Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Partial differentiation of Europa and implications for the origin of materials in the Jupiter system

Abstract

The Galileo mission measured the gravity field around Europa. The results indicated that the moon’s interior is mostly made of rock (~90 wt%). However, the level of differentiation of the deep interior is still poorly understood. We constrain the interior of Europa using Galileo gravity data and a combination of geophysical and geochemical models that connects the origin of the materials accreted in the Jupiter system with the observed gravity field. The results indicate that Europa is partially differentiated and that it probably formed primarily from CV chondrite material. We investigate this finding by coupling thermal evolution models with a detailed treatment of Fe–FeS melting. The metal–silicate differentiation temperatures (>1,600 K) are not attained if Europa formed about 4 Myr after the production of calcium aluminium inclusions. The leaching of potassium during thermal metamorphism further limits differentiation. Our results imply a cold evolution for Europa and suggest that part of water inventory of Europa was supplied by external sources, possibly by comets. These implications can be tested with the gravity data that will be acquired by Europa Clipper and JUICE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Percentage of water mass relative to Europa’s mass derived from our inversion for each composition.
Fig. 2: Histograms of Europa’s core radius obtained by constraining the inversion with two different MoIs.
Fig. 3: Histograms for mantle density and core radius of Ganymede, obtained by constraining the inversion with different MoIs.
Fig. 4: Thermal evolution models of Europa assuming a MC-scale reference composition.

Similar content being viewed by others

Data availability

Input for the modelling and measurements are available in the published literature. The gravity measurements used in this study were retrieved from previous analyses of Galileo radio science data4,10. The mineralogical modelling and associated input are described in the Supplementary Information and in Melwani Daswani et al.17. The interior models produced in this work are available via Zenodo at https://doi.org/10.5281/zenodo.14193565 (ref. 59).

Code availability

Code relevant to the interior modelling and inversion used in this work is available upon request from the corresponding author.

References

  1. Vance, S. D. et al. Investigating Europa’s habitability with the Europa clipper. Space Sci. Rev. 219, 81 (2023).

    Article  ADS  Google Scholar 

  2. Dombard, A. J. & Sessa, A. M. Gravity measurements are key in addressing the habitability of a subsurface ocean in Jupiter’s moon Europa. Icarus 325, 31–38 (2019).

    Article  ADS  Google Scholar 

  3. Běhounková, M. et al. Tidally induced magmatic pulses on the oceanic floor of Jupiter’s moon Europa. Geophys. Res. Lett. 48, e2020GL090077 (2021).

  4. Anderson, J. D. et al. Europa’s differentiated internal structure: inferences from four Galileo encounters. Science 281, 2019–2022 (1998).

    Article  ADS  Google Scholar 

  5. Zimmer, C., Khurana, K. K. & Kivelson, M. G. Subsurface oceans on Europa and Callisto: constraints from Galileo magnetometer observations. Icarus 147, 329–347 (2000).

    Article  ADS  Google Scholar 

  6. Schubert, G., Sohl, F. & Hussmann, H. in Europa (eds Pappalardo, R. T. et al.) 353–367 (Univ. Arizona Press, 2009).

  7. Sohl, F., Spohn, T., Breuer, D. & Nagel, K. Implications from Galileo observations on the interior structure and chemistry of the Galilean satellites. Icarus 157, 104–119 (2002).

    Article  ADS  Google Scholar 

  8. Kuskov, O. L. & Kronrod, V. A. Internal structure of Europa and Callisto. Icarus 177, 550–569 (2005).

    Article  ADS  Google Scholar 

  9. Gao, P. & Stevenson, D. K. Nonhydrostatic effects and the determination of icy satellites’ moment of inertia. Icarus 226, 1185–1191 (2013).

    Article  ADS  Google Scholar 

  10. Gomez Casajus, L. et al. Updated Europa gravity field and interior structure from a reanalysis of Galileo tracking data. Icarus 358, 114187 (2021).

  11. Gomez Casajus, L. et al. Gravity field of Ganymede after the Juno extended mission. Geophys. Res. Lett. 49, e2022GL099475 (2022).

  12. Genova, A. et al. Geodetic evidence that Mercury has a solid inner core. Geophys. Res. Lett. 46, 3625–3633 (2019).

    Article  ADS  Google Scholar 

  13. Ruesch, O. et al. Slurry extrusion on Ceres from a convective mud-bearing mantle. Nat. Geosci. 12, 505–509 (2019).

    Article  ADS  Google Scholar 

  14. Petricca, F. et al. Characterization of icy moon hydrospheres through joint inversion of gravity and magnetic field measurements. Geophys. Res. Lett. 50, e2023GL104016 (2023).

  15. Chen, M.-H. & Shao, Q.-M. Monte Carlo estimation of Bayesian credible and HPD intervals. J. Comput. Graph. Stat. 8, 69–92 (1999).

    Article  MathSciNet  Google Scholar 

  16. Trinh, K. T., Bierson, C. J. & O’Rourke, J. G. Slow evolution of Europa’s interior: metamorphic ocean origin, delayed metallic core formation, and limited seafloor volcanism. Sci. Adv. https://doi.org/10.1126/sciadv.adf3955 (2023).

  17. Melwani Daswani, M., Vance, S. D., Mayne, M. J. & Glein, C. R. A metamorphic origin for Europa’s ocean. Geophys. Res. Lett. 48, e2021GL094143 (2021).

  18. Melwani Daswani, M. & Castillo-Rogez, J. C. Porosity-filling metamorphic brines explain Ceres’s low mantle density. Planet. Sci. J. 3, 21 (2022).

    Article  Google Scholar 

  19. Desch, S. J., Kalyaan, A. & Alexander, C. M. The effect of Jupiter’s formation on the distribution of refractory elements and inclusions in meteorites. Astrophys. J. 238, 11 (2018).

    Article  Google Scholar 

  20. Connolly, J. A. D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).

    Article  ADS  Google Scholar 

  21. Connolly, J. A. D. The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2009GC002540 (2009).

  22. Anderson, J. D., Lau, E. L., Sjogren, W. L., Schubert, G. & Moore, W. B. Gravitational constraints on the internal structure of Ganymede. Nature 384, 541–543 (1996).

    Article  ADS  Google Scholar 

  23. Kivelson, M. G. et al. Discovery of Ganymede’s magnetic field by the Galileo spacecraft. Nature 384, 537–541 (1996).

    Article  ADS  Google Scholar 

  24. Schubert, G., Zhang, K., Kivelson, M. G. & Anderson, J. D. The magnetic field and internal structure of Ganymede. Nature 384, 544–545 (1996).

    Article  ADS  Google Scholar 

  25. Kivelson, M. G., Khurana, K. K. & Volwerk, M. The permanent and inductive magnetic moments of Ganymede. Icarus 157, 507–522 (2002).

    Article  ADS  Google Scholar 

  26. Anderson, J. D., Jacobson, R. A., Lau, E. L., Moore, W. B. & Schubert, G. Io’s gravity field and interior structure. J. Geophys. Res.: Planets 106, 32963–32969 (2001).

    Article  ADS  Google Scholar 

  27. Mousis, O. et al. Early stages of Galilean moon formation in a water-depleted environment. Astrophys. J. Lett. 944, L37 (2023).

    Article  ADS  Google Scholar 

  28. Borlina, C. S., Weiss, B. P., Bryson, J. F. & Armitage, P. J. Lifetime of the outer Solar System nebula from carbonaceous chondrites. J. Geophys. Res.: Planets 127, e2021JE007139 (2022).

    Article  ADS  Google Scholar 

  29. Barr, A. C., Citron, R. I. & Canup, R. M. Origin of a partially differentiated Titan. Icarus 209, 858–862 (2010).

    Article  ADS  Google Scholar 

  30. Palme, H., Lodders, K. & Jones, A. in Planets, Asteroids, Comets and The Solar System 2nd edn (ed. Davis, A. M.) 15–36 (Elsevier, 2014).

  31. Agee, C., Li, J., Shannon, M. & Circone, S. Pressure-temperature phase diagram for the Allende meteorite. J. Geophys. Res.: Solid Earth 100, 17725–17740 (1995).

    Article  Google Scholar 

  32. Hussmann, H. & Spohn, T. Thermal-orbital evolution of Io and Europa. Icarus 171, 391–410 (2004).

    Article  ADS  Google Scholar 

  33. Néri, A., Guyot, F., Reynard, B. & Sotin, C. A carbonaceous chondrite and cometary origin for icy moons of Jupiter and Saturn. Earth Planet. Sci. Lett. 530, 115920 (2020).

    Article  Google Scholar 

  34. Malhotra, R. Tidal origin of the Laplace resonance and the resurfacing of Ganymede. Icarus 94, 399–412 (1991).

    Article  ADS  Google Scholar 

  35. Showman, A. P. & Malhotra, R. Tidal evolution into the Laplace resonance and the resurfacing of Ganymede. Icarus 127, 93–111 (1997).

    Article  ADS  Google Scholar 

  36. Batygin, K. & Morbidelli, A. Formation of giant planet satellites. Astrophys. J. 894, 143 (2020).

    Article  ADS  Google Scholar 

  37. Mazarico, E. et al. The Europa Clipper gravity and radio science investigation. Space Sci. Rev. 219, 30 (2023).

    Article  ADS  Google Scholar 

  38. Kivelson, M. G. et al. The Europa Clipper magnetometer. Space Sci. Rev. 219, 48 (2023).

    Article  ADS  Google Scholar 

  39. Khurana, K. K., Kivelson, M., Hand, K. P. & Russel, C. T. in Europa (eds Pappalardo, R. T. et al.) 571–586 (Univ. Arizona Press, 2009).

  40. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).

    Article  ADS  Google Scholar 

  41. Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci.https://doi.org/10.1214/ss/1177011136 (1992).

  42. Marshall, S. J. The Cryosphere (Princeton Univ. Press, 2011).

  43. Sotin, C. & Tobie, G. Internal structure and dynamics of the large icy satellites. Comptes Rendus Phys. 5, 769–780 (2004).

    Article  ADS  Google Scholar 

  44. Journaux, B. et al. Large ocean worlds with high-pressure ices. Space Sci. Rev. https://doi.org/10.1007/s11214-019-0633-7 (2020).

  45. Castillo-Rogez, J. et al. Iapetus’ geophysics: rotation rate, shape, and equatorial ridge. Icarus 190, 179–202 (2007).

    Article  ADS  Google Scholar 

  46. Castillo-Rogez, J. C. & Lunine, J. I. Evolution of Titan’s rocky core constrained by Cassini observations. Geophys. Res. Lett. https://doi.org/10.1029/2010GL044398 (2010).

  47. Soder, C. & Romer, R. Post-collisional potassic-ultrapotassic magmatism of the Variscan orogen: implications for mantle metasomatism during continental subduction. J. Petrol. 59, 1007–1034 (2018).

  48. Tobie, G., Mocquet, A. & Sotin, C. Tidal dissipation within large icy satellites: applications to Europa and Titan. Icarus 177, 534–549 (2005).

    Article  ADS  Google Scholar 

  49. Castillo-Rogez, J. C., Efroimsky, M. & Lainey, V. The tidal history of Iapetus: spin dynamics in the light of a refined dissipation model. J. Geophys. Res.: Planets https://doi.org/10.1029/2010JE003664 (2011).

  50. Malissa, H., Hermann, F., Kluger, P. & Kiesl, W. Chemical and microprobe investigations of the Allende-meteorite. Microchim. Acta 60, 434–450 (1972).

    Article  ADS  Google Scholar 

  51. Bland, P. A., Cressey, G. & Menzies, O. N. Modal mineralogy of carbonaceous chondrites by X-ray diffraction and Mössbauer spectroscopy. Meteorit. Planet. Sci. 39, 3–16 (2004).

    Article  ADS  Google Scholar 

  52. Howard, K., Benedix, G., Bland, P. & Cressey, G. Modal mineralogy of CV3 chondrites by X-ray diffraction (PSD-XRD). Geochim. Cosmochim. Acta 74, 5084–5097 (2010).

    Article  ADS  Google Scholar 

  53. Brearley, A. J. Origin of graphitic carbon and pentlandite in matrix olivines in the Allende meteorite. Science 285, 1380–1382 (1999).

    Article  ADS  Google Scholar 

  54. Larimer, J. W. & Anders, E. Chemical fractionations in meteorites. II. Abundance patterns and their interpretation. Geochim. Cosmochim. Acta 31, 1239–1270 (1967).

    Article  ADS  Google Scholar 

  55. Bagdassarov, N., Golabek, G., Solferino, G. & Schmidt, M. Constraints on the Fe-S melt connectivity in mantle silicates from electrical impedance measurements. Phys. Earth Planet. Inter. 177, 139–146 (2009).

    Article  ADS  Google Scholar 

  56. Solferino, G. F. D., Thomson, P.-R. & Hier-Majumder, S. Pore network modeling of core forming melts in planetesimals. Front. Earth Sci. https://doi.org/10.3389/feart.2020.00339 (2020).

  57. Néri, A., Guignard, J., Monnereau, M., Toplis, M. & Quitté, G. Metal segregation in planetesimals: constraints from experimentally determined interfacial energies. Earth Planet. Sci. Lett. 518, 40–52 (2019).

    Article  ADS  Google Scholar 

  58. Lodders, K. & Fegley, B. The Planetary Scientist’s Companion (Oxford Univ. Press, 1998).

  59. Petricca, F., Castillo-Rogez, J., Genova, A., Styczinski, M., Cochrane, C. & Vance, S.. Supplementary material for Petricca et al. 2024 ‘Partial differentiation of Europa and implications for the origin of materials in the Jupiter system’. Zenodo https://doi.org/10.5281/zenodo.14193565 (2024).

Download references

Acknowledgements

We thank F. Nimmo (University of California Santa Cruz), C. Glein (Southwest Research Institute), O. Mousis (Aix-Marseille Université), H. Hussmann (DLR), R. Malhotra (University of Arizona) and the Europa Clipper Gravity/Radio Science investigation team for fruitful discussions and suggestions that substantially improved the manuscript. F.P. and A.G. acknowledge funding from the Italian Space Agency (Contract 2021-19-HH.0). M.M.D. was supported by NASA’s Habitable Worlds programme (Solicitation NNH18ZDA001N-HW, Proposal No. 18-HW18_2-0111). This work was partially supported by 22-PSIE22_2-0024 and by NASA’s Europa Clipper mission. Parts of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA (80NM0018D0004). M.J.S. was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, administered by Oak Ridge Associated Universities under a contract with NASA (80HQTR21CA005).

Author information

Authors and Affiliations

Authors

Contributions

F.P., J.C.C.-R. and A.G. conceived the initial study. F.P. designed and performed the interior structure inversion and analysis. J.C.C.-R. contributed the thermal evolution modelling and analysis. M.M.D. provided the mineralogy and geochemical modelling. All authors contributed to the discussion and interpretation of the results. F.P. and J.C.C.-R. wrote the first draft of the paper. All authors contributed to the revisions of the paper.

Corresponding author

Correspondence to Flavio Petricca.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Stefano Bertone and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Sections 1–6 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petricca, F., Castillo-Rogez, J.C., Genova, A. et al. Partial differentiation of Europa and implications for the origin of materials in the Jupiter system. Nat Astron 9, 501–511 (2025). https://doi.org/10.1038/s41550-024-02469-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-024-02469-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing