Abstract
The birth-mass function of neutron stars encodes rich information about supernova explosions, double-star evolution and the properties of matter under extreme conditions. To date, it has remained poorly constrained by observations, however. Applying probabilistic corrections to account for mass accreted by recycled pulsars in binary systems to mass measurements of 90 neutron stars, we find that the birth masses of neutron stars can be described by a unimodal distribution that smoothly turns on at 1.1 M⊙ and peaks at ~1.27 M⊙, before declining as a steep power law. Such a ‘turn-on’ power-law distribution is strongly favoured against the widely adopted empirical double-Gaussian model at the 3σ level. The power-law shape may be inherited from the initial mass function of massive stars, but the relative dearth of massive neutron stars implies that single stars with initial masses greater than ~18 M⊙ do not form neutron stars, in agreement with the absence of massive red supergiant progenitors of supernovae.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
All the neutron-star mass measurements used in this study are listed in Extended Data Tables 1 and 2 with the original references. These mass measurements, accreted-mass corrections for recycled pulsars, posterior samples from Bayesian inference and the data behind Extended Data Tables 1 and 2 and Figs. 1–4 and Extended Data Figs. 1–4 are available via Zenodo at https://doi.org/10.5281/zenodo.14375273 (ref. 89). Source data are provided with this paper.
Code availability
The following open-source software packages were used in this paper: GalDynPsr, gwpopulation, BILBY and dynesty. The Python scripts used for data analysis and figure generation are publicly available from GitHub at https://github.com/GW-BNUZ/NSbirthMass.
References
Joss, P. C. & Rappaport, S. A. Observational constraints on the masses of neutron stars. Nature 264, 219–222 (1976).
Finn, L. S. Observational constraints on the neutron star mass distribution. Phys. Rev. Lett. 73, 1878–1881 (1994).
Thorsett, S. E. & Chakrabarty, D. Neutron star mass measurements. I. Radio pulsars. Astrophys. J. 512, 288–299 (1999).
Taylor, J. H., Fowler, L. A. & McCulloch, P. M. Measurements of general relativistic effects in the binary pulsar PSR1913 + 16. Nature 277, 437–440 (1979).
Taylor, J. H., Wolszczan, A., Damour, T. & Weisberg, J. M. Experimental constraints on strong-field relativistic gravity. Nature 355, 132–136 (1992).
Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E. & Hessels, J. W. T. A two-solar-mass neutron star measured using Shapiro delay. Nature 467, 1081–1083 (2010).
Antoniadis, J. et al. A massive pulsar in a compact relativistic binary. Science 340, 448 (2013).
Valentim, R., Rangel, E. & Horvath, J. E. On the mass distribution of neutron stars. Mon. Not. R. Astron. Soc. 414, 1427–1431 (2011).
Özel, F., Psaltis, D., Narayan, R. & Santos Villarreal, A. On the mass distribution and birth masses of neutron stars. Astrophys. J. 757, 55 (2012).
Kiziltan, B., Kottas, A., De Yoreo, M. & Thorsett, S. E. The neutron star mass distribution. Astrophys. J. 778, 66 (2013).
Antoniadis, J. et al. The millisecond pulsar mass distribution: evidence for bimodality and constraints on the maximum neutron star mass. Preprint at arxiv.org/abs/1605.01665 (2016).
Alsing, J., Silva, H. O. & Berti, E. Evidence for a maximum mass cut-off in the neutron star mass distribution and constraints on the equation of state. Mon. Not. R. Astron. Soc. 478, 1377–1391 (2018).
Horvath, J. E. & Valentim, R. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 1317 (Springer, 2017).
Timmes, F. X., Woosley, S. E. & Weaver, T. A. The neutron star and black hole initial mass function. Astrophys. J. 457, 834 (1996).
Schwab, J., Podsiadlowski, P. & Rappaport, S. Further evidence for the bimodal distribution of neutron-star masses. Astrophys. J. 719, 722–727 (2010).
Sukhbold, T. & Woosley, S. E. The compactness of presupernova stellar cores. Astrophys. J. 783, 10 (2014).
Müller, B., Heger, A., Liptai, D. & Cameron, J. B. A simple approach to the supernova progenitor-explosion connection. Mon. Not. R. Astron. Soc. 460, 742–764 (2016).
Sukhbold, T., Woosley, S. E. & Heger, A. A high-resolution study of presupernova core structure. Astrophys. J. 860, 93 (2018).
Alpar, M. A., Cheng, A. F., Ruderman, M. A. & Shaham, J. A new class of radio pulsars. Nature 300, 728–730 (1982).
Radhakrishnan, V. & Srinivasan, G. On the origin of the recently discovered ultra-rapid pulsar. Curr. Sci. 51, 1096–1099 (1982).
Bhattacharya, D. & van den Heuvel, E. P. J. Formation and evolution of binary and millisecond radio pulsars. Phys. Rep. 203, 1–124 (1991).
Tauris, T. M., Langer, N. & Kramer, M. Formation of millisecond pulsars with CO white dwarf companions. II. Accretion, spin-up, true ages and comparison to MSPs with He white dwarf companions. Mon. Not. R. Astron. Soc. 425, 1601–1627 (2012).
Li, Z., Chen, X., Chen, H.-L. & Han, Z. The maximum accreted mass of recycled pulsars. Astrophys. J. 922, 158 (2021).
Woosley, S. E., Sukhbold, T. & Janka, H. T. The birth function for black holes and neutron stars in close binaries. Astrophys. J. 896, 56 (2020).
Lipunov, V. M. & Postnov, K. A. Accretion spin-up of low-magnetic neutron stars. Astrophys. Space Sci. 106, 103–115 (1984).
Talbot, C. & Thrane, E. Measuring the binary black hole mass spectrum with an astrophysically motivated parameterization. Astrophys. J. 856, 173 (2018).
Woosley, S. E. & Heger, A. The remarkable deaths of 9–11 solar mass stars. Astrophys. J. 810, 34 (2015).
Hüdepohl, L., Müller, B., Janka, H. T., Marek, A. & Raffelt, G. G. Neutrino signal of electron-capture supernovae from core collapse to cooling. Phys. Rev. Lett. 104, 251101 (2010).
Kresse, D., Ertl, T. & Janka, H.-T. Stellar collapse diversity and the diffuse supernova neutrino background. Astrophys. J. 909, 169 (2021).
Ertl, T., Woosley, S. E., Sukhbold, T. & Janka, H. T. The explosion of helium stars evolved with mass loss. Astrophys. J. 890, 51 (2020).
Evans, M. et al. A horizon study for cosmic explorer: science, observatories, and community. Preprint at arxiv.org/abs/2109.09882 (2021).
Srivastava, V. et al. Science-driven tunable design of cosmic explorer detectors. Astrophys. J. 931, 22 (2022).
Martynov, D. et al. Exploring the sensitivity of gravitational wave detectors to neutron star physics. Phys. Rev. D 99, 102004 (2019).
Takami, K., Rezzolla, L. & Baiotti, L. Spectral properties of the post-merger gravitational-wave signal from binary neutron stars. Phys. Rev. D 91, 064001 (2015).
Rezzolla, L. & Takami, K. Gravitational-wave signal from binary neutron stars: a systematic analysis of the spectral properties. Phys. Rev. D 93, 124051 (2016).
Bauswein, A. et al. Identifying a first-order phase transition in neutron-star mergers through gravitational waves. Phys. Rev. Lett. 122, 061102 (2019).
Shibata, M. & Taniguchi, K. Merger of binary neutron stars to a black hole: disk mass, short gamma-ray bursts, and quasinormal mode ringing. Phys. Rev. D 73, 064027 (2006).
Baiotti, L., Giacomazzo, B. & Rezzolla, L. Accurate evolutions of inspiralling neutron-star binaries: prompt and delayed collapse to a black hole. Phys. Rev. D 78, 084033 (2008).
Tauris, T. M. et al. Formation of double neutron star systems. Astrophys. J. 846, 170 (2017).
Chattopadhyay, D., Stevenson, S., Hurley, J. R., Bailes, M. & Broekgaarden, F. Modelling neutron star-black hole binaries: future pulsar surveys and gravitational wave detectors. Mon. Not. R. Astron. Soc. 504, 3682–3710 (2021).
Broekgaarden, F. S. et al. Impact of massive binary star and cosmic evolution on gravitational wave observations. I. Black hole–neutron star mergers. Mon. Not. R. Astron. Soc. 508, 5028–5063 (2021).
Phinney, E. S. & Sigurdsson, S. Ejection of pulsars and binaries to the outskirts of globular clusters. Nature 349, 220–223 (1991).
Grindlay, J., Portegies Zwart, S. & McMillan, S. Short gamma-ray bursts from binary neutron star mergers in globular clusters. Nat. Phys. 2, 116–119 (2006).
Lee, W. H., Ramirez-Ruiz, E. & van de Ven, G. Short gamma-ray bursts from dynamically assembled compact binaries in globular clusters: pathways, rates, hydrodynamics, and cosmological setting. Astrophys. J. 720, 953–975 (2010).
Ye, C. S. et al. On the rate of neutron star binary mergers from globular clusters. Astrophys. J. Lett. 888, L10 (2020).
Tauris, T. M. & Janka, H.-T. J0453+1559: a neutron star-white dwarf binary from a thermonuclear electron-capture supernova? Astrophys. J. Lett. 886, L20 (2019).
Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).
Abbott, B. P. et al. GW190425: observation of a compact binary coalescence with total mass ~3.4 M⊙. Astrophys. J. Lett. 892, L3 (2020).
Zhu, X.-J. & Ashton, G. Characterizing astrophysical binary neutron stars with gravitational waves. Astrophys. J. Lett. 902, L12 (2020).
Abbott, R. et al. Observation of gravitational waves from two neutron star-black hole coalescences. Astrophys. J. Lett. 915, L5 (2021).
Abbott, R. et al. GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run. Phys. Rev. X 13, 041039 (2023).
Archibald, A. M. et al. A radio pulsar/X-ray binary link. Science 324, 1411 (2009).
Wang, Z. et al. SDSS J102347.6+003841: a millisecond radio pulsar binary that had a hot disk during 2000–2001. Astrophys. J. 703, 2017–2023 (2009).
Ghosh, P. & Lamb, F. K. in X-Ray Binaries and Recycled Pulsars (eds van den Heuvel, E. P. J. & Rappaport, S. A.) 487–510 (Springer, 1992).
Liu, X.-J., You, Z.-Q. & Zhu, X.-J. Observational evidence for a spin-up line in the P– \(\dot{P}\) diagram of millisecond pulsars. Astrophys. J. Lett. 934, L2 (2022).
Archibald, R. F. et al. A high braking index for a pulsar. Astrophys. J. Lett. 819, L16 (2016).
Goldreich, P. & Reisenegger, A. Magnetic field decay in isolated neutron stars. Astrophys. J. 395, 250 (1992).
Bransgrove, A., Levin, Y. & Beloborodov, A. Magnetic field evolution of neutron stars. I. Basic formalism, numerical techniques and first results. Mon. Not. R. Astron. Soc. 473, 2771–2790 (2018).
Spitkovsky, A. Time-dependent force-free pulsar magnetospheres: axisymmetric and oblique rotators. Astrophys. J. Lett. 648, L51–L54 (2006).
Lattimer, J. M. & Schutz, B. F. Constraining the equation of state with moment of inertia measurements. Astrophys. J. 629, 979–984 (2005).
Haensel, P., Zdunik, J. L., Bejger, M. & Lattimer, J. M. Keplerian frequency of uniformly rotating neutron stars and strange stars. Astron. Astrophys. 502, 605–610 (2009).
Kalirai, J. S. The age of the Milky Way inner halo. Nature 486, 90–92 (2012).
Jofré, P. & Weiss, A. The age of the Milky Way halo stars from the Sloan Digital Sky Survey. Astron. Astrophys. 533, A59 (2011).
Shklovskii, I. S. Possible causes of the secular increase in pulsar periods. Sov. Astron. 13, 562 (1970).
Damour, T. & Taylor, J. H. On the orbital period change of the binary pulsar PSR 1913+16. Astrophys. J. 366, 501 (1991).
Liu, X. J., Bassa, C. G. & Stappers, B. W. High-precision pulsar timing and spin frequency second derivatives. Mon. Not. R. Astron. Soc. 478, 2359–2367 (2018).
Pathak, D. & Bagchi, M. Dynamical effects in the observed rate of change of the orbital and the spin periods of radio pulsars: improvement in the method of estimation and its implications. Astrophys. J. 868, 123 (2018).
Lynch, R. S., Freire, P. C. C., Ransom, S. M. & Jacoby, B. A. The timing of nine globular cluster pulsars. Astrophys. J. 745, 109 (2012).
Freire, P. C. C. et al. Fermi detection of a luminous γ-ray pulsar in a globular cluster. Science 334, 1107 (2011).
Abbott, B. P. et al. GW170817: measurements of neutron star radii and equation of state. Phys. Rev. Lett. 121, 161101 (2018).
Lattimer, J. M. & Prakash, M. Neutron star structure and the equation of state. Astrophys. J. 550, 426–442 (2001).
Kremer, K. et al. Formation of low-mass black holes and single millisecond pulsars in globular clusters. Astrophys. J. Lett. 934, L1 (2022).
Tauris, T. M., Langer, N. & Kramer, M. Formation of millisecond pulsars with CO white dwarf companions. I. PSR J1614-2230: evidence for a neutron star born massive. Mon. Not. R. Astron. Soc. 416, 2130–2142 (2011).
Lin, J. et al. LMXB and IMXB Evolution. I. The binary radio pulsar PSR J1614-2230. Astrophys. J. 732, 70 (2011).
Arzoumanian, Z. et al. The NANOGrav 11-year data set: high-precision timing of 45 millisecond pulsars. Astrophys. J. Suppl. Ser. 235, 37 (2018).
Mandel, I., Farr, W. M. & Gair, J. R. Extracting distribution parameters from multiple uncertain observations with selection biases. Mon. Not. R. Astron. Soc. 486, 1086–1093 (2019).
Thrane, E. & Talbot, C. An introduction to Bayesian inference in gravitational-wave astronomy: parameter estimation, model selection, and hierarchical models. Publ. Astron. Soc. Aust. 36, e010 (2019).
Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).
Farrow, N., Zhu, X.-J. & Thrane, E. The mass distribution of Galactic double neutron stars. Astrophys. J. 876, 18 (2019).
Ashton, G. et al. BILBY: a user-friendly Bayesian inference library for gravitational-wave astronomy. Astrophys. J. Suppl. Ser. 241, 27 (2019).
Talbot, C., Smith, R., Thrane, E. & Poole, G. B. Parallelized inference for gravitational-wave astronomy. Phys. Rev. D 100, 043030 (2019).
Jones, M. C. & Faddy, M. A skew extension of the t-distribution, with applications. J. R. Stat. Soc. Ser. B Stat. Methodol. 65, 159–174 (2003).
Wurtz, D., Chalabi, Y. & Luksan, L. Parameter estimation of ARMA models with GARCH/APARCH errors. An R and SPlus software implementation. J. Stat. Softw. 55, 28–33 (2006).
Manchester, R. N., Hobbs, G. B., Teoh, A. & Hobbs, M. The Australia Telescope National Facility Pulsar Catalogue. Astron. J. 129, 1993–2006 (2005).
Vigna-Gómez, A. et al. On the formation history of Galactic double neutron stars. Mon. Not. R. Astron. Soc. 481, 4009–4029 (2018).
Schneider, F. R. N., Podsiadlowski, P. & Müller, B. Pre-supernova evolution, compact-object masses, and explosion properties of stripped binary stars. Astron. Astrophys. 645, A5 (2021).
Dai, S. et al. Gravitational microlensing by neutron stars and radio pulsars: event rates, timescale distributions, and mass measurements. Astrophys. J. 802, 120 (2015).
Wyrzykowski, Ł. & Mandel, I. Constraining the masses of microlensing black holes and the mass gap with Gaia DR2. Astron. Astrophys. 636, A20 (2020).
You, Z.-Q. The birth mass function of neutron stars. Zenodo https://doi.org/10.5281/zenodo.14375273 (2024).
Ridolfi, A., Freire, P. C. C., Gupta, Y. & Ransom, S. M. Upgraded Giant Metrewave Radio Telescope timing of NGC 1851A: a possible millisecond pulsar - neutron star system. Mon. Not. R. Astron. Soc. 490, 3860–3874 (2019).
Haniewicz, H. T. et al. Precise mass measurements for the double neutron star system J1829+2456. Mon. Not. R. Astron. Soc. 500, 4620–4627 (2021).
van Leeuwen, J. et al. The binary companion of young, relativistic pulsar J1906+0746. Astrophys. J. 798, 118 (2015).
Fonseca, E., Stairs, I. H. & Thorsett, S. E. A comprehensive study of relativistic gravity using PSR B1534+12. Astrophys. J. 787, 82 (2014).
Kramer, M. et al. Tests of general relativity from timing the double pulsar. Science 314, 97–102 (2006).
Lynch, R. S. et al. The Green Bank North Celestial Cap Pulsar Survey. III. 45 new pulsar timing solutions. Astrophys. J. 859, 93 (2018).
Cameron, A. D. et al. News and views regarding PSR J1757-1854, a highly-relativistic binary pulsar. In Proc. 16th Marcel Grossmann Meeting (eds Ruffini, R. & Vereshchagin, G.) 3774–3784 (World Scientific, 2022).
Ferdman, R. D. et al. PSR J1756-2251: a pulsar with a low-mass neutron star companion. Mon. Not. R. Astron. Soc. 443, 2183–2196 (2014).
Jacoby, B. A. et al. Measurement of orbital decay in the double neutron star binary PSR B2127+11C. Astrophys. J. 644, L113–L116 (2006).
Weisberg, J. M., Nice, D. J. & Taylor, J. H. Timing measurements of the relativistic binary pulsar PSR B1913+16. Astrophys. J. 722, 1030–1034 (2010).
Martinez, J. G. et al. Pulsar J0453+1559: a double neutron star system with a large mass asymmetry. Astrophys. J. 812, 143 (2015).
Ferdman, R. D. et al. Asymmetric mass ratios for bright double neutron-star mergers. Nature 583, 211–214 (2020).
Ferdman, R. D. et al. A precise mass measurement of the intermediate-mass binary pulsar PSR J1802 - 2124. Astrophys. J. 711, 764–771 (2010).
McKee, J. W. et al. A precise mass measurement of PSR J2045 + 3633. Mon. Not. R. Astron. Soc. 499, 4082–4096 (2020).
Venkatraman Krishnan, V. et al. Lense-Thirring frame dragging induced by a fast-rotating white dwarf in a binary pulsar system. Science 367, 577–580 (2020).
Corongiu, A. et al. A Shapiro delay detection in the binary system hosting the millisecond pulsar PSR J1910-5959A. Astrophys. J. 760, 100 (2012).
Zhu, W. W. et al. Mass measurements for two binary pulsars discovered in the PALFA Survey. Astrophys. J. 881, 165 (2019).
Stovall, K. et al. PSR J2234+0611: a new laboratory for stellar evolution. Astrophys. J. 870, 74 (2019).
van Kerkwijk, M. H. & Kulkarni, S. R. A massive white dwarf companion to the eccentric binary pulsar system PSR B2303+46. Astrophys. J. Lett. 516, L25–L28 (1999).
Berezina, M. et al. The discovery of two mildly recycled binary pulsars in the Northern High Time Resolution Universe pulsar survey. Mon. Not. R. Astron. Soc. 470, 4421–4433 (2017).
Archibald, A. M. et al. Universality of free fall from the orbital motion of a pulsar in a stellar triple system. Nature 559, 73–76 (2018).
Reardon, D. J. et al. Timing analysis for 20 millisecond pulsars in the Parkes Pulsar Timing Array. Mon. Not. R. Astron. Soc. 455, 1751–1769 (2016).
Antoniadis, J. et al. The relativistic pulsar-white dwarf binary PSR J1738+0333. I. Mass determination and evolutionary history. Mon. Not. R. Astron. Soc. 423, 3316–3327 (2012).
Reardon, D. J. et al. The Parkes pulsar timing array second data release: timing analysis. Mon. Not. R. Astron. Soc. 507, 2137–2153 (2021).
Desvignes, G. et al. High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array. Mon. Not. R. Astron. Soc. 458, 3341–3380 (2016).
Serylak, M. et al. The eccentric millisecond pulsar, PSR J0955 −6150. I. Pulse profile analysis, mass measurements, and constraints on binary evolution. Astron. Astrophys. 665, A53 (2022).
Mata Sánchez, D., Istrate, A. G., van Kerkwijk, M. H., Breton, R. P. & Kaplan, D. L. PSR J1012+5307: a millisecond pulsar with an extremely low-mass white dwarf companion. Mon. Not. R. Astron. Soc. 494, 4031–4042 (2020).
Barr, E. D. et al. A massive millisecond pulsar in an eccentric binary. Mon. Not. R. Astron. Soc. 465, 1711–1719 (2017).
Guo, Y. J. et al. PSR J2222–0137. I. Improved physical parameters for the system. Astron. Astrophys. 654, A16 (2021).
Fonseca, E., Cromartie, H. T. & Pennucci, T. T. et al. Refined mass and geometric measurements of the high-mass PSR J0740+6620. Astrophys. J. Lett. 915, L12 (2021).
Yi, T. et al. A dynamically discovered and characterized non-accreting neutron star-M dwarf binary candidate. Nat. Astron. 6, 1203–1212 (2022).
Strader, J. et al. Optical spectroscopy and demographics of redback millisecond pulsar binaries. Astrophys. J. 872, 42 (2019).
Clark, C. J. et al. Einstein@Home discovery of the gamma-ray millisecond pulsar PSR J2039-5617 confirms its predicted redback nature. Mon. Not. R. Astron. Soc. 502, 915–934 (2021).
Deller, A. T. et al. A parallax distance and mass estimate for the transitional millisecond pulsar system J1023+0038. Astrophys. J. Lett. 756, L25 (2012).
Bellm, E. C. et al. Properties and evolution of the redback millisecond pulsar binary PSR J2129-0429. Astrophys. J. 816, 74 (2016).
Kandel, D. & Romani, R. W. Atmospheric circulation on black widow companions. Astrophys. J. 892, 101 (2020).
Kennedy, M. R. et al. Measuring the mass of the black widow PSR J1555-2908. Mon. Not. R. Astron. Soc. 512, 3001–3014 (2022).
Romani, R. W., Graham, M. L., Filippenko, A. V. & Zheng, W. PSR J1301+0833: a kinematic study of a black-widow pulsar. Astrophys. J. 833, 138 (2016).
Romani, R. W., Kandel, D., Filippenko, A. V., Brink, T. G. & Zheng, W. PSR J1810+1744: companion darkening and a precise high neutron star mass. Astrophys. J. Lett. 908, L46 (2021).
Nieder, L. et al. Discovery of a gamma-ray black widow pulsar by GPU-accelerated Einstein@Home. Astrophys. J. Lett. 902, L46 (2020).
Romani, R. W., Kandel, D., Filippenko, A. V., Brink, T. G. & Zheng, W. PSR J0952-0607: the fastest and heaviest known Galactic neutron star. Astrophys. J. Lett. 934, L17 (2022).
Miller, M. C. et al. PSR J0030+0451 mass and radius from NICER data and implications for the properties of neutron star matter. Astrophys. J. Lett. 887, L24 (2019).
Riley, T. E. et al. A NICER view of PSR J0030+0451: millisecond pulsar parameter estimation. Astrophys. J. Lett. 887, L21 (2019).
Özel, F. & Freire, P. Masses, radii, and the equation of state of neutron stars. Annu. Rev. Astron. Astrophys. 54, 401–440 (2016).
Iaria, R. et al. A possible cyclotron resonance scattering feature near 0.7 keV in X1822-371. Astron. Astrophys. 577, A63 (2015).
Falanga, M. et al. Ephemeris, orbital decay, and masses of ten eclipsing high-mass X-ray binaries. Astron. Astrophys. 577, A130 (2015).
Bhalerao, V. B., van Kerkwijk, M. H. & Harrison, F. A. Constraints on the compact object mass in the eclipsing high-mass X-ray binary XMMU J013236.7+303228 in M33. Astrophys. J. 757, 10 (2012).
Acknowledgements
We thank Z. Li, X. Chen and Z. Han for providing data from their numerical simulations, which are plotted in Extended Data Fig. 2. We also thank I. Mandel and M. Bailes for useful discussions. This work was supported by the National Natural Science Foundation of China (Grant Nos. 12203004 to X.Z., 12021003 and 12433001 to Z.-H.Z., 12305059 to Z.-Q.Y. and 12405056 to Z.-C.C.). X.Z. and H.G. are supported by the Fundamental Research Funds for the Central Universities. This work was supported in part by the Australian Research Council (ARC) Centre of Excellence for Gravitational Wave Discovery (Project Nos. CE170100004 and CE230100016). S.S. is a recipient of an ARC Discovery Early Career Research Award (DE220100241). This work was supported by ARC Discovery Grants DP240101786 (to B.M. and A.H.) and DP240103174 (to A.H.).
Author information
Authors and Affiliations
Contributions
X.Z. conceptualized the study, compiled the list of neutron-star mass measurements and wrote the initial draft of the paper. Z.-Q.Y. led the data curation and Bayesian inference analysis and prepared most of the figures and tables. Z.-Q.Y., X.L. and X.Z. calculated the accreted-mass corrections for recycled pulsars. B.M., A.H. and S.S. led the theoretical investigations of neutron star birth masses. E.T., Z.-C.C., L.S. and P.L. contributed to the analysis methods. D.K.G., G.H. and R.N.M. discussed the data used in the analysis. B.M., A.H., S.S., E.T., L.S., P.L., X.L. and H.G. contributed to the interpretation of the results. Z.-H.Z. contributed to supervision, funding acquisition and resources that enabled this study. All authors contributed to revisions and edits of the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Scott Ransom and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 The pulsar P-\(\dot{\rm{P}}\) diagram for 39 recycled pulsars.
Black circles mark their current locations (where the error bars on the intrinsic \(\dot{\rm{P}}\) are too small to be seen except for the two globular-cluster pulsars), whereas orange and blue stars mark the minimum and plausible initial spin periods (assuming a breaking index n = 3), respectively. The solid green line is the limiting spin-up line \(\dot{\rm{P}}\) ∝ P4/3 inferred for the population of millisecond pulsars55.
Extended Data Fig. 2 The accreted mass-spin period (Δm-P) correlation used to correct for mass accreted by recycled pulsars.
The green solid line depicts a lower limit on the accreted mass19,22, while the orange solid lines and shaded band represent the mean and 90% credible region of our phenomenological model. The red dashed line is a simple scaling used in the literature25,72. The grey shaded band encompasses 90% credible region of our analytical model. Blue dots are from numerical simulations of the recycling process performed in ref. 23.
Extended Data Fig. 3 The mass probability distribution of PSR J1614–2230.
The green curve depicts the measured mass75, whereas the black curve is the birth mass deduced from detailed binary evolution calculations73, based on the original measured mass of 1.97 ± 0.04 M⊙ 6. Birth masses estimated from our analytical and phenomenological models are shown in blue and orange, respectively.
Extended Data Fig. 4 The period and luminosity distribution of pulsars with measured mass.
a, Measured mass versus spin period for 39 recycled pulsars (blue) in group A (‘Modelling the accreted masses of recycled pulsars’ in Methods) and the remaining neutron stars (orange). b, Measured mass versus luminosity at 1.4 GHz for 39 recycled pulsars, where the horizontal error bars account for uncertainties in the flux density and distance. We adopted the distance estimates from the Australia Telescope National Facility Pulsar Catalogue while assuming a 20% error. In both panels, plotted are mean values with 1σ credible errors, while the measurement uncertainty of spin periods in the upper panel is too small to be seen.
Supplementary information
Supplementary Information
Supplementary Figs. 1–6, Tables 1 and 2 and discussion.
Source data
Source Data Fig. 1
Statistical source data.
Source Data Fig. 2
Statistical source data.
Source Data Fig. 3
Statistical source data.
Source Data Fig. 4
Statistical source data.
Source Data Extended Data Table 1
Statistical source data.
Source Data Extended Data Table 2
Statistical source data.
Source Data Extended Data Fig. 1
Statistical source data.
Source Data Extended Data Fig. 2
Statistical source data.
Source Data Extended Data Fig. 3
Statistical source data.
Source Data Extended Data Fig. 4
Statistical source data.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
You, ZQ., Zhu, X., Liu, X. et al. Determination of the birth-mass function of neutron stars from observations. Nat Astron 9, 552–563 (2025). https://doi.org/10.1038/s41550-025-02487-w
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41550-025-02487-w