Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

No magmatic driving force for Europan sea-floor volcanism

Abstract

The internal ocean of Jupiter’s moon Europa is thought to be a prime candidate for hosting extraterrestrial life. Europa’s silicate interior may contribute to habitability through the generation of reactants from hydrothermal activity, serpentinization or other geological processes occurring on or just below Europa’s sea floor. However, silicates are thought to melt at depths >100 km in Europa’s mantle, and it is unknown whether this magma can penetrate and travel through the moon’s probably thick, brittle lithosphere to erupt at the sea floor. We combine previous approaches for modelling melt generation in the Europan interior and lithospheric dyke transport to show that Europan sea-floor volcanism is strongly inhibited by its lithosphere. The low stress state of the Europan interior hinders the ability of dykes to penetrate through the lithosphere. Should dykes form, they penetrate <5% of the 200–250-km-thick lithosphere. Low mantle melt fractions (3–5%) drive a sluggish pore-space magma flow, leading to dyke influxes 10,000 times lower than that necessary for sea-floor eruption. These results strongly indicate that models of Europan habitability reliant on present-day volcanism at its sea floor are implausible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the state of the reference model after 200 Myr of modelled time.
Fig. 2: The effect of magma viscosity.
Fig. 3: The effect of mantle permeability.
Fig. 4: The effect of increased radiogenic heat.

Similar content being viewed by others

Data availability

All data used to generate the results presented in this work and their associated input parameter files are available via Zenodo at https://doi.org/10.5281/zenodo.10850608 (ref. 55).

Code availability

The convection code StagYY is the property of P.J.T. and Eidgenössische Technische Hochschule (ETH) Zürich. Researchers interested in using StagYY should contact P.J.T. (paul.tackley@erdw.ethz.ch).

References

  1. Hand K. P. et al. In Europa (eds Pappalardo, R. T. et al.) 589–629 (Univ. of Arizona Press, 2009).

  2. Vance, S. D. et al. Investigating Europa’s habitability with the Europa Clipper. Space Sci. Rev. 219, 81 (2023).

    Article  ADS  Google Scholar 

  3. Khurana, K. K. et al. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395, 777–780 (1998).

    Article  ADS  Google Scholar 

  4. Howell, S. M. The likely thickness of Europa’s icy shell. Planet. Sci. J. 2, 129 (2021).

    Article  Google Scholar 

  5. Gaidos, E. J., Nealson, K. H. & Kirschvink, J. L. Life in ice-covered oceans. Science 284, 1631–1633 (1999).

    Article  Google Scholar 

  6. Chyba, C. F. & Hand, K. P. Life without photosynthesis. Science 292, 2026–2027 (2001).

    Article  Google Scholar 

  7. McCollom, T. M. Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. J. Geophys. Res.: Planets 104, 30729–30742 (1999).

    Article  ADS  Google Scholar 

  8. Vance, S. D., Hand, K. P. & Pappalardo, R. T. Geophysical controls of chemical disequilibria in Europa. Geophys. Res. Lett. 43, 4871–4879 (2016).

    Article  ADS  Google Scholar 

  9. Běhounková, M. et al. Tidally induced magmatic pulses on the oceanic floor of Jupiter’s moon Europa. Geophys. Res. Lett. 48, e2020GL090077 (2021).

    Article  ADS  Google Scholar 

  10. Trinh, K. T., Bierson, C. J. & O’Rourke, J. G. Slow evolution of Europa’s interior: metamorphic ocean origin, delayed metallic core formation, and limited seafloor volcanism. Sci. Adv. 9, eadf3955 (2023).

    Article  Google Scholar 

  11. Bland, M. T. & Elder, C. M. Silicate volcanism on Europa’s seafloor and implications for habitability. Geophys. Res. Lett. 49, e2021GL096939 (2022).

    Article  ADS  Google Scholar 

  12. Kattenhorn, S. A. & Prockter, L. M. Evidence for subduction in the ice shell of Europa. Nat. Geosci. 7, 762–767 (2014).

    Article  ADS  Google Scholar 

  13. Collins, G. C. et al. Episodic plate tectonics on Europa: evidence for widespread patches of mobile‐lid behavior in the antijovian hemisphere. J. Geophys. Res.: Planets 127, e2022JE007492 (2022).

    Article  ADS  Google Scholar 

  14. Greenberg, R. Transport rates of radiolytic substances into Europa’s ocean: implications for the potential origin and maintenance of life. Astrobiology 10, 275–283 (2010).

    Article  ADS  Google Scholar 

  15. Green, A. P., Montesi, L. G. J. & Cooper, C. M. The growth of Europa’s icy shell: convection and crystallization. J. Geophys. Res.: Planets 126, e2020JE006677 (2021).

    Article  ADS  Google Scholar 

  16. Hand, K. P., Sotin, C., Hayes, A. & Coustenis, A. On the habitability and future exploration of ocean worlds. Space Sci. Rev. 216, 95 (2020).

    Article  ADS  Google Scholar 

  17. Moore, W. B. et al. In Europa (eds Pappalardo, R. T. et al.) 369–380 (Univ. of Arizona Press, 2009).

  18. Lowell, R. P. & DuBose, M. Hydrothermal systems on Europa. Geophys. Res. Lett. https://doi.org/10.1029/2005GL022375 (2005).

  19. Moresi, L. & Solomatov, V. Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus. Geophys. J. Int. 133, 669–682 (1998).

    Article  ADS  Google Scholar 

  20. Weller, M. B. & Lenardic, A. On the evolution of terrestrial planets: bi-stability, stochastic effects, and the non-uniqueness of tectonic states. Geosci. Front. 9, 91–102 (2018).

    Article  Google Scholar 

  21. Rivalta, E., Taisne, B., Bunger, A. P. & Katz, R. F. A review of mechanical models of dyke propagation: schools of thought, results and future directions. Tectonophysics 638, 1–42 (2015).

    Article  ADS  Google Scholar 

  22. Kühn, D. & Dahm, T. Numerical modelling of dyke interaction and its influence on oceanic crust formation. Tectonophysics 447, 53–65 (2008).

    Article  ADS  Google Scholar 

  23. Lister, J. R. Steady solutions for feeder dykes in a density-stratified lithosphere. Earth Planet. Sci. Lett. 107, 233–242 (1991).

    Article  ADS  Google Scholar 

  24. Roper, S. M. & Lister, J. R. Buoyancy-driven crack propagation: the limit of large fracture toughness. J. Fluid Mech. 580, 359–380 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  25. Tackley, P. J. Modelling compressible mantle convection with larges viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid. Phys. Earth Planet. Inter. 171, 7–18 (2008).

    Article  ADS  Google Scholar 

  26. Lister, J. R. & Kerr, R. C. Fluid‐mechanical models of crack propagation and their application to magma transport in dykes. J. Geophys. Res.: Solid Earth 96, 10049–10077 (1991).

    Article  Google Scholar 

  27. Rubin, A. M. Propagation of magma-filled cracks. Annu. Rev. Earth Planet. Sci. 23, 287–336 (1995).

    Article  ADS  Google Scholar 

  28. Atkinson, B. K. Subcritical crack growth in geological materials. J. Geophys. Res.: Solid Earth 89, 4077–4114 (1984).

    Article  Google Scholar 

  29. Balme, M. R. et al. Fracture toughness measurements on igneous rocks using a high-pressure, high-temperature rock fracture mechanics cell. J. Volcanol. Geotherm. Res. 132, 159–172 (2004).

    Article  ADS  Google Scholar 

  30. Delaney, P. T. & Pollard, D. D. Deformation of Host Rocks and Flow of Magma during Growth of Minette Dykes and Breccia-bearing Intrusions near Ship Rock, New Mexico Professional Paper No. 1202 (USGS, 1981).

  31. Scholz, C. H. A note on the scaling relations for opening mode fractures in rock. J. Struct. Geol. 32, 1485–1487 (2010).

    Article  ADS  Google Scholar 

  32. Gudmundsson, A. Magma chambers: formation, local stresses, excess pressures, and compartments. J. Volcanol. Geotherm. Res. 237, 19–41 (2012).

    Article  ADS  Google Scholar 

  33. Erarslan, N. & Williams, D. J. Investigating the effect of cyclic loading on the indirect tensile strength of rocks. Rock Mech. Rock Eng. 45, 327–340 (2012).

    Article  ADS  Google Scholar 

  34. Byrne, P. K. et al. Likely little to no geological activity on the Europan seafloor. In Proc. 55th Lunar and Planetary Science Conference https://www.hou.usra.edu/meetings/lpsc2024/pdf/2780.pdf (Lunar and Planetary Institute, 2024).

  35. Hussmann, H. et al. Implications of rotation, orbital states, energy sources, and heat transport for internal processes in icy satellites. Space Sci. Rev. 153, 317–348 (2010).

    Article  ADS  Google Scholar 

  36. Chevrel, M. O., Pinkerton, H. & Harris, A. J. Measuring the viscosity of lava in the field: a review. Earth-Sci. Rev. 196, 102852 (2019).

    Article  Google Scholar 

  37. Sundberg, M., Hirth, G. & Kelemen, P. B. Trapped melt in the Josephine peridotite: implications for permeability and melt extraction in the upper mantle. J. Petrol. 51, 185–200 (2010).

    Article  ADS  Google Scholar 

  38. Thordarson, T. & Self, S. Atmospheric and environmental effects of the 1783–1784 Laki eruption: a review and reassessment. J. Geophys. Res.: Atmos. 108, AAC-7 (2003).

    Google Scholar 

  39. Huppert, H. E. & Sparks, R. S. J. Komatiites I: eruption and flow. J. Petrol. 26, 694–725 (1985).

    Article  ADS  Google Scholar 

  40. Williams, D. A., Wilson, A. H. & Greeley, R. A komatiite analog to potential ultramafic materials on Io. J. Geophys. Res.: Planets 105, 1671–1684 (2000).

    Article  ADS  Google Scholar 

  41. Williams, D. A., Schenk, P. M. & Radebaugh, J. In Io: A New View of Jupiter’s Moon (eds Lopes, R. M. C. et al.) 147–172 (Springer, 2023).

  42. Tobie, G., Choblet, G. & Sotin, C. Tidally heated convection: constraints on Europa’s ice shell thickness. J. Geophys. Res. 108, 5124 (2003).

    Google Scholar 

  43. Hiesinger, H. et al. Ages and stratigraphy of lunar mare basalts: a synthesis. In Recent Advances and Current Research Issues in Lunar Stratigraphy (eds Ambrose, W. A. & Williams, D. A.) Ch. 1 (Geological Society of America, 2011).

  44. Ivanov, M. A. & Head, J. W. The history of volcanism on Venus. Planet. Space Sci. 84, 66–92 (2013).

    Article  ADS  Google Scholar 

  45. Broquet, A. & Andrews-Hanna, J. C. Geophysical evidence for an active mantle plume underneath Elysium Planitia on Mars. Nat. Astron. 7, 160–169 (2023).

    ADS  Google Scholar 

  46. Khan, A. et al. Evidence for a liquid silicate layer atop the Martian core. Nature 622, 718–723 (2023).

    Article  ADS  Google Scholar 

  47. Hernlund, J. W. & Tackley, P. J. Modeling mantle convection in the spherical annulus. Phys. Earth Planet. Inter. 171, 48–54 (2008).

    Article  ADS  Google Scholar 

  48. Karato, S. Deformation of Earth Materials: An Introduction to the Rheology of the Solid Earth (Cambridge Univ. Press, 2008).

  49. Hirth, G. & Kohlstedt, D. In Inside the Subduction Factory. American Geophysical Union, Geophysical Monograph 138 (ed Eiler, J.) 83–106 (American Geophysical Union, 2003).

  50. Hernlund, J. W., Tackley, P. J. & Stevenson, D. J. Buoyant melting instabilities beneath extending lithosphere. I. Numerical models. J. Geophys. Res. https://doi.org/10.1029/2006JB004862 (2008).

  51. Herzberg, C., Raterron, P. & Zhang, J. New experimental observations on the anhydrous solidus for peridotite KLB‐1. Geochem. Geophys. Geosystems https://doi.org/10.1029/2000GC000089 (2000).

  52. Hussman, H. & Spohn, T. Thermal-orbital evolution of Io and Europa. Icarus 171, 391–410 (2004).

    Article  ADS  Google Scholar 

  53. Ojakangas, G. W. & Stevenson, D. J. Thermal state of an ice shell on Europa. Icarus 81, 220–241 (1989).

    Article  ADS  Google Scholar 

  54. Bierson, C. J. The impact of rheology model choices on tidal heating studies. Icarus 414, 116026 (2024).

    Article  Google Scholar 

  55. Green, A. Repository: no magmatic driving force for Europan seafloor volcanism. Zenodo https://doi.org/10.5281/zenodo.10850608 (2024).

Download references

Acknowledgements

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (Grant No. 80NM0018D0004; recipients A.P.G., M.T.B. and C.M.E.). Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government. © 2024. All rights reserved.

Author information

Authors and Affiliations

Authors

Contributions

A.P.G. led the project; conceptualized, designed and implemented all new additions to StagYY; constructed the Europa interior model; generated all results and wrote the text. C.M.E. and M.T.B. conceptualized the research direction and acquired funding. C.M.E. directly supervised the research and writing process and provided substantial draft revisions. M.T.B. advised on dyke propagation and the acquisition of results and provided substantial draft revisions. P.J.T. advised on model development in StagYY and provided draft revisions. P.K.B. provided substantial draft revisions.

Corresponding author

Correspondence to A. P. Green.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Joseph O’Rourke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion 1–4, Figs. 1–8 and Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Green, A.P., Elder, C.M., Bland, M.T. et al. No magmatic driving force for Europan sea-floor volcanism. Nat Astron 9, 640–649 (2025). https://doi.org/10.1038/s41550-025-02508-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-025-02508-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing