Abstract
Gas-giant planets have been detected on eccentric orbits several hundreds of astronomical units in size around other stars. It has been proposed that even the Sun hosts a wide-orbit planet of 5–10 Earth masses, often called Planet Nine, which influences the dynamics of distant trans-Neptunian objects. However, the formation mechanism of such planets remains uncertain. Here we use numerical simulations to show that very-wide-orbit planets are a natural by-product of dynamical instabilities that occur in planetary systems while their host stars are still embedded in natal stellar clusters. A planet is first brought to an eccentric orbit with an apoastron of several hundred astronomical units by repeated gravitational scattering by other planets, then perturbations from nearby stellar flybys stabilize the orbit by decoupling the planet from the interaction with the inner system. In our Solar System, the two main events likely conducive to planetary scattering were the growth of Uranus and Neptune, and the giant planets instability. We estimate a 5–10% likelihood of creating a very-wide-orbit planet if either happened while the Sun was still in its birth cluster, increasing to 40% if both were. In our simulated exoplanetary systems, the trapping efficiency is 1–5%. Our results imply that planets on wide, eccentric orbits occur at least 10−3 per star.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
Simulation data that support the findings of this study or were used to make plots are available from the corresponding author upon reasonable request. The source data of the main figures of the paper are available at https://andreizidoro.com/simulation-data.
Code availability
Simulations presented here were performed using modified versions of the Mercury N-body integrator91, publicly available on GitHub at https://github.com/smirik/mercury (ref. 129).
References
Tremaine, S. The distribution of comets around stars. ASP Conf. Ser. 36, 335–344 (1993).
Wyatt, M. C., Bonsor, A., Jackson, A. P., Marino, S. & Shannon, A. How to design a planetary system for different scattering outcomes: giant impact sweet spot, maximizing exocomets, scattered discs. Mon. Not. R. Astron. Soc. 464, 3385–3407 (2017).
Bae, J. et al. Structured distributions of gas and solids in protoplanetary disks. ASP Conf. Ser. 534, 423–464 (2023).
Kretke, K. A., Levison, H. F., Buie, M. W. & Morbidelli, A. A method to constrain the size of the protosolar nebula. Astron. J. 143, 91 (2012).
Bohn, A. J. et al. Two directly imaged, wide-orbit giant planets around the young, solar analog TYC 8998-760-1. Astrophys. J. 898, L16 (2020).
Zhang, Z. et al. The second discovery from the COCONUTS program: a cold wide-orbit exoplanet around a young field M dwarf at 10.9 pc. Astrophys. J. 916, L11 (2021).
Janson, M. et al. A wide-orbit giant planet in the high-mass b Centauri binary system. Nature 600, 231–234 (2021).
Bohn, A. J. et al. Discovery of a directly imaged planet to the young solar analog YSES 2. Astron. Astrophys. 648, A73 (2021).
Gaidos, E. et al. Zodiacal exoplanets in time (ZEIT) XII: a directly imaged planetary-mass companion to a young Taurus M dwarf star. Mon. Not. R. Astron. Soc. 512, 583–601 (2022).
Currie, T. et al. Direct imaging and spectroscopy of extrasolar planets. ASP Conf. Ser. 534, 799–837 (2023).
Marois, C., Zuckerman, B., Konopacky, Q. M., Macintosh, B. & Barman, T. Images of a fourth planet orbiting HR 8799. Nature 468, 1080–1083 (2010).
Nguyen, M. M., De Rosa, R. J. & Kalas, P. First detection of orbital motion for HD 106906 b: a wide-separation exoplanet on a Planet Nine-like orbit. Astron. J. 161, 22 (2021).
Faherty, J. K. et al. A wide planetary mass companion discovered through the citizen science project Backyard Worlds: Planet 9. Astrophys. J. 923, 48 (2021).
Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017).
Miret-Roig, N. et al. A rich population of free-floating planets in the Upper Scorpius young stellar association. Nat. Astron. 6, 89–97 (2022).
Batygin, K. & Brown, M. E. Evidence for a distant giant planet in the Solar System. Astron. J. 151, 22 (2016).
Brown, M. E. & Batygin, K. Observational constraints on the orbit and location of Planet Nine in the outer Solar System. Astrophys. J. 824, L23 (2016).
Trujillo, C. A. & Sheppard, S. S. A Sedna-like body with a perihelion of 80 astronomical units. Nature 507, 471–474 (2014).
Brown, M. E. & Batygin, K. The orbit of Planet Nine. Astron. J. 162, 219 (2021).
Batygin, K. & Morbidelli, A. Dynamical evolution induced by Planet Nine. Astron. J. 154, 229 (2017).
Batygin, K., Adams, F. C., Brown, M. E. & Becker, J. C. The Planet Nine hypothesis. Phys. Rep. 805, 1–53 (2019).
Shankman, C. et al. OSSOS. VI. Striking biases in the detection of large semimajor axis trans-Neptunian objects. Astron. J. 154, 50 (2017).
Raymond, S. N., Izidoro, A. & Morbidelli, A. in Planetary Astrobiology (eds Meadows, V. S. et al.) 287–324 (Univ. Arizona Press, 2020).
Izidoro, A., Morbidelli, A., Raymond, S. N., Hersant, F. & Pierens, A. Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn. Astron. Astrophys. 582, A99 (2015).
Helled, R., Nettelmann, N. & Guillot, T. Uranus and Neptune: origin, evolution and internal structure. Space Sci. Rev. 216, 38 (2020).
Nesvorný, D. & Morbidelli, A. Statistical study of the early Solar System’s instability with four, five, and six giant planets. Astron. J. 144, 117 (2012).
Butler, R. P. et al. Catalog of nearby exoplanets. Astrophys. J. 646, 505–522 (2006).
Udry, S. & Santos, N. C. Statistical properties of exoplanets. Annu. Rev. Astron. Astrophys. 45, 397–439 (2007).
Jurić, M. & Tremaine, S. Dynamical origin of extrasolar planet eccentricity distribution. Astrophys. J. 686, 603–620 (2008).
Chatterjee, S., Ford, E. B., Matsumura, S. & Rasio, F. A. Dynamical outcomes of planet–planet scattering. Astrophys. J. 686, 580–602 (2008).
Raymond, S. N., Armitage, P. J. & Gorelick, N. Planet–planet scattering in planetesimal disks. II. Predictions for outer extrasolar planetary systems. Astrophys. J. 711, 772–795 (2010).
Nesvorný, D., Vokrouhlický, D., Bottke, W. F. & Levison, H. F. Evidence for very early migration of the Solar System planets from the Patroclus–Menoetius binary Jupiter Trojan. Nat. Astron. 2, 878–882 (2018).
Liu, B., Raymond, S. N. & Jacobson, S. A. Early Solar System instability triggered by dispersal of the gaseous disk. Nature 604, 643–646 (2022).
Lada, C. J. & Lada, E. A. Embedded clusters in molecular clouds. Annu. Rev. Astron. Astrophys. 41, 57–115 (2003).
Adams, F. C. The birth environment of the Solar System. Annu. Rev. Astron. Astrophys. 48, 47–85 (2010).
Pfalzner, S. Early evolution of the birth cluster of the Solar System. Astron. Astrophys. 549, A82 (2013).
Dale, J. E., Ercolano, B. & Bonnell, I. A. Early evolution of embedded clusters. Mon. Not. R. Astron. Soc. 451, 987–1003 (2015).
Adamo, A. et al. Star clusters near and far; tracing star formation across cosmic time. Space Sci. Rev. 216, 69 (2020).
Adams, F. C. & Laughlin, G. Constraints on the birth aggregate of the Solar System. Icarus 150, 151–162 (2001).
Portegies Zwart, S. F., McMillan, S. L. W. & Gieles, M. Young massive star clusters. Annu. Rev. Astron. Astrophys. 48, 431–493 (2010).
Malmberg, D., Davies, M. B. & Heggie, D. C. The effects of fly-bys on planetary systems. Mon. Not. R. Astron. Soc. 411, 859–877 (2011).
Parker, R. J. & Quanz, S. P. The effects of dynamical interactions on planets in young substructured star clusters. Mon. Not. R. Astron. Soc. 419, 2448–2458 (2012).
Laughlin, G. & Adams, F. C. The modification of planetary orbits in dense open clusters. Astrophys. J. 508, L171–L174 (1998).
Perets, H. B. & Kouwenhoven, M. B. N. On the origin of planets at very wide orbits from the recapture of free floating planets. Astrophys. J. 750, 83 (2012).
Li, G. & Adams, F. C. Interaction cross sections and survival rates for proposed Solar System member Planet Nine. Astrophys. J. 823, L3 (2016).
Mustill, A. J., Raymond, S. N. & Davies, M. B. Is there an exoplanet in the Solar System? Mon. Not. R. Astron. Soc. 460, L109–L113 (2016).
Parker, R. J., Lichtenberg, T. & Quanz, S. P. Was Planet 9 captured in the Sun’s natal star-forming region? Mon. Not. R. Astron. Soc. 472, L75–L79 (2017).
van Elteren, A., Portegies Zwart, S., Pelupessy, I., Cai, M. X. & McMillan, S. L. W. Survivability of planetary systems in young and dense star clusters. Astron. Astrophys. 624, A120 (2019).
Daffern-Powell, E. C., Parker, R. J. & Quanz, S. P. The Great Planetary Heist: theft and capture in star-forming regions. Mon. Not. R. Astron. Soc. 514, 920–934 (2022).
Boss, A. P. Giant planet formation by gravitational instability. Science 276, 1836–1839 (1997).
Kenyon, S. J. & Bromley, B. C. Formation of super-Earth mass planets at 125–250 au from a solar-type star. Astrophys. J. 806, 42 (2015).
Eriksson, L. E. J., Mustill, A. J. & Johansen, A. Circularizing Planet Nine through dynamical friction with an extended, cold planetesimal belt. Mon. Not. R. Astron. Soc. 475, 4609–4616 (2018).
Bromley, B. C. & Kenyon, S. J. Making Planet Nine: a scattered giant in the outer Solar System. Astrophys. J. 826, 64 (2016).
Esposito, T. M. et al. Debris disk results from the Gemini Planet Imager Exoplanet Survey’s polarimetric imaging campaign. Astron. J. 160, 24 (2020).
Beuzit, J. L. et al. SPHERE: the exoplanet imager for the Very Large Telescope. Astron. Astrophys. 631, A155 (2019).
Welsh, W. F. & Orosz, J. A. in Handbook of Exoplanets (eds Deeg, H. J. & Belmonte, J. A.) 2749–2768 (Springer, 2018).
Proszkow, E.-M. & Adams, F. C. Dynamical evolution of young embedded clusters: a parameter space survey. Astrophys. J. Suppl. Ser. 185, 486–510 (2009).
Allen, L. et al. in Protostars and Planets V (eds Reipurth, B. et al.) 361–376 (Univ. Arizona Press, 2007).
Fall, S. M., Chandar, R. & Whitmore, B. C. New tests for disruption mechanisms of star clusters: methods and application to the antennae galaxies. Astrophys. J. 704, 453–468 (2009).
Wijnen, T. P. G., Pols, O. R., Pelupessy, F. I. & Portegies Zwart, S. Disc truncation in embedded star clusters: dynamical encounters versus face-on accretion. Astron. Astrophys. 604, A91 (2017).
Cuello, N., Ménard, F. & Price, D. J. Close encounters: how stellar flybys shape planet-forming discs. Eur. Phys. J. Plus 138, 11 (2023).
Winter, A. J. et al. Protoplanetary disc truncation mechanisms in stellar clusters: comparing external photoevaporation and tidal encounters. Mon. Not. R. Astron. Soc. 478, 2700–2722 (2018).
Fressin, F. et al. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013).
Haisch, K. Jr et al. Disk frequencies and lifetimes in young clusters. Astrophys. J. 553, L153 (2001).
Brasser, R., Duncan, M. J. & Levison, H. F. Embedded star clusters and the formation of the Oort cloud. Icarus 184, 59–82 (2006).
Rasio, F. A. & Ford, E. B. Dynamical instabilities and the formation of extrasolar planetary systems. Science 274, 954–956 (1996).
Beaugé, C. & Nesvorný, D. Multiple-planet scattering and the origin of hot Jupiters. Astrophys. J. 751, 119 (2012).
Levison, H. F., Morbidelli, A., Tsiganis, K., Nesvorný, D. & Gomes, R. Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. Astron. J. 142, 152 (2011).
Deienno, R. et al. Excitation of a primordial cold asteroid belt as an outcome of planetary instability. Astrophys. J. 864, 50 (2018).
Higuchi, A., Kokubo, E., Kinoshita, H. & Mukai, T. Orbital evolution of planetesimals due to the Galactic tide: formation of the comet cloud. Astron. J. 134, 1693–1706 (2007).
Kaib, N. A. & Quinn, T. The formation of the Oort cloud in open cluster environments. Icarus 197, 221–238 (2008).
Bailey, N. & Fabrycky, D. Stellar flybys interrupting planet–planet scattering generates Oort planets. Astron. J. 158, 94 (2019).
Raymond, S. N., Izidoro, A. & Kaib, N. A. Oort cloud (exo)planets. Mon. Not. R. Astron. Soc. 524, L72–L77 (2023).
Izidoro, A. et al. Breaking the chains: hot super-Earth systems from migration and disruption of compact resonant chains. Mon. Not. R. Astron. Soc. 470, 1750–1770 (2017).
Carter, E. J. & Stamatellos, D. On the survivability of a population of gas giant planets on wide orbits. Mon. Not. R. Astron. Soc. 525, 1912–1921 (2023).
Mróz, P. et al. A terrestrial-mass rogue planet candidate detected in the shortest-timescale microlensing event. Astrophys. J. 903, L11 (2020).
Clanton, C. & Gaudi, B. S. Constraining the frequency of free-floating planets from a synthesis of microlensing, radial velocity, and direct imaging survey results. Astrophys. J. 834, 46 (2017).
Veras, D. & Raymond, S. N. Planet–planet scattering alone cannot explain the free-floating planet population. Mon. Not. R. Astron. Soc. 421, L117–L121 (2012).
Fulton, B. J. et al. California Legacy Survey. II. Occurrence of giant planets beyond the ice line. Astrophys. J. Suppl. Ser. 255, 14 (2021).
Bowler, B. P. Imaging extrasolar giant planets. Publ. Astron. Soc. Pac. 128, 102001 (2016).
Suzuki, D. et al. The Exoplanet mass-ratio function from the MOA-II survey: discovery of a break and likely peak at a Neptune mass. Astrophys. J. 833, 145 (2016).
Raymond, S. N. et al. Debris disks as signposts of terrestrial planet formation. Astron. Astrophys. 530, A62 (2011).
Durkan, S., Janson, M. & Carson, J. C. High contrast imaging with Spitzer: constraining the frequency of giant planets out to 1000 au separations. Astrophys. J. 824, 58 (2016).
Baron, F. et al. WEIRD: Wide-orbit Exoplanet Search with InfraRed Direct Imaging. Astron. J. 156, 137 (2018).
Fischer, D. A. & Valenti, J. The planet–metallicity correlation. Astrophys. J. 622, 1102–1117 (2005).
Dawson, R. I. & Murray-Clay, R. A. Giant planets orbiting metal-rich stars show signatures of planet–planet interactions. Astrophys. J. 767, L24 (2013).
Johnson, J. A., Aller, K. M., Howard, A. W. & Crepp, J. R. Giant planet occurrence in the stellar mass–metallicity plane. Publ. Astron. Soc. Pac. 122, 905 (2010).
Zink, J. K., Batygin, K. & Adams, F. C. The great inequality and the dynamical disintegration of the outer Solar System. Astron. J. 160, 232 (2020).
Veras, D. Post-main-sequence planetary system evolution. R. Soc. Open Sci. 3, 150571 (2016).
Raymond, S. N., Kaib, N. A., Selsis, F. & Bouy, H. Future trajectories of the Solar System: dynamical simulations of stellar encounters within 100 au. Mon. Not. R. Astron. Soc. 527, 6126–6138 (2024).
Chambers, J. E. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999).
Chambers, J. E., Quintana, E. V., Duncan, M. J. & Lissauer, J. J. Symplectic integrator algorithms for modeling planetary accretion in binary star systems. Astron. J. 123, 2884–2894 (2002).
Kaib, N. A., White, E. B. & Izidoro, A. Simulations of the Fomalhaut system within its local Galactic environment. Mon. Not. R. Astron. Soc. 473, 470–491 (2018).
Duncan, M. J., Levison, H. F. & Lee, M. H. A multiple time step symplectic algorithm for integrating close encounters. Astron. J. 116, 2067–2077 (1998).
Plummer, H. C. On the problem of distribution in globular star clusters. Mon. Not. R. Astron. Soc. 71, 460–470 (1911).
Ellithorpe, E. A. & Kaib, N. A. Dynamical fates of S-type planetary systems in embedded cluster environments. Mon. Not. R. Astron. Soc. 515, 2914–2927 (2022).
Aarseth, S. J., Henon, M. & Wielen, R. A comparison of numerical methods for the study of star cluster dynamics. Astron. Astrophys. 37, 183–187 (1974).
Brasser, R., Duncan, M. J., Levison, H. F., Schwamb, M. E. & Brown, M. E. Reassessing the formation of the inner Oort cloud in an embedded star cluster. Icarus 217, 1–19 (2012).
Carpenter, J. M. 2MASS observations of the Perseus, Orion A, Orion B, and Monoceros R2 molecular clouds. Astron. J. 120, 3139–3161 (2000).
Adams, F. C., Proszkow, E. M., Fatuzzo, M. & Myers, P. C. Early evolution of stellar groups and clusters: environmental effects on forming planetary systems. Astrophys. J. 641, 504–525 (2006).
Marks, M. & Kroupa, P. Inverse dynamical population synthesis. Constraining the initial conditions of young stellar clusters by studying their binary populations. Astron. Astrophys. 543, A8 (2012).
Kroupa, P. The initial mass function of stars: evidence for uniformity in variable systems. Science 295, 82–91 (2002).
Bally, J., Testi, L., Sargent, A. & Carlstrom, J. Disk mass limits and lifetimes of externally irradiated young stellar objects embedded in the Orion nebula. Astron. J. 116, 854–859 (1998).
Morales, E. F. E., Wyrowski, F., Schuller, F. & Menten, K. M. Stellar clusters in the inner Galaxy and their correlation with cold dust emission. Astron. Astrophys. 560, A76 (2013).
Ascenso, J. in The Birth of Star Clusters Vol. 424 (ed. Stahler, S.) 1–37 (Springer, 2018).
Tokovinin, A. & Kiyaeva, O. Eccentricity distribution of wide binaries. Mon. Not. R. Astron. Soc. 456, 2070–2079 (2016).
Clement, M. S., Kaib, N. A., Raymond, S. N. & Walsh, K. J. Mars’ growth stunted by an early giant planet instability. Icarus 311, 340–356 (2018).
Nesvorny, D. Young Solar System’s fifth giant planet? Astrophys. J. 742, L22 (2011).
Gomes, R., Nesvorný, D., Morbidelli, A., Deienno, R. & Nogueira, E. Checking the compatibility of the cold Kuiper belt with a planetary instability migration model. Icarus 306, 319–327 (2018).
Morbidelli, a, Levison, H. F., Tsiganis, K. & Gomes, R. Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005).
Kokubo, E. & Ida, S. Formation of protoplanets from planetesimals in the solar nebula. Icarus 143, 15–27 (2000).
Lega, E., Crida, A., Bitsch, B. & Morbidelli, A. Migration of Earth-sized planets in 3D radiative discs. Mon. Not. R. Astron. Soc. 440, 683–695 (2014).
Bitsch, B. & Izidoro, A. Giants are bullies: how their growth influences systems of inner sub-Neptunes and super-Earths. Astron. Astrophys. 674, A178 (2023).
Wang, J. J. et al. Dynamical constraints on the HR 8799 planets with GPI. Astron. J. 156, 192 (2018).
Morbidelli, A. & Crida, A. The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus 191, 158–171 (2007).
Izidoro, A., Raymond, S. N., Morbidelli, A., Hersant, F. & Pierens, A. Gas giant planets as dynamical barriers to inward-migrating super-Earths. Astrophys. J. 800, L22 (2015).
Hayashi, C. Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981).
Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).
Cresswell, P. & Nelson, R. P. Three-dimensional simulations of multiple protoplanets embedded in a protostellar disc. Astron. Astrophys. 482, 677–690 (2008).
Coleman, G. A. L. & Nelson, R. P. On the formation of planetary systems via oligarchic growth in thermally evolving viscous discs. Mon. Not. R. Astron. Soc. 445, 479–499 (2014).
Paaaardekooper, S.-J., Baruteau, C., Crida, A. & Kley, W. A torque formula for non-isothermal type I planetary migration—I. Unsaturated horseshoe drag. Mon. Not. R. Astron. Soc. 401, 1950–1964 (2010).
Paardekooper, S.-J., Baruteau, C. & Kley, W. A torque formula for non-isothermal type I planetary migration—II. Effects of diffusion. Mon. Not. R. Astron. Soc. 410, 293–303 (2011).
Ida, S., Muto, T., Matsumura, S. & Brasser, R. A new and simple prescription for planet orbital migration and eccentricity damping by planet–disc interactions based on dynamical friction. Mon. Not. R. Astron. Soc. 494, 5666–5674 (2020).
Papaloizou, J. C. B. & Larwood, J. D. On the orbital evolution and growth of protoplanets embedded in a gaseous disc. Mon. Not. R. Astron. Soc. 315, 823–833 (2000).
de Sousa, R. R. et al. Dynamical evidence for an early giant planet instability. Icarus 339, 113605 (2020).
Brasser, R., Duncan, M. J. & Levison, H. F. Embedded star clusters and the formation of the Oort cloud. II. The effect of the primordial solar nebula. Icarus 191, 413–433 (2007).
Johansen, A. et al. Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007).
Simon, J. B., Armitage, P. J., Li, R. & Youdin, A. N. The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. Astrophys. J. 822, 55 (2016).
smirik/mercury. GitHub https://github.com/smirik/mercury (2023).
Acknowledgements
A. Izidoro is grateful to R. Dasgupta for insightful discussions, help with proofreading, valuable input on paper clarity and partial financial support for this project. A. Izidoro and N.A.K. thank support from the NASA Emerging Worlds Program Grant 80NSSC23K0868. Contributions from N.A.K. were also supported by NASA Exoplanets Research Program grant 80NSSC19K0445 and NSF CAREER Award 2405121. S.N.R. acknowledges funding from the Programme Nationale de Planetologie (PNP) of the INSU (CNRS), and in the framework of the Investments for the Future programme IdEx, Université de Bordeaux/RRI ORIGINS. A.M. acknowledges support from ERC grant 101019380 HolyEarth. This work was supported in part by the Big-Data Private-Cloud Research Cyberinfrastructure MRI-award funded by NSF under grant CNS-1338099 and by Rice University’s Center for Research Computing (CRC).
Author information
Authors and Affiliations
Contributions
A. Izidoro, S.N.R., N.A.K. and A.M. conceived of the original idea of this project. N.A.K. and A. Izidoro wrote and tested the adapted versions of MERCURY code used in this work. A. Izidoro performed numerical simulations, analysed results and prepared all the figures in the paper. S.N.R., A. Izidoro and N.A.K. drafted the paper with inputs from A.M. and A. Isella. All authors contributed to the interpretation and discussion of the results, writing and editing of the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks John Chambers and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Final eccentricity distribution of giant exoplanets surviving in the inner systems after dynamical instabilities.
It shows only giant planets with semi-major axis smaller than 40 au. The eccentricity distribution of radial velocity exoplanets is shown in grey.
Extended Data Fig. 2 Unsuccessful trapping of a wide-orbit planet in an exoplanet gas giant instability simulation.
A planetary dynamical instability takes place at about 3 kyr which scatters Planet-1 and 2 on wide orbits. Planet-2 is ejected from the host star at 25 kyr. Planet-1 evolves onto a high eccentricity orbit and is eventually kicked by Star-4 at about 0.4 Myr. A passage of the host star near the cluster barycenter at 0.7 Myr also affects the orbit of Planet-1. Planet-1 is ultimately ejected from the host start due to multiple flybys of stars 1, 47, 153, and 181, which take place after 1-2 Myr. The simulation stops at 3 Myr. Orbital elements are given with respect to the barycenter of the host-star system.
Extended Data Fig. 3 Planetary system architecture at the end of the gas disk phase in two different simulations modelling the accretion of Uranus and Neptune.
These simulations produced planetary systems that broadly match solar system constraints (almost unitary mass ratio of the ice giants, two planets with masses larger than about 12M⊕, and a dynamically cold planetesimal disk population consistent with the dynamically cold kernel of the Kuiper-belt). Each plot (panels a and b) is composed by two stacked panels. The top-component shows semi-major axis versus eccentricity. The bottom-component shows semi-major axis versus orbital inclination. Jupiter and Saturn are represented by the big black filled circles showed at about 5.25 and about 7.18 AU (near the 3:2 MMR). Color-coded circles represent the formed ice giants and their sizes scale as M1/3, where M is the mass. The color-coding shows the masses of the final planets. The small black circles represent primordial planetesimals. The gray-region show the expected location of Planet-9. The orange-ish regions (a ≈ 45 au, e < 0.1, and i < 10 degrees) are used to represent the Kernel of the current Kuiper-belt. Note that, in both simulations, the dynamical excitation of the primordial disk – after the accretion of the ice giants – is broadly consistent with the cold dynamical architecture of the Kuiper-belt kernel.
Supplementary information
Supplementary Information
Supplementary Text and Figs. 1–6.
Supplementary Video 1
This video corresponds to the simulation shown in Fig. 2a. The large left-side panel shows a top-view projection of the stellar cluster. The top-right panel shows a zoomed-in region around the central star and the bottom-right panel illustrates the dynamical evolution of the planets orbiting the central star in a semi-major axis versus eccentricity diagram. It illustrates the trapping of a wide-orbit exoplanet during a dynamical instability in a system of gas-giant planets. The host star is a solar-mass star embedded in a stellar cluster with 200 members and a Plummer radius of Rc = 40,000 au. The simulation begins with fully formed planets. Planet-2 is scattered onto a wide, eccentric orbit during a planetary instability around 10 kyr. At 100 kyr, a close encounter with Star-197 lifts Planet-2’s pericentre, trapping it on a stable wide orbit. The video stops at 1.35 Myr. Planet-2 remains bound until the simulation ends at 10 Myr (Fig. 2a).
Supplementary Video 2
This video corresponds to the simulation shown in Fig. 2b, which models a similar wide-orbit planet trapping process of Supplementary Video 1, but in the context of a Solar System-like early dynamical instability. The large left-side panel shows a top-view projection of the stellar cluster. The top-right panel shows a zoomed-in region around the Sun and the bottom-right panel illustrates the dynamical evolution of the Solar System giant planets orbiting the central star in a semi-major axis versus eccentricity diagram. The trapped planet survives in a wide orbit consistent with that expected for the putative Planet-9 until the end of the simulation at 6 Myr. This video was rendered with a variable frame rate (VFR) to better illustrate the dynamics and effects of stellar flybys.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Izidoro, A., Raymond, S.N., Kaib, N.A. et al. Very-wide-orbit planets from dynamical instabilities during the stellar birth cluster phase. Nat Astron 9, 982–994 (2025). https://doi.org/10.1038/s41550-025-02556-0
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41550-025-02556-0