Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fermi detection of gamma-ray emission from the hot coronae of radio-quiet active galactic nuclei

Abstract

Relativistic jets around supermassive black holes are well-known powerful γ-ray emitters. In the absence of the jets in radio-quiet active galactic nuclei, how the supermassive black holes work in γ-ray bands is still unknown despite great observational efforts in the past three decades. Here, considering the previous efforts, we carefully select an active galactic nucleus sample composed of 37 nearby Seyfert galaxies with ultrahard X-rays for γ-ray detection by excluding all potential contamination in this band. Adopting a stacking technique, we report the significant γ-ray detection (test statistic 30.6, or 5.2σ) from the sample using 15-year Fermi-LAT observations. We find the average γ-ray luminosity of the sample to be (1.5 ± 1.0) × 1040 erg s−1 at energies of 1–300 GeV. Limited by the well-known pair production from the interaction of γ-rays with low-energy photons, γ-rays of more than several giga-electronvolts are found to originate from an extended corona (~2.7 × 106 gravitational radii), whereas the canonical much more compact X-ray corona (~10 gravitational radii) is responsible for γ-rays of one to several giga-electronvolts. The finding of the compact region lends strong support to the long-time theoretical expectations, but the extended corona is an unexpected finding. One promising scenario is that the electron–positron pairs produced in the compact X-ray corona would expand as a fireball, similar to that in γ-ray bursts, forming the structure of extended corona.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stacked TS profile for FGR sample containing 37 sources.
Fig. 2: Average SED of the FGR sample constructed from archival data taken from the NASA/IPAC Extragalactic Database (NED) and our Fermi-LAT analysis.
Fig. 3: Illustration of the AGN corona scenario used to explain the γ-ray emission from the FGR sample.

Similar content being viewed by others

Data availability

The Fermi-LAT data are publicly available at https://fermi.gsfc.nasa.gov/ssc/data/access/.

References

  1. Bisnovatyi-Kogan, G. S. & Blinnikov, S. I. Disk accretion onto a black hole at subcritical luminosity. Astron. Astrophys. 59, 111–125 (1977).

    ADS  Google Scholar 

  2. Galeev, A. A., Rosner, R. & Vaiana, G. S. Structured coronae of accretion disks. Astrophys. J. 229, 318–326 (1979).

    Article  ADS  Google Scholar 

  3. Sunyaev, R. A. & Titarchuk, L. G. Comptonization of X-rays in plasma clouds—typical radiation spectra. Astron. Astrophys. 86, 121 (1980).

    ADS  Google Scholar 

  4. Bambic, C. J., Quataert, E. & Kunz, M. W. Local models of two-temperature accretion disc coronae—I. Structure, outflows, and energetics. Mon. Not. R. Astron. Soc. 527, 2895–2918 (2024).

    Article  ADS  Google Scholar 

  5. Inoue, Y. & Doi, A. Detection of coronal magnetic activity in nearby active supermassive black holes. Astrophys. J. 869, 114 (2018).

    Article  ADS  Google Scholar 

  6. Fabian, A. C. et al. Broad line emission from iron K- and L-shell transitions in the active galaxy 1H0707-495. Nature 459, 540–542 (2009).

    Article  ADS  Google Scholar 

  7. Morgan, C. W. et al. Further evidence that quasar X-ray emitting regions are compact: X-ray and optical microlensing in the lensed quasar Q J0158-4325. Astrophys. J. 756, 52 (2012).

    Article  ADS  Google Scholar 

  8. Reis, R. C. & Miller, J. M. On the size and location of the X-ray emitting coronae around black holes. Astrophys. J. Lett. 769, L7 (2013).

    Article  ADS  Google Scholar 

  9. Haardt, F. & Maraschi, L. X-ray spectra from two-phase accretion disks. Astrophys. J. 413, 507 (1993).

    Article  ADS  Google Scholar 

  10. Svensson, R. & Zdziarski, A. A. Black hole accretion disks with coronae. Astrophys. J. 436, 599 (1994).

    Article  ADS  Google Scholar 

  11. Witt, H. J., Czerny, B. & Zycki, P. T. Accretion discs with accreting coronae in active galactic nuclei—II. The nuclear wind. Mon. Not. R. Astron. Soc. 286, 848–864 (1997).

    Article  ADS  Google Scholar 

  12. Chael, A. A., Narayan, R. & Sadowski, A. Evolving non-thermal electrons in simulations of black hole accretion. Mon. Not. R. Astron. Soc. 470, 2367–2386 (2017).

    Article  ADS  Google Scholar 

  13. Antonucci, R. & Barvainis, R. Excess 2 Centimeter Emission: a new continuum component in the spectra of radio-quiet quasars. Astrophys. J. Lett. 332, L13 (1988).

    Article  ADS  Google Scholar 

  14. Wojaczyński, R., Niedźwiecki, A., Xie, F.-G. & Szanecki, M. Gamma-ray activity of Seyfert galaxies and constraints on hot accretion flows. Astron. Astrophys. 584, A20 (2015).

    Article  Google Scholar 

  15. Inoue, Y., Khangulyan, D., Inoue, S. & Doi, A. On high-energy particles in accretion disk coronae of supermassive black holes: implications for MeV gamma-rays and high-energy neutrinos from AGN cores. Astrophys. J. 880, 40 (2019).

    Article  ADS  Google Scholar 

  16. Inoue, Y., Khangulyan, D. & Doi, A. Gamma-ray and neutrino signals from accretion disk coronae of active galactic nuclei. Galaxies 9, 36 (2021).

    Article  ADS  Google Scholar 

  17. Gutiérrez, E. M., Vieyro, F. L. & Romero, G. E. Nonthermal processes in hot accretion flows onto supermassive black holes: an inhomogeneous model. Astron. Astrophys. 649, A87 (2021).

    Article  ADS  Google Scholar 

  18. Blandford, R. & Eichler, D. Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys. Rep. 154, 1–75 (1987).

    Article  ADS  Google Scholar 

  19. Sironi, L. & Spitkovsky, A. Relativistic reconnection: an efficient source of non-thermal particles. Astrophys. J. Lett. 783, L21 (2014).

    Article  ADS  Google Scholar 

  20. Romero, G. E., Vieyro, F. L. & Vila, G. S. Non-thermal processes around accreting galactic black holes. Astron. Astrophys. 519, A109 (2010).

    Article  ADS  Google Scholar 

  21. Lin, Y. C. et al. EGRET limits on high-energy gamma-ray emission from X-ray- and low-energy gamma-ray-selected Seyfert galaxies. Astrophys. J. Lett. 416, L53 (1993).

    Article  ADS  Google Scholar 

  22. Cillis, A. N., Hartman, R. C. & Bertsch, D. L. Stacking searches for gamma-ray emission above 100 MeV from radio and Seyfert galaxies. Astrophys. J. 601, 142–150 (2004).

    Article  ADS  Google Scholar 

  23. Teng, S. H., Mushotzky, R. F., Sambruna, R. M., Davis, D. S. & Reynolds, C. S. Fermi/LAT observations of Swift/BAT Seyfert galaxies: on the contribution of radio-quiet active galactic nuclei to the extragalactic γ-ray background. Astrophys. J. 742, 66 (2011).

    Article  ADS  Google Scholar 

  24. Ackermann, M. et al. Search for gamma-ray emission from X-ray-selected Seyfert galaxies with Fermi-LAT. Astrophys. J. 747, 104 (2012).

    Article  ADS  Google Scholar 

  25. Koss, M. J. et al. BASS. XXII. The BASS DR2 AGN catalog and data. Astrophys. J. Suppl. Ser. 261, 2 (2022).

    Article  ADS  Google Scholar 

  26. Ackermann, M. et al. GeV observations of star-forming galaxies with the Fermi Large Area Telescope. Astrophys. J. 755, 164 (2012).

    Article  ADS  Google Scholar 

  27. Ajello, M., Di Mauro, M., Paliya, V. S. & Garrappa, S. The γ-ray emission of star-forming galaxies. Astrophys. J. 894, 88 (2020).

    Article  ADS  Google Scholar 

  28. Ajello, M. et al. Gamma rays from fast black-hole winds. Astrophys. J. 921, 144 (2021).

    Article  ADS  Google Scholar 

  29. McDaniel, A., Ajello, M. & Karwin, C. Gamma-ray emission from galaxies hosting molecular outflows. Astrophys. J. 943, 168 (2023).

    Article  ADS  Google Scholar 

  30. Martocchia, A. & Matt, G. Iron Kα line intensity from accretion discs around rotating black holes. Mon. Not. R. Astron. Soc. 282, L53–L57 (1996).

    Article  ADS  Google Scholar 

  31. Miniutti, G. & Fabian, A. C. A light bending model for the X-ray temporal and spectral properties of accreting black holes. Mon. Not. R. Astron. Soc. 349, 1435–1448 (2004).

    Article  ADS  Google Scholar 

  32. Petrucci, P. O. et al. Testing comptonizing coronae on a long BeppoSAX observation of the Seyfert 1 Galaxy NGC 5548. Astrophys. J. 540, 131–142 (2000).

    Article  ADS  Google Scholar 

  33. Wilkins, D. R. & Gallo, L. C. The comptonization of accretion disc X-ray emission: consequences for X-ray reflection and the geometry of AGN coronae. Mon. Not. R. Astron. Soc. 448, 703–712 (2015).

    Article  ADS  Google Scholar 

  34. Fabian, A. C. et al. Properties of AGN coronae in the NuSTAR era. Mon. Not. R. Astron. Soc. 451, 4375–4383 (2015).

    Article  ADS  Google Scholar 

  35. Kamraj, N. et al. X-ray coronal properties of Swift/BAT-selected Seyfert 1 active galactic nuclei. Astrophys. J. 927, 42 (2022).

    Article  ADS  Google Scholar 

  36. Kara, E. et al. UV-optical disk reverberation lags despite a faint X-ray corona in the active galactic nucleus Mrk 335. Astrophys. J. 947, 62 (2023).

    Article  ADS  Google Scholar 

  37. Svensson, R. Physical processes in active galactic nuclei. In IAU Colloq. 89: Radiation Hydrodynamics in Stars and Compact Objects (eds Mihalas, D. & Winkler, K.-H. A.) vol. 255, 325 (Springer, 1986).

  38. Wang, J.-M., Li, Y.-R., Wang, J.-C. & Zhang, S. Spins of the supermassive black hole in M87: new constraints from TeV observations. Astrophys. J. Lett. 676, L109 (2008).

    Article  ADS  Google Scholar 

  39. Neumayer, N., Seth, A. & Böker, T. Nuclear star clusters. Astron. Astrophys. Rev. 28, 4 (2020).

    Article  ADS  Google Scholar 

  40. Ma, X.-H. et al. Chapter 1 LHAASO instruments and detector technology. Chin. Phys. C 46, 030001 (2022).

    Article  ADS  Google Scholar 

  41. Actis, M. et al. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy. Exp. Astron. 32, 193–316 (2011).

    Article  ADS  Google Scholar 

  42. Massaro, E. et al. The 5th edition of the Roma-BZCAT. A short presentation. Astrophys. Space Sci. 357, 75 (2015).

    Article  ADS  Google Scholar 

  43. D’Abrusco, R. et al. Two new catalogs of blazar candidates in the WISE infrared sky. Astrophys. J. Suppl. Ser. 242, 4 (2019).

    Article  ADS  Google Scholar 

  44. Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).

    Article  ADS  Google Scholar 

  45. Gordon, Y. A. et al. A quick look at the 3 GHz radio sky. I. Source statistics from the Very Large Array Sky Survey. Astrophys. J. Suppl. Ser. 255, 30 (2021).

    Article  ADS  Google Scholar 

  46. Shimwell, T. W. et al. The LOFAR Two-metre Sky Survey. V. Second data release. Astron. Astrophys. 659, A1 (2022).

    Article  Google Scholar 

  47. Helfand, D. J., White, R. L. & Becker, R. H. The Last of FIRST: the final catalog and source identifications. Astrophys. J. 801, 26 (2015).

    Article  ADS  Google Scholar 

  48. Mauch, T. et al. SUMSS: a wide-field radio imaging survey of the southern sky—II. The source catalogue. Mon. Not. R. Astron. Soc. 342, 1117–1130 (2003).

    Article  ADS  Google Scholar 

  49. Condon, J. J. et al. The NRAO VLA Sky Survey. Astron. J. 115, 1693–1716 (1998).

    Article  ADS  Google Scholar 

  50. Rengelink, R. B. et al. The Westerbork Northern Sky Survey (WENSS), I. A 570 square degree Mini-Survey around the North Ecliptic Pole. Astron. Astrophys. Suppl. 124, 259–280 (1997).

    Article  ADS  Google Scholar 

  51. Wright, A. & Otrupcek, R. Parkes Catalog, 1990 (Australia Telescope National Facility, 1990).

  52. Elvis, M. et al. Atlas of quasar energy distributions. Astrophys. J. Suppl. Ser. 95, 1 (1994).

    Article  ADS  Google Scholar 

  53. Sikora, M., Stawarz, Ł. & Lasota, J.-P. Radio loudness of active galactic nuclei: observational facts and theoretical implications. Astrophys. J. 658, 815–828 (2007).

    Article  ADS  Google Scholar 

  54. Ho, L. C. & Peng, C. Y. Nuclear luminosities and radio loudness of Seyfert nuclei. Astrophys. J. 555, 650–662 (2001).

    Article  ADS  Google Scholar 

  55. Lacy, M. et al. The Karl G. Jansky Very Large Array Sky Survey (VLASS). Science case and survey design. Publ. Astron. Soc. Pac. 132, 035001 (2020).

    Article  ADS  Google Scholar 

  56. Terashima, Y. & Wilson, A. S. Chandra snapshot observations of low-luminosity active galactic nuclei with a compact radio source. Astrophys. J. 583, 145–158 (2003).

    Article  ADS  Google Scholar 

  57. Panessa, F. et al. The X-ray and radio connection in low-luminosity active nuclei. Astron. Astrophys. 467, 519–527 (2007).

    Article  ADS  Google Scholar 

  58. Miller, L., Peacock, J. A. & Mead, A. R. G. The bimodal radio luminosity function of quasars. Mon. Not. R. Astron. Soc. 244, 207–213 (1990).

    ADS  Google Scholar 

  59. Visnovsky, K. L. et al. Radio properties of optically selected quasars. Astrophys. J. 391, 560 (1992).

    Article  ADS  Google Scholar 

  60. Kellermann, K. I., Sramek, R. A., Schmidt, M., Green, R. F. & Shaffer, D. B. The radio structure of radio loud and quiet quasars in the Palomar Bright Quasar Survey. Astron. J. 108, 1163 (1994).

    Article  ADS  Google Scholar 

  61. Véron-Cetty, M. P. & Véron, P. A catalogue of quasars and active nuclei: 13th edition. Astron. Astrophys. 518, A10 (2010).

    Article  Google Scholar 

  62. Murase, K., Karwin, C. M., Kimura, S. S., Ajello, M. & Buson, S. Sub-GeV gamma rays from nearby Seyfert galaxies and implications for coronal neutrino emission. Astrophys. J. Lett. 961, L34 (2024).

    Article  ADS  Google Scholar 

  63. Wang, M. et al. Dense gas in nearby galaxies. XVI. The nuclear starburst environment in NGC 4945. Astron. Astrophys. 422, 883–905 (2004).

    Article  ADS  Google Scholar 

  64. Lenain, J. P., Ricci, C., Türler, M., Dorner, D. & Walter, R. Seyfert 2 galaxies in the GeV band: jets and starburst. Astron. Astrophys. 524, A72 (2010).

    Article  Google Scholar 

  65. Ballet, J., Bruel, P., Burnett, T. H., Lott, B. & The Fermi-LAT Collaboration. Fermi Large Area Telescope Fourth Source Catalog Data Release 4 (4FGL-DR4). Preprint at https://arxiv.org/abs/2307.12546 (2023).

  66. Tsuji, N. et al. Cross-match between the latest Swift-BAT and Fermi-LAT catalogs. Astrophys. J. 916, 28 (2021).

    Article  ADS  Google Scholar 

  67. Oh, K. et al. The 105-Month Swift-BAT All-sky Hard X-Ray Survey. Astrophys. J. Suppl. Ser. 235, 4 (2018).

    Article  ADS  Google Scholar 

  68. Baldwin, J. A., Phillips, M. M. & Terlevich, R. Classification parameters for the emission-line spectra of extragalactic objects. Publ. Astron. Soc. Pac. 93, 5–19 (1981).

    Article  ADS  Google Scholar 

  69. Oh, K. et al. BASS. XXIV. The BASS DR2 spectroscopic line measurements and AGN demographics. Astrophys. J. Suppl. Ser. 261, 4 (2022).

    Article  ADS  Google Scholar 

  70. Atwood, W. B. et al. The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. Astrophys. J. 697, 1071–1102 (2009).

    Article  ADS  Google Scholar 

  71. Mattox, J. R. et al. The likelihood analysis of EGRET data. Astrophys. J. 461, 396 (1996).

    Article  ADS  Google Scholar 

  72. Wilks, S. S. The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9, 60–62 (1938).

    Article  Google Scholar 

  73. Reimer, O., Pohl, M., Sreekumar, P. & Mattox, J. R. EGRET upper limits on the high-energy gamma-ray emission of galaxy clusters. Astrophys. J. 588, 155–164 (2003).

    Article  ADS  Google Scholar 

  74. Reiss, I. & Keshet, U. Detection of virial shocks in stacked Fermi-LAT galaxy clusters. J. Cosmol. Astropart. Phys. 2018, 010 (2018).

    Article  Google Scholar 

  75. Huber, B., Farnier, C., Manalaysay, A., Straumann, U. & Walter, R. A stacking method to study the gamma-ray emission of source samples based on the co-adding of Fermi-LAT count maps. Astron. Astrophys. 547, A102 (2012).

    Article  ADS  Google Scholar 

  76. Ackermann, M. et al. Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope. Phys. Rev. Lett. 107, 241302 (2011).

    Article  ADS  Google Scholar 

  77. Paliya, V. S., Domínguez, A., Ajello, M., Franckowiak, A. & Hartmann, D. Fermi-LAT stacking analysis technique: an application to extreme blazars and prospects for their CTA detection. Astrophys. J. Lett. 882, L3 (2019).

    Article  ADS  Google Scholar 

  78. Wood, M. et al. Fermipy: an open-source Python package for analysis of Fermi-LAT Data. In 35th International Cosmic Ray Conference (ICRC2017) vol. 301, 824 (eds Y.-S. Kwak, et al.) (SISSA Medialab, 2017).

  79. James, F. & Roos, M. Minuit—a system for function minimization and analysis of the parameter errors and correlations. Comput. Phys. Commun. 10, 343–367 (1975).

    Article  ADS  Google Scholar 

  80. Zdziarski, A. A., Johnson, W. N. & Magdziarz, P. Broad-band γ-ray and X-ray spectra of NGC 4151 and their implications for physical processes and geometry. Mon. Not. R. Astron. Soc. 283, 193–206 (1996).

    Article  ADS  Google Scholar 

  81. Wang, J.-M., Watarai, K.-Y. & Mineshige, S. The hot disk corona and magnetic turbulence in radio-quiet active galactic nuclei: observational constraints. Astrophys. J. Lett. 607, L107–L110 (2004).

    Article  ADS  Google Scholar 

  82. Blumenthal, G. R. & Gould, R. J. Bremsstrahlung, synchrotron radiation, and Compton scattering of high-energy electrons traversing dilute gases. Rev. Mod. Phys. 42, 237–271 (1970).

    Article  ADS  Google Scholar 

  83. Inoue, S. & Takahara, F. Electron acceleration and gamma-ray emission from blazars. Astrophys. J. 463, 555 (1996).

    Article  ADS  Google Scholar 

  84. Aharonian, F. A. Very High Energy Cosmic γ Radiation: A Crucial Window on the Extreme Universe (World Scientific Publishing, 2004).

  85. Evans, P. A. et al. 2SXPS: an improved and expanded Swift X-ray telescope point-source catalog. Astrophys. J. Suppl. Ser. 247, 54 (2020).

    Article  ADS  Google Scholar 

  86. Dermer, C. D. & Menon, G. High Energy Radiation from Black Holes: Gamma Rays, Cosmic Rays, and Neutrinos (Princeton Univ. Press, 2009).

  87. Guo, F., Li, H., Daughton, W. & Liu, Y.-H. Formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection. Phys. Rev. Lett. 113, 155005 (2014).

    Article  ADS  Google Scholar 

  88. Ricci, C. et al. A tight correlation between millimeter and X-ray emission in accreting massive black holes from <100 mas resolution ALMA observations. Astrophys. J. Lett. 952, L28 (2023).

    Article  ADS  Google Scholar 

  89. Laor, A. & Behar, E. On the origin of radio emission in radio-quiet quasars. Mon. Not. R. Astron. Soc. 390, 847–862 (2008).

    Article  ADS  Google Scholar 

  90. Smith, K. L. et al. BAT AGN spectroscopic survey—XV: the high frequency radio cores of ultra-hard X-ray selected AGN. Mon. Not. R. Astron. Soc. 492, 4216–4234 (2020).

    Article  ADS  Google Scholar 

  91. Graham, P. J. & Tingay, S. J. The importance of jet bending in gamma-ray AGNs—revisited. Astrophys. J. 784, 159 (2014).

    Article  ADS  Google Scholar 

  92. Rojas, A. F. et al. BAT AGN Spectroscopic Survey—XIX. Type 1 versus type 2 AGN dichotomy from the point of view of ionized outflows. Mon. Not. R. Astron. Soc. 491, 5867–5880 (2020).

    Article  ADS  Google Scholar 

  93. Freeman, K. C. et al. A large new galaxy in Circinus. Astron. Astrophys. 55, 445–458 (1977).

    ADS  Google Scholar 

  94. Guo, X.-L., Xin, Y.-L., Liao, N.-H. & Fan, Y.-Z. The Circinus Galaxy revisited with 10 yr Fermi-LAT data. Astrophys. J. 885, 117 (2019).

    Article  ADS  Google Scholar 

  95. Peretti, E. et al. Gamma-ray emission from the Seyfert galaxy NGC 4151 and multimessenger implications for ultra-fast outflows. Preprint at https://arxiv.org/abs/2303.03298 (2023).

  96. Inoue, Y. & Khangulyan, D. Gamma-ray emission in the Seyfert galaxy NGC 4151: investigating the role of jet and coronal activities. Publ. Astron. Soc. Jpn 75, L33–L39 (2023).

    Article  ADS  Google Scholar 

  97. Healey, S. E. et al. CRATES: an all-sky survey of flat-spectrum radio sources. Astrophys. J. Suppl. Ser. 171, 61–71 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Useful discussions are acknowledged with P. Du, Y.-R. Li, Y.-J. Chen and Y.-L. Wang from the IHEP AGN Group. We thank the support from NSFC (grant numbers 12333003, 12273038, 11991050 and 11991054), from the National Key R&D Program of China (grant numbers 2020YFC2201400 and 2021YFA1600404). The Fermi-LAT Collaboration acknowledges support for LAT development, operation and data analysis from NASA and DOE (United States), CEA/Irfu and IN2P3/CNRS (France), ASI and INFN (Italy), MEXT, KEK and JAXA (Japan), and the K.A. Wallenberg Foundation, the Swedish Research Council and the National Space Board (Sweden). Science analysis support in the operations phase from INAF (Italy) and CNES (France) is also gratefully acknowledged. This work was performed in part under DOE Contract DE-AC02-76SF00515.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

J.-M.W. conceived the project of γ-rays from radio-quiet AGNs and suggested the current corona model. J.L. led the project and drafted the first version of the paper. J.-R.L. led reduction of the Fermi data and drafted the Methods. J.L. and J.-M.W. led the revision of the manuscript by considering suggestions and comments from all the authors. All the authors discussed the contents, revised the first version and formed the final version of the paper.

Corresponding author

Correspondence to Jian-Min Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Vera G. Sinitsyna and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11 and Tables 1–5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JR., Wang, JM. & Fermi-LAT Collaboration. Fermi detection of gamma-ray emission from the hot coronae of radio-quiet active galactic nuclei. Nat Astron 9, 1086–1097 (2025). https://doi.org/10.1038/s41550-025-02538-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-025-02538-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing