GTO 1279
Extended Data Table 2 Details of the different data reduction methods
Extended Data Table 3 Details of the different data analysis methods
Extended Data Table 4 Derived eclipse depth with various approaches and fitting method

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Table 1.

Source data

Source Data Fig. 1

Raw and binned photometric data to reproduce Fig. 1; model also provided.

Source Data Fig. 2

Observations, blackbody models, bare-surface models and MIRI filter throughput to reproduce Fig. 2.

Source Data Fig. 3

Data, models and best fit to reproduce Fig. 3.

Source Data Extended Data Fig. 1

Observations and models to reproduce Extended Data Fig. 1.

Source Data Extended Data Fig. 2

Models to reproduce Extended Data Fig. 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ducrot, E., Lagage, PO., Min, M. et al. Combined analysis of the 12.8 and 15 μm JWST/MIRI eclipse observations of TRAPPIST-1 b. Nat Astron 9, 358–369 (2025). https://doi.org/10.1038/s41550-024-02428-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-024-02428-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing