Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Determination of the birth-mass function of neutron stars from observations

Abstract

The birth-mass function of neutron stars encodes rich information about supernova explosions, double-star evolution and the properties of matter under extreme conditions. To date, it has remained poorly constrained by observations, however. Applying probabilistic corrections to account for mass accreted by recycled pulsars in binary systems to mass measurements of 90 neutron stars, we find that the birth masses of neutron stars can be described by a unimodal distribution that smoothly turns on at 1.1 M and peaks at ~1.27 M, before declining as a steep power law. Such a ‘turn-on’ power-law distribution is strongly favoured against the widely adopted empirical double-Gaussian model at the 3σ level. The power-law shape may be inherited from the initial mass function of massive stars, but the relative dearth of massive neutron stars implies that single stars with initial masses greater than ~18 M do not form neutron stars, in agreement with the absence of massive red supergiant progenitors of supernovae.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Individual mass distributions of 39 recycled pulsars.
Fig. 2: Example mass models and their Bayes factors.
Fig. 3: Reconstructed birth-mass function of neutron stars based on the preferred TOP model.
Fig. 4: Posterior distributions of the TOP model parameters.

Similar content being viewed by others

Data availability

All the neutron-star mass measurements used in this study are listed in Extended Data Tables 1 and 2 with the original references. These mass measurements, accreted-mass corrections for recycled pulsars, posterior samples from Bayesian inference and the data behind Extended Data Tables 1 and 2 and Figs. 14 and Extended Data Figs. 14 are available via Zenodo at https://doi.org/10.5281/zenodo.14375273 (ref. 89). Source data are provided with this paper.

Code availability

The following open-source software packages were used in this paper: GalDynPsr, gwpopulation, BILBY and dynesty. The Python scripts used for data analysis and figure generation are publicly available from GitHub at https://github.com/GW-BNUZ/NSbirthMass.

References

  1. Joss, P. C. & Rappaport, S. A. Observational constraints on the masses of neutron stars. Nature 264, 219–222 (1976).

    Article  ADS  Google Scholar 

  2. Finn, L. S. Observational constraints on the neutron star mass distribution. Phys. Rev. Lett. 73, 1878–1881 (1994).

    Article  ADS  Google Scholar 

  3. Thorsett, S. E. & Chakrabarty, D. Neutron star mass measurements. I. Radio pulsars. Astrophys. J. 512, 288–299 (1999).

    Article  ADS  Google Scholar 

  4. Taylor, J. H., Fowler, L. A. & McCulloch, P. M. Measurements of general relativistic effects in the binary pulsar PSR1913 + 16. Nature 277, 437–440 (1979).

    Article  ADS  Google Scholar 

  5. Taylor, J. H., Wolszczan, A., Damour, T. & Weisberg, J. M. Experimental constraints on strong-field relativistic gravity. Nature 355, 132–136 (1992).

    Article  ADS  Google Scholar 

  6. Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E. & Hessels, J. W. T. A two-solar-mass neutron star measured using Shapiro delay. Nature 467, 1081–1083 (2010).

    Article  ADS  Google Scholar 

  7. Antoniadis, J. et al. A massive pulsar in a compact relativistic binary. Science 340, 448 (2013).

    Article  ADS  Google Scholar 

  8. Valentim, R., Rangel, E. & Horvath, J. E. On the mass distribution of neutron stars. Mon. Not. R. Astron. Soc. 414, 1427–1431 (2011).

    Article  ADS  Google Scholar 

  9. Özel, F., Psaltis, D., Narayan, R. & Santos Villarreal, A. On the mass distribution and birth masses of neutron stars. Astrophys. J. 757, 55 (2012).

    Article  ADS  Google Scholar 

  10. Kiziltan, B., Kottas, A., De Yoreo, M. & Thorsett, S. E. The neutron star mass distribution. Astrophys. J. 778, 66 (2013).

    Article  ADS  Google Scholar 

  11. Antoniadis, J. et al. The millisecond pulsar mass distribution: evidence for bimodality and constraints on the maximum neutron star mass. Preprint at arxiv.org/abs/1605.01665 (2016).

  12. Alsing, J., Silva, H. O. & Berti, E. Evidence for a maximum mass cut-off in the neutron star mass distribution and constraints on the equation of state. Mon. Not. R. Astron. Soc. 478, 1377–1391 (2018).

    Article  ADS  Google Scholar 

  13. Horvath, J. E. & Valentim, R. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 1317 (Springer, 2017).

  14. Timmes, F. X., Woosley, S. E. & Weaver, T. A. The neutron star and black hole initial mass function. Astrophys. J. 457, 834 (1996).

    Article  ADS  Google Scholar 

  15. Schwab, J., Podsiadlowski, P. & Rappaport, S. Further evidence for the bimodal distribution of neutron-star masses. Astrophys. J. 719, 722–727 (2010).

    Article  ADS  Google Scholar 

  16. Sukhbold, T. & Woosley, S. E. The compactness of presupernova stellar cores. Astrophys. J. 783, 10 (2014).

    Article  ADS  Google Scholar 

  17. Müller, B., Heger, A., Liptai, D. & Cameron, J. B. A simple approach to the supernova progenitor-explosion connection. Mon. Not. R. Astron. Soc. 460, 742–764 (2016).

    Article  ADS  Google Scholar 

  18. Sukhbold, T., Woosley, S. E. & Heger, A. A high-resolution study of presupernova core structure. Astrophys. J. 860, 93 (2018).

    Article  ADS  Google Scholar 

  19. Alpar, M. A., Cheng, A. F., Ruderman, M. A. & Shaham, J. A new class of radio pulsars. Nature 300, 728–730 (1982).

    Article  ADS  Google Scholar 

  20. Radhakrishnan, V. & Srinivasan, G. On the origin of the recently discovered ultra-rapid pulsar. Curr. Sci. 51, 1096–1099 (1982).

    ADS  Google Scholar 

  21. Bhattacharya, D. & van den Heuvel, E. P. J. Formation and evolution of binary and millisecond radio pulsars. Phys. Rep. 203, 1–124 (1991).

    Article  ADS  Google Scholar 

  22. Tauris, T. M., Langer, N. & Kramer, M. Formation of millisecond pulsars with CO white dwarf companions. II. Accretion, spin-up, true ages and comparison to MSPs with He white dwarf companions. Mon. Not. R. Astron. Soc. 425, 1601–1627 (2012).

    Article  ADS  Google Scholar 

  23. Li, Z., Chen, X., Chen, H.-L. & Han, Z. The maximum accreted mass of recycled pulsars. Astrophys. J. 922, 158 (2021).

    Article  ADS  Google Scholar 

  24. Woosley, S. E., Sukhbold, T. & Janka, H. T. The birth function for black holes and neutron stars in close binaries. Astrophys. J. 896, 56 (2020).

    Article  ADS  Google Scholar 

  25. Lipunov, V. M. & Postnov, K. A. Accretion spin-up of low-magnetic neutron stars. Astrophys. Space Sci. 106, 103–115 (1984).

    Article  ADS  Google Scholar 

  26. Talbot, C. & Thrane, E. Measuring the binary black hole mass spectrum with an astrophysically motivated parameterization. Astrophys. J. 856, 173 (2018).

    Article  ADS  Google Scholar 

  27. Woosley, S. E. & Heger, A. The remarkable deaths of 9–11 solar mass stars. Astrophys. J. 810, 34 (2015).

    Article  ADS  Google Scholar 

  28. Hüdepohl, L., Müller, B., Janka, H. T., Marek, A. & Raffelt, G. G. Neutrino signal of electron-capture supernovae from core collapse to cooling. Phys. Rev. Lett. 104, 251101 (2010).

    Article  ADS  Google Scholar 

  29. Kresse, D., Ertl, T. & Janka, H.-T. Stellar collapse diversity and the diffuse supernova neutrino background. Astrophys. J. 909, 169 (2021).

    Article  ADS  Google Scholar 

  30. Ertl, T., Woosley, S. E., Sukhbold, T. & Janka, H. T. The explosion of helium stars evolved with mass loss. Astrophys. J. 890, 51 (2020).

    Article  ADS  Google Scholar 

  31. Evans, M. et al. A horizon study for cosmic explorer: science, observatories, and community. Preprint at arxiv.org/abs/2109.09882 (2021).

  32. Srivastava, V. et al. Science-driven tunable design of cosmic explorer detectors. Astrophys. J. 931, 22 (2022).

    Article  ADS  Google Scholar 

  33. Martynov, D. et al. Exploring the sensitivity of gravitational wave detectors to neutron star physics. Phys. Rev. D 99, 102004 (2019).

    Article  ADS  Google Scholar 

  34. Takami, K., Rezzolla, L. & Baiotti, L. Spectral properties of the post-merger gravitational-wave signal from binary neutron stars. Phys. Rev. D 91, 064001 (2015).

    Article  ADS  Google Scholar 

  35. Rezzolla, L. & Takami, K. Gravitational-wave signal from binary neutron stars: a systematic analysis of the spectral properties. Phys. Rev. D 93, 124051 (2016).

    Article  ADS  Google Scholar 

  36. Bauswein, A. et al. Identifying a first-order phase transition in neutron-star mergers through gravitational waves. Phys. Rev. Lett. 122, 061102 (2019).

    Article  ADS  Google Scholar 

  37. Shibata, M. & Taniguchi, K. Merger of binary neutron stars to a black hole: disk mass, short gamma-ray bursts, and quasinormal mode ringing. Phys. Rev. D 73, 064027 (2006).

    Article  ADS  Google Scholar 

  38. Baiotti, L., Giacomazzo, B. & Rezzolla, L. Accurate evolutions of inspiralling neutron-star binaries: prompt and delayed collapse to a black hole. Phys. Rev. D 78, 084033 (2008).

    Article  ADS  Google Scholar 

  39. Tauris, T. M. et al. Formation of double neutron star systems. Astrophys. J. 846, 170 (2017).

    Article  ADS  Google Scholar 

  40. Chattopadhyay, D., Stevenson, S., Hurley, J. R., Bailes, M. & Broekgaarden, F. Modelling neutron star-black hole binaries: future pulsar surveys and gravitational wave detectors. Mon. Not. R. Astron. Soc. 504, 3682–3710 (2021).

    Article  ADS  Google Scholar 

  41. Broekgaarden, F. S. et al. Impact of massive binary star and cosmic evolution on gravitational wave observations. I. Black hole–neutron star mergers. Mon. Not. R. Astron. Soc. 508, 5028–5063 (2021).

    Article  ADS  Google Scholar 

  42. Phinney, E. S. & Sigurdsson, S. Ejection of pulsars and binaries to the outskirts of globular clusters. Nature 349, 220–223 (1991).

    Article  ADS  Google Scholar 

  43. Grindlay, J., Portegies Zwart, S. & McMillan, S. Short gamma-ray bursts from binary neutron star mergers in globular clusters. Nat. Phys. 2, 116–119 (2006).

    Article  Google Scholar 

  44. Lee, W. H., Ramirez-Ruiz, E. & van de Ven, G. Short gamma-ray bursts from dynamically assembled compact binaries in globular clusters: pathways, rates, hydrodynamics, and cosmological setting. Astrophys. J. 720, 953–975 (2010).

    Article  ADS  Google Scholar 

  45. Ye, C. S. et al. On the rate of neutron star binary mergers from globular clusters. Astrophys. J. Lett. 888, L10 (2020).

    Article  ADS  Google Scholar 

  46. Tauris, T. M. & Janka, H.-T. J0453+1559: a neutron star-white dwarf binary from a thermonuclear electron-capture supernova? Astrophys. J. Lett. 886, L20 (2019).

    Article  ADS  Google Scholar 

  47. Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    Article  ADS  Google Scholar 

  48. Abbott, B. P. et al. GW190425: observation of a compact binary coalescence with total mass ~3.4 M. Astrophys. J. Lett. 892, L3 (2020).

    Article  ADS  Google Scholar 

  49. Zhu, X.-J. & Ashton, G. Characterizing astrophysical binary neutron stars with gravitational waves. Astrophys. J. Lett. 902, L12 (2020).

    Article  ADS  Google Scholar 

  50. Abbott, R. et al. Observation of gravitational waves from two neutron star-black hole coalescences. Astrophys. J. Lett. 915, L5 (2021).

    Article  ADS  Google Scholar 

  51. Abbott, R. et al. GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run. Phys. Rev. X 13, 041039 (2023).

    Google Scholar 

  52. Archibald, A. M. et al. A radio pulsar/X-ray binary link. Science 324, 1411 (2009).

    Article  ADS  Google Scholar 

  53. Wang, Z. et al. SDSS J102347.6+003841: a millisecond radio pulsar binary that had a hot disk during 2000–2001. Astrophys. J. 703, 2017–2023 (2009).

    Article  ADS  Google Scholar 

  54. Ghosh, P. & Lamb, F. K. in X-Ray Binaries and Recycled Pulsars (eds van den Heuvel, E. P. J. & Rappaport, S. A.) 487–510 (Springer, 1992).

  55. Liu, X.-J., You, Z.-Q. & Zhu, X.-J. Observational evidence for a spin-up line in the P\(\dot{P}\) diagram of millisecond pulsars. Astrophys. J. Lett. 934, L2 (2022).

    Article  ADS  Google Scholar 

  56. Archibald, R. F. et al. A high braking index for a pulsar. Astrophys. J. Lett. 819, L16 (2016).

    Article  ADS  Google Scholar 

  57. Goldreich, P. & Reisenegger, A. Magnetic field decay in isolated neutron stars. Astrophys. J. 395, 250 (1992).

    Article  ADS  Google Scholar 

  58. Bransgrove, A., Levin, Y. & Beloborodov, A. Magnetic field evolution of neutron stars. I. Basic formalism, numerical techniques and first results. Mon. Not. R. Astron. Soc. 473, 2771–2790 (2018).

    Article  ADS  Google Scholar 

  59. Spitkovsky, A. Time-dependent force-free pulsar magnetospheres: axisymmetric and oblique rotators. Astrophys. J. Lett. 648, L51–L54 (2006).

    Article  ADS  Google Scholar 

  60. Lattimer, J. M. & Schutz, B. F. Constraining the equation of state with moment of inertia measurements. Astrophys. J. 629, 979–984 (2005).

    Article  ADS  Google Scholar 

  61. Haensel, P., Zdunik, J. L., Bejger, M. & Lattimer, J. M. Keplerian frequency of uniformly rotating neutron stars and strange stars. Astron. Astrophys. 502, 605–610 (2009).

    Article  ADS  Google Scholar 

  62. Kalirai, J. S. The age of the Milky Way inner halo. Nature 486, 90–92 (2012).

    Article  ADS  Google Scholar 

  63. Jofré, P. & Weiss, A. The age of the Milky Way halo stars from the Sloan Digital Sky Survey. Astron. Astrophys. 533, A59 (2011).

    Article  ADS  Google Scholar 

  64. Shklovskii, I. S. Possible causes of the secular increase in pulsar periods. Sov. Astron. 13, 562 (1970).

    ADS  Google Scholar 

  65. Damour, T. & Taylor, J. H. On the orbital period change of the binary pulsar PSR 1913+16. Astrophys. J. 366, 501 (1991).

    Article  ADS  Google Scholar 

  66. Liu, X. J., Bassa, C. G. & Stappers, B. W. High-precision pulsar timing and spin frequency second derivatives. Mon. Not. R. Astron. Soc. 478, 2359–2367 (2018).

    Article  ADS  Google Scholar 

  67. Pathak, D. & Bagchi, M. Dynamical effects in the observed rate of change of the orbital and the spin periods of radio pulsars: improvement in the method of estimation and its implications. Astrophys. J. 868, 123 (2018).

    Article  ADS  Google Scholar 

  68. Lynch, R. S., Freire, P. C. C., Ransom, S. M. & Jacoby, B. A. The timing of nine globular cluster pulsars. Astrophys. J. 745, 109 (2012).

    Article  ADS  Google Scholar 

  69. Freire, P. C. C. et al. Fermi detection of a luminous γ-ray pulsar in a globular cluster. Science 334, 1107 (2011).

    Article  ADS  Google Scholar 

  70. Abbott, B. P. et al. GW170817: measurements of neutron star radii and equation of state. Phys. Rev. Lett. 121, 161101 (2018).

    Article  ADS  Google Scholar 

  71. Lattimer, J. M. & Prakash, M. Neutron star structure and the equation of state. Astrophys. J. 550, 426–442 (2001).

    Article  ADS  Google Scholar 

  72. Kremer, K. et al. Formation of low-mass black holes and single millisecond pulsars in globular clusters. Astrophys. J. Lett. 934, L1 (2022).

    Article  ADS  Google Scholar 

  73. Tauris, T. M., Langer, N. & Kramer, M. Formation of millisecond pulsars with CO white dwarf companions. I. PSR J1614-2230: evidence for a neutron star born massive. Mon. Not. R. Astron. Soc. 416, 2130–2142 (2011).

    Article  ADS  Google Scholar 

  74. Lin, J. et al. LMXB and IMXB Evolution. I. The binary radio pulsar PSR J1614-2230. Astrophys. J. 732, 70 (2011).

    Article  ADS  Google Scholar 

  75. Arzoumanian, Z. et al. The NANOGrav 11-year data set: high-precision timing of 45 millisecond pulsars. Astrophys. J. Suppl. Ser. 235, 37 (2018).

    Article  ADS  Google Scholar 

  76. Mandel, I., Farr, W. M. & Gair, J. R. Extracting distribution parameters from multiple uncertain observations with selection biases. Mon. Not. R. Astron. Soc. 486, 1086–1093 (2019).

    Article  ADS  Google Scholar 

  77. Thrane, E. & Talbot, C. An introduction to Bayesian inference in gravitational-wave astronomy: parameter estimation, model selection, and hierarchical models. Publ. Astron. Soc. Aust. 36, e010 (2019).

    Article  ADS  Google Scholar 

  78. Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

    Article  MathSciNet  Google Scholar 

  79. Farrow, N., Zhu, X.-J. & Thrane, E. The mass distribution of Galactic double neutron stars. Astrophys. J. 876, 18 (2019).

    Article  ADS  Google Scholar 

  80. Ashton, G. et al. BILBY: a user-friendly Bayesian inference library for gravitational-wave astronomy. Astrophys. J. Suppl. Ser. 241, 27 (2019).

    Article  ADS  Google Scholar 

  81. Talbot, C., Smith, R., Thrane, E. & Poole, G. B. Parallelized inference for gravitational-wave astronomy. Phys. Rev. D 100, 043030 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  82. Jones, M. C. & Faddy, M. A skew extension of the t-distribution, with applications. J. R. Stat. Soc. Ser. B Stat. Methodol. 65, 159–174 (2003).

    Article  MathSciNet  Google Scholar 

  83. Wurtz, D., Chalabi, Y. & Luksan, L. Parameter estimation of ARMA models with GARCH/APARCH errors. An R and SPlus software implementation. J. Stat. Softw. 55, 28–33 (2006).

    Google Scholar 

  84. Manchester, R. N., Hobbs, G. B., Teoh, A. & Hobbs, M. The Australia Telescope National Facility Pulsar Catalogue. Astron. J. 129, 1993–2006 (2005).

    Article  ADS  Google Scholar 

  85. Vigna-Gómez, A. et al. On the formation history of Galactic double neutron stars. Mon. Not. R. Astron. Soc. 481, 4009–4029 (2018).

    Article  ADS  Google Scholar 

  86. Schneider, F. R. N., Podsiadlowski, P. & Müller, B. Pre-supernova evolution, compact-object masses, and explosion properties of stripped binary stars. Astron. Astrophys. 645, A5 (2021).

    Article  ADS  Google Scholar 

  87. Dai, S. et al. Gravitational microlensing by neutron stars and radio pulsars: event rates, timescale distributions, and mass measurements. Astrophys. J. 802, 120 (2015).

    Article  ADS  Google Scholar 

  88. Wyrzykowski, Ł. & Mandel, I. Constraining the masses of microlensing black holes and the mass gap with Gaia DR2. Astron. Astrophys. 636, A20 (2020).

    Article  ADS  Google Scholar 

  89. You, Z.-Q. The birth mass function of neutron stars. Zenodo https://doi.org/10.5281/zenodo.14375273 (2024).

  90. Ridolfi, A., Freire, P. C. C., Gupta, Y. & Ransom, S. M. Upgraded Giant Metrewave Radio Telescope timing of NGC 1851A: a possible millisecond pulsar - neutron star system. Mon. Not. R. Astron. Soc. 490, 3860–3874 (2019).

    Article  ADS  Google Scholar 

  91. Haniewicz, H. T. et al. Precise mass measurements for the double neutron star system J1829+2456. Mon. Not. R. Astron. Soc. 500, 4620–4627 (2021).

    Article  ADS  Google Scholar 

  92. van Leeuwen, J. et al. The binary companion of young, relativistic pulsar J1906+0746. Astrophys. J. 798, 118 (2015).

    Article  ADS  Google Scholar 

  93. Fonseca, E., Stairs, I. H. & Thorsett, S. E. A comprehensive study of relativistic gravity using PSR B1534+12. Astrophys. J. 787, 82 (2014).

    Article  ADS  Google Scholar 

  94. Kramer, M. et al. Tests of general relativity from timing the double pulsar. Science 314, 97–102 (2006).

    Article  ADS  Google Scholar 

  95. Lynch, R. S. et al. The Green Bank North Celestial Cap Pulsar Survey. III. 45 new pulsar timing solutions. Astrophys. J. 859, 93 (2018).

    Article  ADS  Google Scholar 

  96. Cameron, A. D. et al. News and views regarding PSR J1757-1854, a highly-relativistic binary pulsar. In Proc. 16th Marcel Grossmann Meeting (eds Ruffini, R. & Vereshchagin, G.) 3774–3784 (World Scientific, 2022).

  97. Ferdman, R. D. et al. PSR J1756-2251: a pulsar with a low-mass neutron star companion. Mon. Not. R. Astron. Soc. 443, 2183–2196 (2014).

    Article  ADS  Google Scholar 

  98. Jacoby, B. A. et al. Measurement of orbital decay in the double neutron star binary PSR B2127+11C. Astrophys. J. 644, L113–L116 (2006).

    Article  ADS  Google Scholar 

  99. Weisberg, J. M., Nice, D. J. & Taylor, J. H. Timing measurements of the relativistic binary pulsar PSR B1913+16. Astrophys. J. 722, 1030–1034 (2010).

    Article  ADS  Google Scholar 

  100. Martinez, J. G. et al. Pulsar J0453+1559: a double neutron star system with a large mass asymmetry. Astrophys. J. 812, 143 (2015).

    Article  ADS  Google Scholar 

  101. Ferdman, R. D. et al. Asymmetric mass ratios for bright double neutron-star mergers. Nature 583, 211–214 (2020).

    Article  ADS  Google Scholar 

  102. Ferdman, R. D. et al. A precise mass measurement of the intermediate-mass binary pulsar PSR J1802 - 2124. Astrophys. J. 711, 764–771 (2010).

    Article  ADS  Google Scholar 

  103. McKee, J. W. et al. A precise mass measurement of PSR J2045 + 3633. Mon. Not. R. Astron. Soc. 499, 4082–4096 (2020).

    Article  ADS  Google Scholar 

  104. Venkatraman Krishnan, V. et al. Lense-Thirring frame dragging induced by a fast-rotating white dwarf in a binary pulsar system. Science 367, 577–580 (2020).

    Article  ADS  Google Scholar 

  105. Corongiu, A. et al. A Shapiro delay detection in the binary system hosting the millisecond pulsar PSR J1910-5959A. Astrophys. J. 760, 100 (2012).

    Article  ADS  Google Scholar 

  106. Zhu, W. W. et al. Mass measurements for two binary pulsars discovered in the PALFA Survey. Astrophys. J. 881, 165 (2019).

    Article  ADS  Google Scholar 

  107. Stovall, K. et al. PSR J2234+0611: a new laboratory for stellar evolution. Astrophys. J. 870, 74 (2019).

    Article  ADS  Google Scholar 

  108. van Kerkwijk, M. H. & Kulkarni, S. R. A massive white dwarf companion to the eccentric binary pulsar system PSR B2303+46. Astrophys. J. Lett. 516, L25–L28 (1999).

    Article  ADS  Google Scholar 

  109. Berezina, M. et al. The discovery of two mildly recycled binary pulsars in the Northern High Time Resolution Universe pulsar survey. Mon. Not. R. Astron. Soc. 470, 4421–4433 (2017).

    Article  ADS  Google Scholar 

  110. Archibald, A. M. et al. Universality of free fall from the orbital motion of a pulsar in a stellar triple system. Nature 559, 73–76 (2018).

    Article  ADS  Google Scholar 

  111. Reardon, D. J. et al. Timing analysis for 20 millisecond pulsars in the Parkes Pulsar Timing Array. Mon. Not. R. Astron. Soc. 455, 1751–1769 (2016).

    Article  ADS  Google Scholar 

  112. Antoniadis, J. et al. The relativistic pulsar-white dwarf binary PSR J1738+0333. I. Mass determination and evolutionary history. Mon. Not. R. Astron. Soc. 423, 3316–3327 (2012).

    Article  ADS  Google Scholar 

  113. Reardon, D. J. et al. The Parkes pulsar timing array second data release: timing analysis. Mon. Not. R. Astron. Soc. 507, 2137–2153 (2021).

    Article  ADS  Google Scholar 

  114. Desvignes, G. et al. High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array. Mon. Not. R. Astron. Soc. 458, 3341–3380 (2016).

    Article  ADS  Google Scholar 

  115. Serylak, M. et al. The eccentric millisecond pulsar, PSR J0955 −6150. I. Pulse profile analysis, mass measurements, and constraints on binary evolution. Astron. Astrophys. 665, A53 (2022).

    Article  Google Scholar 

  116. Mata Sánchez, D., Istrate, A. G., van Kerkwijk, M. H., Breton, R. P. & Kaplan, D. L. PSR J1012+5307: a millisecond pulsar with an extremely low-mass white dwarf companion. Mon. Not. R. Astron. Soc. 494, 4031–4042 (2020).

    Article  ADS  Google Scholar 

  117. Barr, E. D. et al. A massive millisecond pulsar in an eccentric binary. Mon. Not. R. Astron. Soc. 465, 1711–1719 (2017).

    Article  ADS  Google Scholar 

  118. Guo, Y. J. et al. PSR J2222–0137. I. Improved physical parameters for the system. Astron. Astrophys. 654, A16 (2021).

    Article  ADS  Google Scholar 

  119. Fonseca, E., Cromartie, H. T. & Pennucci, T. T. et al. Refined mass and geometric measurements of the high-mass PSR J0740+6620. Astrophys. J. Lett. 915, L12 (2021).

    Article  ADS  Google Scholar 

  120. Yi, T. et al. A dynamically discovered and characterized non-accreting neutron star-M dwarf binary candidate. Nat. Astron. 6, 1203–1212 (2022).

  121. Strader, J. et al. Optical spectroscopy and demographics of redback millisecond pulsar binaries. Astrophys. J. 872, 42 (2019).

    Article  ADS  Google Scholar 

  122. Clark, C. J. et al. Einstein@Home discovery of the gamma-ray millisecond pulsar PSR J2039-5617 confirms its predicted redback nature. Mon. Not. R. Astron. Soc. 502, 915–934 (2021).

    Article  ADS  Google Scholar 

  123. Deller, A. T. et al. A parallax distance and mass estimate for the transitional millisecond pulsar system J1023+0038. Astrophys. J. Lett. 756, L25 (2012).

    Article  ADS  Google Scholar 

  124. Bellm, E. C. et al. Properties and evolution of the redback millisecond pulsar binary PSR J2129-0429. Astrophys. J. 816, 74 (2016).

    Article  ADS  Google Scholar 

  125. Kandel, D. & Romani, R. W. Atmospheric circulation on black widow companions. Astrophys. J. 892, 101 (2020).

    Article  ADS  Google Scholar 

  126. Kennedy, M. R. et al. Measuring the mass of the black widow PSR J1555-2908. Mon. Not. R. Astron. Soc. 512, 3001–3014 (2022).

    Article  ADS  Google Scholar 

  127. Romani, R. W., Graham, M. L., Filippenko, A. V. & Zheng, W. PSR J1301+0833: a kinematic study of a black-widow pulsar. Astrophys. J. 833, 138 (2016).

    Article  ADS  Google Scholar 

  128. Romani, R. W., Kandel, D., Filippenko, A. V., Brink, T. G. & Zheng, W. PSR J1810+1744: companion darkening and a precise high neutron star mass. Astrophys. J. Lett. 908, L46 (2021).

    Article  ADS  Google Scholar 

  129. Nieder, L. et al. Discovery of a gamma-ray black widow pulsar by GPU-accelerated Einstein@Home. Astrophys. J. Lett. 902, L46 (2020).

    Article  ADS  Google Scholar 

  130. Romani, R. W., Kandel, D., Filippenko, A. V., Brink, T. G. & Zheng, W. PSR J0952-0607: the fastest and heaviest known Galactic neutron star. Astrophys. J. Lett. 934, L17 (2022).

    Article  ADS  Google Scholar 

  131. Miller, M. C. et al. PSR J0030+0451 mass and radius from NICER data and implications for the properties of neutron star matter. Astrophys. J. Lett. 887, L24 (2019).

    Article  ADS  Google Scholar 

  132. Riley, T. E. et al. A NICER view of PSR J0030+0451: millisecond pulsar parameter estimation. Astrophys. J. Lett. 887, L21 (2019).

    Article  ADS  Google Scholar 

  133. Özel, F. & Freire, P. Masses, radii, and the equation of state of neutron stars. Annu. Rev. Astron. Astrophys. 54, 401–440 (2016).

    Article  ADS  Google Scholar 

  134. Iaria, R. et al. A possible cyclotron resonance scattering feature near 0.7 keV in X1822-371. Astron. Astrophys. 577, A63 (2015).

    Article  Google Scholar 

  135. Falanga, M. et al. Ephemeris, orbital decay, and masses of ten eclipsing high-mass X-ray binaries. Astron. Astrophys. 577, A130 (2015).

    Article  Google Scholar 

  136. Bhalerao, V. B., van Kerkwijk, M. H. & Harrison, F. A. Constraints on the compact object mass in the eclipsing high-mass X-ray binary XMMU J013236.7+303228 in M33. Astrophys. J. 757, 10 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Z. Li, X. Chen and Z. Han for providing data from their numerical simulations, which are plotted in Extended Data Fig. 2. We also thank I. Mandel and M. Bailes for useful discussions. This work was supported by the National Natural Science Foundation of China (Grant Nos. 12203004 to X.Z., 12021003 and 12433001 to Z.-H.Z., 12305059 to Z.-Q.Y. and 12405056 to Z.-C.C.). X.Z. and H.G. are supported by the Fundamental Research Funds for the Central Universities. This work was supported in part by the Australian Research Council (ARC) Centre of Excellence for Gravitational Wave Discovery (Project Nos. CE170100004 and CE230100016). S.S. is a recipient of an ARC Discovery Early Career Research Award (DE220100241). This work was supported by ARC Discovery Grants DP240101786 (to B.M. and A.H.) and DP240103174 (to A.H.).

Author information

Authors and Affiliations

Authors

Contributions

X.Z. conceptualized the study, compiled the list of neutron-star mass measurements and wrote the initial draft of the paper. Z.-Q.Y. led the data curation and Bayesian inference analysis and prepared most of the figures and tables. Z.-Q.Y., X.L. and X.Z. calculated the accreted-mass corrections for recycled pulsars. B.M., A.H. and S.S. led the theoretical investigations of neutron star birth masses. E.T., Z.-C.C., L.S. and P.L. contributed to the analysis methods. D.K.G., G.H. and R.N.M. discussed the data used in the analysis. B.M., A.H., S.S., E.T., L.S., P.L., X.L. and H.G. contributed to the interpretation of the results. Z.-H.Z. contributed to supervision, funding acquisition and resources that enabled this study. All authors contributed to revisions and edits of the paper.

Corresponding authors

Correspondence to Xingjiang Zhu or Zong-Hong Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Scott Ransom and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Mass measurements of neutron stars in double neutron star and neutron star-white dwarf systems
Extended Data Table 2 Mass measurements of neutron stars in other types of systems

Extended Data Fig. 1 The pulsar P-\(\dot{\rm{P}}\) diagram for 39 recycled pulsars.

Black circles mark their current locations (where the error bars on the intrinsic \(\dot{\rm{P}}\) are too small to be seen except for the two globular-cluster pulsars), whereas orange and blue stars mark the minimum and plausible initial spin periods (assuming a breaking index n = 3), respectively. The solid green line is the limiting spin-up line \(\dot{\rm{P}}\) P4/3 inferred for the population of millisecond pulsars55.

Source data

Extended Data Fig. 2 The accreted mass-spin period (Δm-P) correlation used to correct for mass accreted by recycled pulsars.

The green solid line depicts a lower limit on the accreted mass19,22, while the orange solid lines and shaded band represent the mean and 90% credible region of our phenomenological model. The red dashed line is a simple scaling used in the literature25,72. The grey shaded band encompasses 90% credible region of our analytical model. Blue dots are from numerical simulations of the recycling process performed in ref. 23.

Source data

Extended Data Fig. 3 The mass probability distribution of PSR J1614–2230.

The green curve depicts the measured mass75, whereas the black curve is the birth mass deduced from detailed binary evolution calculations73, based on the original measured mass of 1.97 ± 0.04 M 6. Birth masses estimated from our analytical and phenomenological models are shown in blue and orange, respectively.

Source data

Extended Data Fig. 4 The period and luminosity distribution of pulsars with measured mass.

a, Measured mass versus spin period for 39 recycled pulsars (blue) in group A (‘Modelling the accreted masses of recycled pulsars’ in Methods) and the remaining neutron stars (orange). b, Measured mass versus luminosity at 1.4 GHz for 39 recycled pulsars, where the horizontal error bars account for uncertainties in the flux density and distance. We adopted the distance estimates from the Australia Telescope National Facility Pulsar Catalogue while assuming a 20% error. In both panels, plotted are mean values with 1σ credible errors, while the measurement uncertainty of spin periods in the upper panel is too small to be seen.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Tables 1 and 2 and discussion.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Table 1

Statistical source data.

Source Data Extended Data Table 2

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, ZQ., Zhu, X., Liu, X. et al. Determination of the birth-mass function of neutron stars from observations. Nat Astron 9, 552–563 (2025). https://doi.org/10.1038/s41550-025-02487-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-025-02487-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing