Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The case for Mars terraforming research

Abstract

Terraforming Mars has long captured the imagination but has received surprisingly little rigorous study. Progress in Mars science, climate science, launch capabilities and bioscience motivates a fresh look at Mars terraforming research. Since Sagan’s time, it has been understood that terraforming Mars would involve warming to enable oxygenic photosynthesis by engineered microbes, followed by slow oxygen build-up enabling more complex life. Before we can assess whether warming Mars is worthwhile, relative to the alternative of leaving Mars as a pristine wilderness, we must confront the practical requirements, cost and possible risks. Here we discuss what we know about Mars’s volatile inventories and soil composition, and possible approaches to warm Mars and increase atmospheric O2. New techniques have emerged that could raise Mars’s average global temperature by tens of degrees within a few decades. Research priorities include focusing on understanding fundamental physical, chemical and biological constraints that will shape any future decisions about Mars. Such research would drive advances in Mars exploration, bioscience and climate modelling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thresholds in making Mars suitable for life.
Fig. 2: Energy sources and sinks on Mars.
Fig. 3: Present-day extremophiles in Mars-like conditions.

Similar content being viewed by others

References

  1. Huygens, C. Cosmotheoros, Book 1 (Timothy Childe, 1698).

  2. Rivera-Valentín, E. G., Chevrier, V. F., Soto, A. & Martínez, G. Distribution and habitability of (meta)stable brines on present-day Mars. Nat. Astron. 4, 756–761 (2020).

    Article  ADS  Google Scholar 

  3. Paine, T. et al. Pioneering the Space Frontier. The Report of the National Commission on Space (National Commission on Space, 1986).

  4. Sagan, C. & Druyan, A. Pale Blue Dot: A Vision of the Human Future in Space (Ballantine, 1994).

  5. Zubrin, R. M. & Zubrin, M. (eds) Proceedings of the Founding Convention of the Mars Society (parts 1, 2 & 3) (Univelt Publishers, 1998).

  6. Musk, E. Making humans a multi-planetary species. New Space 5, 46–61 (2017).

    Article  ADS  Google Scholar 

  7. Grotzinger, J. P. et al. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars. Science 343, 1242777 (2014).

    Article  Google Scholar 

  8. McKay, C. P. in Exploring the Origin, Extent, and Future of Life: Philosophical, Ethical, and Theological Perspectives (ed. Bertka, C.) 245–260 (Cambridge Astrobiology, 2009).

  9. Marshall, A. Ethics and the extraterrestrial environment. J. Appl. Philos. 10, 227–236 (1993).

    Article  Google Scholar 

  10. Smil, V. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production (MIT Press, 2001).

  11. McKay, C. P., Toon, O. B. & Kasting, J. F. Making Mars habitable. Nature 352, 489–496 (1991).

    Article  ADS  Google Scholar 

  12. National Academies of Sciences, Engineering, and Medicine. Reflecting Sunlight: Recommendations for Solar Geoengineering Research and Research Governance (National Academies Press, 2021).

  13. Schuerger, A. C. & Nicholson, W. L. Twenty species of hypobarophilic bacteria recovered from diverse soils exhibit growth under simulated Martian conditions at 0.7 kPa. Astrobiology 16, 964–976 (2016).

    Article  ADS  Google Scholar 

  14. Arnold, F. H. Innovation by evolution: bringing new chemistry to life (Nobel lecture). Angew. Chem. Int. Ed. 58, 14420–14426 (2019).

    Article  Google Scholar 

  15. Heldmann, J. L. et al. Mission architecture using the SpaceX Starship vehicle to enable a sustained human presence on Mars. New Space 10, 259–273 (2022).

    Article  ADS  Google Scholar 

  16. Kuhr, J. The Starship Report (Payload Research, 2024).

  17. Jakosky, B. M. Mars’ atmosphere, volatiles, and climate as the sun heats up over the next 6 billion years. Icarus 410, 115888 (2024).

    Article  Google Scholar 

  18. Wordsworth, R., Kerber, L. & Cockell, C. Enabling Martian habitability with silica aerogel via the solid-state greenhouse effect. Nat. Astron. 3, 898–903 (2019).

    Article  ADS  Google Scholar 

  19. Handmer, C. How to terraform Mars for $50bn with solar sails. In Proc. Tenth International Conference on Mars abstr. 3025 (Lunar and Planetary Institute, 2024).

  20. Ansari, S., Kite, E. S., Ramirez, R., Steele, L. & Mohseni, H. Feasibility of keeping Mars warm with nanoparticles. Sci. Adv. 10, eadn4650 (2024).

    Article  Google Scholar 

  21. Averner, M. M. & MacElroy, R. D. On the Habitability of Mars: An Approach to Planetary Ecosynthesis (NASA, 1976).

  22. Goyal, A., Flamholz, A. I., Petroff, A. P. & Murugan, A. Closed ecosystems extract energy through self-organized nutrient cycles. Proc. Natl Acad. Sci. USA 120, e2309387120 (2023).

    Article  Google Scholar 

  23. Stern, J. C. et al. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale Crater, Mars. Proc. Natl Acad. Sci. USA 112, 4245–4250 (2015).

    Article  ADS  Google Scholar 

  24. O’Connell‐Cooper, C. D. et al. APXS‐derived chemistry of the Bagnold dune sands: comparisons with Gale Crater soils and the global Martian average. J. Geophys. Res. Planets 122, 2623–2643 (2017).

    Article  ADS  Google Scholar 

  25. Sutter, B., McAdam, A. C. & Mahaffy, P. R. in Volatiles in the Martian Crust (eds Filberto, J. & Schwenzer, S. P.) 369–392 (Elsevier, 2019).

  26. Stern, J. C. et al. Organic carbon concentrations in 3.5-billion-year-old lacustrine mudstones of Mars. Proc. Natl Acad. Sci. USA 119, e2201139119 (2022).

    Article  Google Scholar 

  27. Kounaves, S. P. & Oberlin, E. A. in Volatiles in the Martian Crust (eds Filberto, J. & Schwenzer, S. P.) 265–283 (Elsevier, 2019).

  28. Adcock, C. T., Hausrath, E. M. & Forster, P. M. Readily available phosphate from minerals in early aqueous environments on Mars. Nat. Geosci. 6, 824–827 (2013).

    Article  ADS  Google Scholar 

  29. Carr, M. H. & Head, J. W. Martian surface/near‐surface water inventory: sources, sinks, and changes with time. Geophys. Res. Lett. 42, 726–732 (2015).

    Article  ADS  Google Scholar 

  30. Morgan, G. A. et al. Availability of subsurface water-ice resources in the northern mid-latitudes of Mars. Nat. Astron. 5, 230–236 (2021).

    Article  ADS  Google Scholar 

  31. Dundas, C. M. et al. Widespread exposures of extensive clean shallow ice in the midlatitudes of Mars. J. Geophys. Res. Planets 126, e2020JE006617 (2021).

    Article  ADS  Google Scholar 

  32. Leshin, L. A. et al. Volatile, isotope, and organic analysis of Martian fines with the Mars Curiosity rover. Science 341, 1238937 (2013).

    Article  Google Scholar 

  33. Golombek, M. et al. SpaceX Starship landing sites on Mars. In Proc. 52nd Lunar and Planetary Science Conference No. 2548, ID 2420 (Lunar and Planetary Institute, 2021).

  34. Schorghofer, N. Mars: quantitative evaluation of crocus melting behind boulders. Astrophys. J. 890, 49 (2020).

    Article  ADS  Google Scholar 

  35. Smalyukh, I. I. Thermal management by engineering the alignment of nanocellulose. Adv. Mater. 33, 2001228 (2021).

    Article  Google Scholar 

  36. Marinova, M. M., McKay, C. P. & Hashimoto, H. Radiative-convective model of warming Mars with artificial greenhouse gases. J. Geophys. Res. Planets 110, E03002 (2005).

    Article  ADS  Google Scholar 

  37. Richardson, M. I., Toigo, A. D. & Newman, C. E. PlanetWRF: a general purpose, local to global numerical model for planetary atmospheric and climate dynamics. J. Geophys. Res. Planets 112, E09001 (2007).

    Article  ADS  Google Scholar 

  38. Haberle, R. M. et al. The Atmosphere and Climate of Mars (Cambridge Univ. Press, 2017).

  39. Bertrand, T., Wilson, R. J., Kahre, M. A., Urata, R. & Kling, A. Simulation of the 2018 global dust storm on Mars using the NASA Ames Mars GCM: a multitracer approach. J. Geophys. Res. Planets 125, e2019JE006122 (2020).

    Article  ADS  Google Scholar 

  40. Bierson, C. J. et al. Stratigraphy and evolution of the buried CO2 deposit in the Martian south polar cap. Geophys. Res. Lett. 43, 4172–4179 (2016).

    Article  ADS  Google Scholar 

  41. Madeleine, J. B. et al. Recent ice ages on Mars: the role of radiatively active clouds and cloud microphysics. Geophys. Res. Lett. 41, 4873–4879 (2014).

    Article  ADS  Google Scholar 

  42. Streeter, P. M., Lewis, S. R., Patel, M. R., Holmes, J. A. & Kass, D. M. Surface warming during the 2018/Mars Year 34 global dust storm. Geophys. Res. Lett. 47, e2019GL083936 (2020).

    Article  ADS  Google Scholar 

  43. Wordsworth, R. D., Kerber, L., Pierrehumbert, R. T., Forget, F. & Head, J. W. Comparison of ‘warm and wet’ and ‘cold and icy’ scenarios for early Mars in a 3‐D climate model. J. Geophys. Res. Planets 120, 1201–1219 (2015).

    Article  ADS  Google Scholar 

  44. Ramirez, R. M. & Craddock, R. A. The geological and climatological case for a warmer and wetter early Mars. Nat. Geosci. 11, 230–237 (2018).

    Article  ADS  Google Scholar 

  45. Green, J. L. et al. Interdisciplinary Research in Terraforming Mars: State of the Profession and Programmatics White Paper No. 488 (American Astronomical Society, 2021).

  46. Fauchez, T. J. et al. TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI): motivations and protocol version 1.0. Geosci. Model Dev. 13, 707–716 (2020).

    Article  ADS  Google Scholar 

  47. MacMartin, D. G. & Kravitz, B. The engineering of climate engineering. Annu. Rev. Control Robot. Auton. Syst. 2, 445–467 (2019).

    Article  Google Scholar 

  48. Graham, J. M. The biological terraforming of Mars: planetary ecosynthesis as ecological succession on a global scale. Astrobiology 4, 168–195 (2004).

    Article  ADS  Google Scholar 

  49. Cycil, L. M. et al. Investigating the growth of algae under low atmospheric pressures for potential food and oxygen production on Mars. Front. Microbiol. 12, 733244 (2021).

    Article  Google Scholar 

  50. Davila, A. F., Willson, D., Coates, J. D. & McKay, C. P. Perchlorate on Mars: a chemical hazard and a resource for humans. Int. J. Astrobiol. 12, 321–325 (2013).

    Article  ADS  Google Scholar 

  51. Lynch, K. L. et al. Evidence for biotic perchlorate reduction in naturally perchlorate-rich sediments of Pilot Valley Basin, Utah. Astrobiology 19, 629–641 (2019).

    Article  ADS  Google Scholar 

  52. Breezee, J., Cady, N. & Staley, J. T. Subfreezing growth of the sea ice bacterium ‘Psychromonas ingrahamii’. Microb. Ecol. 47, 300–304 (2004).

    Article  Google Scholar 

  53. Walker, V. K., Palmer, G. R. & Voordouw, G. Freeze–thaw tolerance and clues to the winter survival of a soil community. Appl. Environ. Microbiol. 72, 1784–1792 (2006).

    Article  ADS  Google Scholar 

  54. Cockell, C. S. & Raven, J. A. Zones of photosynthetic potential on Mars and the early Earth. Icarus 169, 300–310 (2004).

    Article  ADS  Google Scholar 

  55. Diaz, B. & Schulze-Makuch, D. Microbial survival rates of Escherichia coli and Deinococcus radiodurans under low temperature, low pressure, and UV-irradiation conditions, and their relevance to possible Martian life. Astrobiology 6, 332–347 (2006).

    Article  ADS  Google Scholar 

  56. Cockell, C. S. et al. Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity. Nat. Commun. 11, 5523 (2020).

    Article  ADS  Google Scholar 

  57. Menezes, A. A., Cumbers, J., Hogan, J. A. & Arkin, A. P. Towards synthetic biological approaches to resource utilization on space missions. J. R. Soc. Interface 12, 20140715 (2015).

    Article  Google Scholar 

  58. National Research Council, Space Studies Board, Space Engineering Board & Committee on Precursor Measurements. Necessary to Support Human Operations on the Surface of Mars Safe on Mars: Precursor Measurements Necessary to Support Human Operations on the Martian Surface (National Academies Press, 2002).

  59. DeBenedictis, E. et al. Polyextremophile engineering: a review of organisms that push the limits of life. Front. Microbiol. 15, 1341701 (2024).

    Article  Google Scholar 

  60. Shean, D. E. Candidate ice-rich material within equatorial craters on Mars. Geophys. Res. Lett. 37, L24202 (2010).

    Article  ADS  Google Scholar 

  61. Nangle, S. N. et al. The case for biotech on Mars. Nat. Biotechnol. 38, 401–407 (2020).

    Article  Google Scholar 

  62. Stern, A. et al. Final Report of the NASA Planetary Protection Independent Review Board (National Aeronautics and Space Administration, 2019).

  63. McGarey, P. et al. Development of a loop antenna deployment system for TEM-based subsurface Mars water detection. In Proc. 2022 IEEE Aerospace Conference 1–11 (IEEE, 2022).

  64. McKay, C. in Encountering Life in the Universe (eds Impey, C. et al.) 158–166 (Univ. Arizona Press, 2013).

  65. Schwieterman, E. W., Reinhard, C. T., Olson, S. L., Harman, C. E. & Lyons, T. W. A limited habitable zone for complex life. Astrophys. J. 878, 19 (2019).

    Article  ADS  Google Scholar 

  66. West, W., Atwater, H. A. & Kubiak, C. Addressing the Mars ISRU challenge: production of oxygen and fuel from CO2 using sunlight (Keck Institute for Space Studies, 2018).

  67. Wordsworth, R. & Cockell, C. Self-sustaining living habitats in extraterrestrial environments. Astrobiology 4, 1187–1195 (2024).

    Article  Google Scholar 

  68. Lenton, T. M. & Lovelock, J. E. Daisyworld revisited: quantifying biological effects on planetary self-regulation. Tellus B Chem. Phys. Meteorol. 53, 288–305 (2001).

    ADS  Google Scholar 

  69. Fischer, W. W., Hemp, J. & Johnson, J. E. Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet. Sci. 44, 647–683 (2016).

    Article  ADS  Google Scholar 

  70. Knoll, A. H. in Fundamentals of Geobiology (eds Knoll, A. H. et al.) 297–314 (Wiley-Blackwell, 2012).

  71. Jakosky, B. M. & Edwards, C. S. Inventory of CO2 available for terraforming Mars. Nat. Astron. 2, 634–639 (2018).

    Article  ADS  Google Scholar 

  72. Buhler, P. B. & Piqueux, S. Obliquity‐driven CO2 exchange between Mars’ atmosphere, regolith, and polar cap. J. Geophys. Res. Planets 126, e2020JE006759 (2021).

    Article  ADS  Google Scholar 

  73. Tutolo, B. M. et al. Carbonates identified by the Curiosity rover indicate a carbon cycle operated on ancient Mars. Science 388, 292–297 (2025).

    Article  Google Scholar 

  74. Turner, F. W. Life on Mars: Cultivating a planet—and ourselves. Harper’s Magazine 279, 33–40 (1990).

    Google Scholar 

  75. Banfield, D. Mars Science Goals, Objectives, Investigations, and Priorities: 2020 Version (Mars Exploration Program Analysis Group, 2020).

  76. Smith, I. B. et al. The Holy Grail: a road map for unlocking the climate record stored within Mars’ polar layered deposits. Planet. Space Sci. 184, 104841 (2020).

    Article  Google Scholar 

  77. Dickson, J. L. et al. Gullies on Mars could have formed by melting of water ice during periods of high obliquity. Science 380, 1363–1367 (2023).

    Article  ADS  Google Scholar 

  78. Hsu, D. C., Ford, E. B., Ragozzine, D. & Ashby, K. Occurrence rates of planets orbiting FGK stars: combining Kepler DR25, Gaia DR2, and Bayesian inference. Astron. J. 158, 109 (2019).

    Article  ADS  Google Scholar 

  79. Wright, J. T. et al. The case for technosignatures: why they may be abundant, long-lived, highly detectable, and unambiguous. Astrophys. J. Lett. 927, L30 (2022).

    Article  ADS  Google Scholar 

  80. Paulino-Lima, I. G. et al. Extremely high UV-C radiation resistant microorganisms from desert environments with different manganese concentrations. J. Photochem. Photobiol. B 163, 327–336 (2016).

    Article  Google Scholar 

  81. Heinz, J. et al. A new record for microbial perchlorate tolerance: fungal growth in NaClO4 brines and its implications for putative life on Mars. Life 10, 53 (2020).

    Article  ADS  Google Scholar 

  82. Kelly, L. C., Cockell, C. S., Thorsteinsson, T., Marteinsson, V. & Stevenson, J. Pioneer microbial communities of the Fimmvörðuháls lava flow, Eyjafjallajökull, Iceland. Microb. Ecol. 68, 504–518 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank The Astera Institute for their support of a workshop. We thank all of the workshop attendees for creating a vibrant brainstorming environment. We thank D. Zhou for the creation of Fig. 2. We thank P. Kemeny and M. Hecht for informal comments.

Author information

Authors and Affiliations

Authors

Contributions

E.S.K. and E.A.D. wrote the paper. All authors discussed the topics in the paper, contributed to the writing and commented on the evolving drafts.

Corresponding author

Correspondence to Erika Alden DeBenedictis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Michael Mischna and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeBenedictis, E.A., Kite, E.S., Wordsworth, R.D. et al. The case for Mars terraforming research. Nat Astron 9, 634–639 (2025). https://doi.org/10.1038/s41550-025-02548-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-025-02548-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing