Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Very-wide-orbit planets from dynamical instabilities during the stellar birth cluster phase

Abstract

Gas-giant planets have been detected on eccentric orbits several hundreds of astronomical units in size around other stars. It has been proposed that even the Sun hosts a wide-orbit planet of 5–10 Earth masses, often called Planet Nine, which influences the dynamics of distant trans-Neptunian objects. However, the formation mechanism of such planets remains uncertain. Here we use numerical simulations to show that very-wide-orbit planets are a natural by-product of dynamical instabilities that occur in planetary systems while their host stars are still embedded in natal stellar clusters. A planet is first brought to an eccentric orbit with an apoastron of several hundred astronomical units by repeated gravitational scattering by other planets, then perturbations from nearby stellar flybys stabilize the orbit by decoupling the planet from the interaction with the inner system. In our Solar System, the two main events likely conducive to planetary scattering were the growth of Uranus and Neptune, and the giant planets instability. We estimate a 5–10% likelihood of creating a very-wide-orbit planet if either happened while the Sun was still in its birth cluster, increasing to 40% if both were. In our simulated exoplanetary systems, the trapping efficiency is 1–5%. Our results imply that planets on wide, eccentric orbits occur at least 10−3 per star.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Snapshots of the dynamical evolution of a stellar cluster with 200 stars.
Fig. 2: Trapping of wide-orbit planets in an extrasolar gas-giant instability simulation and a Solar System early dynamical instability simulation.
Fig. 3: Final orbital distribution of planets produced in early dynamical planetary instabilities taking place in different planetary systems embedded in stellar clusters with different configurations.
Fig. 4: Wide-orbit-planet trapping efficiency in different planetary systems embedded in star clusters with different configurations.

Similar content being viewed by others

Data availability

Simulation data that support the findings of this study or were used to make plots are available from the corresponding author upon reasonable request. The source data of the main figures of the paper are available at https://andreizidoro.com/simulation-data.

Code availability

Simulations presented here were performed using modified versions of the Mercury N-body integrator91, publicly available on GitHub at https://github.com/smirik/mercury (ref. 129).

References

  1. Tremaine, S. The distribution of comets around stars. ASP Conf. Ser. 36, 335–344 (1993).

  2. Wyatt, M. C., Bonsor, A., Jackson, A. P., Marino, S. & Shannon, A. How to design a planetary system for different scattering outcomes: giant impact sweet spot, maximizing exocomets, scattered discs. Mon. Not. R. Astron. Soc. 464, 3385–3407 (2017).

    Article  ADS  Google Scholar 

  3. Bae, J. et al. Structured distributions of gas and solids in protoplanetary disks. ASP Conf. Ser. 534, 423–464 (2023).

    ADS  Google Scholar 

  4. Kretke, K. A., Levison, H. F., Buie, M. W. & Morbidelli, A. A method to constrain the size of the protosolar nebula. Astron. J. 143, 91 (2012).

    Article  ADS  Google Scholar 

  5. Bohn, A. J. et al. Two directly imaged, wide-orbit giant planets around the young, solar analog TYC 8998-760-1. Astrophys. J. 898, L16 (2020).

    Article  ADS  Google Scholar 

  6. Zhang, Z. et al. The second discovery from the COCONUTS program: a cold wide-orbit exoplanet around a young field M dwarf at 10.9 pc. Astrophys. J. 916, L11 (2021).

    Article  ADS  Google Scholar 

  7. Janson, M. et al. A wide-orbit giant planet in the high-mass b Centauri binary system. Nature 600, 231–234 (2021).

    Article  ADS  Google Scholar 

  8. Bohn, A. J. et al. Discovery of a directly imaged planet to the young solar analog YSES 2. Astron. Astrophys. 648, A73 (2021).

    Article  Google Scholar 

  9. Gaidos, E. et al. Zodiacal exoplanets in time (ZEIT) XII: a directly imaged planetary-mass companion to a young Taurus M dwarf star. Mon. Not. R. Astron. Soc. 512, 583–601 (2022).

    Article  ADS  Google Scholar 

  10. Currie, T. et al. Direct imaging and spectroscopy of extrasolar planets. ASP Conf. Ser. 534, 799–837 (2023).

    ADS  Google Scholar 

  11. Marois, C., Zuckerman, B., Konopacky, Q. M., Macintosh, B. & Barman, T. Images of a fourth planet orbiting HR 8799. Nature 468, 1080–1083 (2010).

    Article  ADS  Google Scholar 

  12. Nguyen, M. M., De Rosa, R. J. & Kalas, P. First detection of orbital motion for HD 106906 b: a wide-separation exoplanet on a Planet Nine-like orbit. Astron. J. 161, 22 (2021).

    Article  ADS  Google Scholar 

  13. Faherty, J. K. et al. A wide planetary mass companion discovered through the citizen science project Backyard Worlds: Planet 9. Astrophys. J. 923, 48 (2021).

    Article  ADS  Google Scholar 

  14. Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017).

    Article  ADS  Google Scholar 

  15. Miret-Roig, N. et al. A rich population of free-floating planets in the Upper Scorpius young stellar association. Nat. Astron. 6, 89–97 (2022).

    Article  ADS  Google Scholar 

  16. Batygin, K. & Brown, M. E. Evidence for a distant giant planet in the Solar System. Astron. J. 151, 22 (2016).

    Article  ADS  Google Scholar 

  17. Brown, M. E. & Batygin, K. Observational constraints on the orbit and location of Planet Nine in the outer Solar System. Astrophys. J. 824, L23 (2016).

    Article  ADS  Google Scholar 

  18. Trujillo, C. A. & Sheppard, S. S. A Sedna-like body with a perihelion of 80 astronomical units. Nature 507, 471–474 (2014).

    Article  ADS  Google Scholar 

  19. Brown, M. E. & Batygin, K. The orbit of Planet Nine. Astron. J. 162, 219 (2021).

    Article  ADS  Google Scholar 

  20. Batygin, K. & Morbidelli, A. Dynamical evolution induced by Planet Nine. Astron. J. 154, 229 (2017).

    Article  ADS  Google Scholar 

  21. Batygin, K., Adams, F. C., Brown, M. E. & Becker, J. C. The Planet Nine hypothesis. Phys. Rep. 805, 1–53 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  22. Shankman, C. et al. OSSOS. VI. Striking biases in the detection of large semimajor axis trans-Neptunian objects. Astron. J. 154, 50 (2017).

    Article  ADS  Google Scholar 

  23. Raymond, S. N., Izidoro, A. & Morbidelli, A. in Planetary Astrobiology (eds Meadows, V. S. et al.) 287–324 (Univ. Arizona Press, 2020).

  24. Izidoro, A., Morbidelli, A., Raymond, S. N., Hersant, F. & Pierens, A. Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn. Astron. Astrophys. 582, A99 (2015).

    Article  ADS  Google Scholar 

  25. Helled, R., Nettelmann, N. & Guillot, T. Uranus and Neptune: origin, evolution and internal structure. Space Sci. Rev. 216, 38 (2020).

    Article  ADS  Google Scholar 

  26. Nesvorný, D. & Morbidelli, A. Statistical study of the early Solar System’s instability with four, five, and six giant planets. Astron. J. 144, 117 (2012).

    Article  ADS  Google Scholar 

  27. Butler, R. P. et al. Catalog of nearby exoplanets. Astrophys. J. 646, 505–522 (2006).

    Article  ADS  Google Scholar 

  28. Udry, S. & Santos, N. C. Statistical properties of exoplanets. Annu. Rev. Astron. Astrophys. 45, 397–439 (2007).

    Article  ADS  Google Scholar 

  29. Jurić, M. & Tremaine, S. Dynamical origin of extrasolar planet eccentricity distribution. Astrophys. J. 686, 603–620 (2008).

    Article  ADS  Google Scholar 

  30. Chatterjee, S., Ford, E. B., Matsumura, S. & Rasio, F. A. Dynamical outcomes of planet–planet scattering. Astrophys. J. 686, 580–602 (2008).

    Article  ADS  Google Scholar 

  31. Raymond, S. N., Armitage, P. J. & Gorelick, N. Planet–planet scattering in planetesimal disks. II. Predictions for outer extrasolar planetary systems. Astrophys. J. 711, 772–795 (2010).

    Article  ADS  Google Scholar 

  32. Nesvorný, D., Vokrouhlický, D., Bottke, W. F. & Levison, H. F. Evidence for very early migration of the Solar System planets from the Patroclus–Menoetius binary Jupiter Trojan. Nat. Astron. 2, 878–882 (2018).

    Article  ADS  Google Scholar 

  33. Liu, B., Raymond, S. N. & Jacobson, S. A. Early Solar System instability triggered by dispersal of the gaseous disk. Nature 604, 643–646 (2022).

    Article  ADS  Google Scholar 

  34. Lada, C. J. & Lada, E. A. Embedded clusters in molecular clouds. Annu. Rev. Astron. Astrophys. 41, 57–115 (2003).

    Article  ADS  Google Scholar 

  35. Adams, F. C. The birth environment of the Solar System. Annu. Rev. Astron. Astrophys. 48, 47–85 (2010).

    Article  ADS  Google Scholar 

  36. Pfalzner, S. Early evolution of the birth cluster of the Solar System. Astron. Astrophys. 549, A82 (2013).

    Article  ADS  Google Scholar 

  37. Dale, J. E., Ercolano, B. & Bonnell, I. A. Early evolution of embedded clusters. Mon. Not. R. Astron. Soc. 451, 987–1003 (2015).

    Article  ADS  Google Scholar 

  38. Adamo, A. et al. Star clusters near and far; tracing star formation across cosmic time. Space Sci. Rev. 216, 69 (2020).

    Article  ADS  Google Scholar 

  39. Adams, F. C. & Laughlin, G. Constraints on the birth aggregate of the Solar System. Icarus 150, 151–162 (2001).

    Article  ADS  Google Scholar 

  40. Portegies Zwart, S. F., McMillan, S. L. W. & Gieles, M. Young massive star clusters. Annu. Rev. Astron. Astrophys. 48, 431–493 (2010).

    Article  ADS  Google Scholar 

  41. Malmberg, D., Davies, M. B. & Heggie, D. C. The effects of fly-bys on planetary systems. Mon. Not. R. Astron. Soc. 411, 859–877 (2011).

    Article  ADS  Google Scholar 

  42. Parker, R. J. & Quanz, S. P. The effects of dynamical interactions on planets in young substructured star clusters. Mon. Not. R. Astron. Soc. 419, 2448–2458 (2012).

    Article  ADS  Google Scholar 

  43. Laughlin, G. & Adams, F. C. The modification of planetary orbits in dense open clusters. Astrophys. J. 508, L171–L174 (1998).

    Article  ADS  Google Scholar 

  44. Perets, H. B. & Kouwenhoven, M. B. N. On the origin of planets at very wide orbits from the recapture of free floating planets. Astrophys. J. 750, 83 (2012).

    Article  ADS  Google Scholar 

  45. Li, G. & Adams, F. C. Interaction cross sections and survival rates for proposed Solar System member Planet Nine. Astrophys. J. 823, L3 (2016).

    Article  ADS  Google Scholar 

  46. Mustill, A. J., Raymond, S. N. & Davies, M. B. Is there an exoplanet in the Solar System? Mon. Not. R. Astron. Soc. 460, L109–L113 (2016).

    Article  ADS  Google Scholar 

  47. Parker, R. J., Lichtenberg, T. & Quanz, S. P. Was Planet 9 captured in the Sun’s natal star-forming region? Mon. Not. R. Astron. Soc. 472, L75–L79 (2017).

    Article  ADS  Google Scholar 

  48. van Elteren, A., Portegies Zwart, S., Pelupessy, I., Cai, M. X. & McMillan, S. L. W. Survivability of planetary systems in young and dense star clusters. Astron. Astrophys. 624, A120 (2019).

    Article  Google Scholar 

  49. Daffern-Powell, E. C., Parker, R. J. & Quanz, S. P. The Great Planetary Heist: theft and capture in star-forming regions. Mon. Not. R. Astron. Soc. 514, 920–934 (2022).

    Article  ADS  Google Scholar 

  50. Boss, A. P. Giant planet formation by gravitational instability. Science 276, 1836–1839 (1997).

    Article  ADS  Google Scholar 

  51. Kenyon, S. J. & Bromley, B. C. Formation of super-Earth mass planets at 125–250 au from a solar-type star. Astrophys. J. 806, 42 (2015).

    Article  ADS  Google Scholar 

  52. Eriksson, L. E. J., Mustill, A. J. & Johansen, A. Circularizing Planet Nine through dynamical friction with an extended, cold planetesimal belt. Mon. Not. R. Astron. Soc. 475, 4609–4616 (2018).

    Article  ADS  Google Scholar 

  53. Bromley, B. C. & Kenyon, S. J. Making Planet Nine: a scattered giant in the outer Solar System. Astrophys. J. 826, 64 (2016).

    Article  ADS  Google Scholar 

  54. Esposito, T. M. et al. Debris disk results from the Gemini Planet Imager Exoplanet Survey’s polarimetric imaging campaign. Astron. J. 160, 24 (2020).

    Article  ADS  Google Scholar 

  55. Beuzit, J. L. et al. SPHERE: the exoplanet imager for the Very Large Telescope. Astron. Astrophys. 631, A155 (2019).

    Article  Google Scholar 

  56. Welsh, W. F. & Orosz, J. A. in Handbook of Exoplanets (eds Deeg, H. J. & Belmonte, J. A.) 2749–2768 (Springer, 2018).

  57. Proszkow, E.-M. & Adams, F. C. Dynamical evolution of young embedded clusters: a parameter space survey. Astrophys. J. Suppl. Ser. 185, 486–510 (2009).

    Article  ADS  Google Scholar 

  58. Allen, L. et al. in Protostars and Planets V (eds Reipurth, B. et al.) 361–376 (Univ. Arizona Press, 2007).

  59. Fall, S. M., Chandar, R. & Whitmore, B. C. New tests for disruption mechanisms of star clusters: methods and application to the antennae galaxies. Astrophys. J. 704, 453–468 (2009).

    Article  ADS  Google Scholar 

  60. Wijnen, T. P. G., Pols, O. R., Pelupessy, F. I. & Portegies Zwart, S. Disc truncation in embedded star clusters: dynamical encounters versus face-on accretion. Astron. Astrophys. 604, A91 (2017).

    Article  ADS  Google Scholar 

  61. Cuello, N., Ménard, F. & Price, D. J. Close encounters: how stellar flybys shape planet-forming discs. Eur. Phys. J. Plus 138, 11 (2023).

    Article  Google Scholar 

  62. Winter, A. J. et al. Protoplanetary disc truncation mechanisms in stellar clusters: comparing external photoevaporation and tidal encounters. Mon. Not. R. Astron. Soc. 478, 2700–2722 (2018).

    Article  ADS  Google Scholar 

  63. Fressin, F. et al. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013).

    Article  ADS  Google Scholar 

  64. Haisch, K. Jr et al. Disk frequencies and lifetimes in young clusters. Astrophys. J. 553, L153 (2001).

    Article  ADS  Google Scholar 

  65. Brasser, R., Duncan, M. J. & Levison, H. F. Embedded star clusters and the formation of the Oort cloud. Icarus 184, 59–82 (2006).

    Article  ADS  Google Scholar 

  66. Rasio, F. A. & Ford, E. B. Dynamical instabilities and the formation of extrasolar planetary systems. Science 274, 954–956 (1996).

    Article  ADS  Google Scholar 

  67. Beaugé, C. & Nesvorný, D. Multiple-planet scattering and the origin of hot Jupiters. Astrophys. J. 751, 119 (2012).

    Article  ADS  Google Scholar 

  68. Levison, H. F., Morbidelli, A., Tsiganis, K., Nesvorný, D. & Gomes, R. Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. Astron. J. 142, 152 (2011).

    Article  ADS  Google Scholar 

  69. Deienno, R. et al. Excitation of a primordial cold asteroid belt as an outcome of planetary instability. Astrophys. J. 864, 50 (2018).

    Article  ADS  Google Scholar 

  70. Higuchi, A., Kokubo, E., Kinoshita, H. & Mukai, T. Orbital evolution of planetesimals due to the Galactic tide: formation of the comet cloud. Astron. J. 134, 1693–1706 (2007).

    Article  ADS  Google Scholar 

  71. Kaib, N. A. & Quinn, T. The formation of the Oort cloud in open cluster environments. Icarus 197, 221–238 (2008).

    Article  ADS  Google Scholar 

  72. Bailey, N. & Fabrycky, D. Stellar flybys interrupting planet–planet scattering generates Oort planets. Astron. J. 158, 94 (2019).

    Article  ADS  Google Scholar 

  73. Raymond, S. N., Izidoro, A. & Kaib, N. A. Oort cloud (exo)planets. Mon. Not. R. Astron. Soc. 524, L72–L77 (2023).

    Article  ADS  Google Scholar 

  74. Izidoro, A. et al. Breaking the chains: hot super-Earth systems from migration and disruption of compact resonant chains. Mon. Not. R. Astron. Soc. 470, 1750–1770 (2017).

    Article  ADS  Google Scholar 

  75. Carter, E. J. & Stamatellos, D. On the survivability of a population of gas giant planets on wide orbits. Mon. Not. R. Astron. Soc. 525, 1912–1921 (2023).

    Article  ADS  Google Scholar 

  76. Mróz, P. et al. A terrestrial-mass rogue planet candidate detected in the shortest-timescale microlensing event. Astrophys. J. 903, L11 (2020).

    Article  ADS  Google Scholar 

  77. Clanton, C. & Gaudi, B. S. Constraining the frequency of free-floating planets from a synthesis of microlensing, radial velocity, and direct imaging survey results. Astrophys. J. 834, 46 (2017).

    Article  ADS  Google Scholar 

  78. Veras, D. & Raymond, S. N. Planet–planet scattering alone cannot explain the free-floating planet population. Mon. Not. R. Astron. Soc. 421, L117–L121 (2012).

    Article  ADS  Google Scholar 

  79. Fulton, B. J. et al. California Legacy Survey. II. Occurrence of giant planets beyond the ice line. Astrophys. J. Suppl. Ser. 255, 14 (2021).

    Article  ADS  Google Scholar 

  80. Bowler, B. P. Imaging extrasolar giant planets. Publ. Astron. Soc. Pac. 128, 102001 (2016).

    Article  ADS  Google Scholar 

  81. Suzuki, D. et al. The Exoplanet mass-ratio function from the MOA-II survey: discovery of a break and likely peak at a Neptune mass. Astrophys. J. 833, 145 (2016).

    Article  ADS  Google Scholar 

  82. Raymond, S. N. et al. Debris disks as signposts of terrestrial planet formation. Astron. Astrophys. 530, A62 (2011).

    Article  Google Scholar 

  83. Durkan, S., Janson, M. & Carson, J. C. High contrast imaging with Spitzer: constraining the frequency of giant planets out to 1000 au separations. Astrophys. J. 824, 58 (2016).

    Article  ADS  Google Scholar 

  84. Baron, F. et al. WEIRD: Wide-orbit Exoplanet Search with InfraRed Direct Imaging. Astron. J. 156, 137 (2018).

    Article  ADS  Google Scholar 

  85. Fischer, D. A. & Valenti, J. The planet–metallicity correlation. Astrophys. J. 622, 1102–1117 (2005).

    Article  ADS  Google Scholar 

  86. Dawson, R. I. & Murray-Clay, R. A. Giant planets orbiting metal-rich stars show signatures of planet–planet interactions. Astrophys. J. 767, L24 (2013).

    Article  ADS  Google Scholar 

  87. Johnson, J. A., Aller, K. M., Howard, A. W. & Crepp, J. R. Giant planet occurrence in the stellar mass–metallicity plane. Publ. Astron. Soc. Pac. 122, 905 (2010).

    Article  ADS  Google Scholar 

  88. Zink, J. K., Batygin, K. & Adams, F. C. The great inequality and the dynamical disintegration of the outer Solar System. Astron. J. 160, 232 (2020).

    Article  ADS  Google Scholar 

  89. Veras, D. Post-main-sequence planetary system evolution. R. Soc. Open Sci. 3, 150571 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  90. Raymond, S. N., Kaib, N. A., Selsis, F. & Bouy, H. Future trajectories of the Solar System: dynamical simulations of stellar encounters within 100 au. Mon. Not. R. Astron. Soc. 527, 6126–6138 (2024).

    Article  ADS  Google Scholar 

  91. Chambers, J. E. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999).

    Article  ADS  Google Scholar 

  92. Chambers, J. E., Quintana, E. V., Duncan, M. J. & Lissauer, J. J. Symplectic integrator algorithms for modeling planetary accretion in binary star systems. Astron. J. 123, 2884–2894 (2002).

    Article  ADS  Google Scholar 

  93. Kaib, N. A., White, E. B. & Izidoro, A. Simulations of the Fomalhaut system within its local Galactic environment. Mon. Not. R. Astron. Soc. 473, 470–491 (2018).

    Article  ADS  Google Scholar 

  94. Duncan, M. J., Levison, H. F. & Lee, M. H. A multiple time step symplectic algorithm for integrating close encounters. Astron. J. 116, 2067–2077 (1998).

    Article  ADS  Google Scholar 

  95. Plummer, H. C. On the problem of distribution in globular star clusters. Mon. Not. R. Astron. Soc. 71, 460–470 (1911).

    Article  ADS  Google Scholar 

  96. Ellithorpe, E. A. & Kaib, N. A. Dynamical fates of S-type planetary systems in embedded cluster environments. Mon. Not. R. Astron. Soc. 515, 2914–2927 (2022).

    Article  ADS  Google Scholar 

  97. Aarseth, S. J., Henon, M. & Wielen, R. A comparison of numerical methods for the study of star cluster dynamics. Astron. Astrophys. 37, 183–187 (1974).

    ADS  Google Scholar 

  98. Brasser, R., Duncan, M. J., Levison, H. F., Schwamb, M. E. & Brown, M. E. Reassessing the formation of the inner Oort cloud in an embedded star cluster. Icarus 217, 1–19 (2012).

    Article  ADS  Google Scholar 

  99. Carpenter, J. M. 2MASS observations of the Perseus, Orion A, Orion B, and Monoceros R2 molecular clouds. Astron. J. 120, 3139–3161 (2000).

    Article  ADS  Google Scholar 

  100. Adams, F. C., Proszkow, E. M., Fatuzzo, M. & Myers, P. C. Early evolution of stellar groups and clusters: environmental effects on forming planetary systems. Astrophys. J. 641, 504–525 (2006).

    Article  ADS  Google Scholar 

  101. Marks, M. & Kroupa, P. Inverse dynamical population synthesis. Constraining the initial conditions of young stellar clusters by studying their binary populations. Astron. Astrophys. 543, A8 (2012).

    Article  ADS  Google Scholar 

  102. Kroupa, P. The initial mass function of stars: evidence for uniformity in variable systems. Science 295, 82–91 (2002).

    Article  ADS  Google Scholar 

  103. Bally, J., Testi, L., Sargent, A. & Carlstrom, J. Disk mass limits and lifetimes of externally irradiated young stellar objects embedded in the Orion nebula. Astron. J. 116, 854–859 (1998).

    Article  ADS  Google Scholar 

  104. Morales, E. F. E., Wyrowski, F., Schuller, F. & Menten, K. M. Stellar clusters in the inner Galaxy and their correlation with cold dust emission. Astron. Astrophys. 560, A76 (2013).

    Article  ADS  Google Scholar 

  105. Ascenso, J. in The Birth of Star Clusters Vol. 424 (ed. Stahler, S.) 1–37 (Springer, 2018).

  106. Tokovinin, A. & Kiyaeva, O. Eccentricity distribution of wide binaries. Mon. Not. R. Astron. Soc. 456, 2070–2079 (2016).

    Article  ADS  Google Scholar 

  107. Clement, M. S., Kaib, N. A., Raymond, S. N. & Walsh, K. J. Mars’ growth stunted by an early giant planet instability. Icarus 311, 340–356 (2018).

    Article  ADS  Google Scholar 

  108. Nesvorny, D. Young Solar System’s fifth giant planet? Astrophys. J. 742, L22 (2011).

    Article  ADS  Google Scholar 

  109. Gomes, R., Nesvorný, D., Morbidelli, A., Deienno, R. & Nogueira, E. Checking the compatibility of the cold Kuiper belt with a planetary instability migration model. Icarus 306, 319–327 (2018).

    Article  ADS  Google Scholar 

  110. Morbidelli, a, Levison, H. F., Tsiganis, K. & Gomes, R. Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005).

    Article  ADS  Google Scholar 

  111. Kokubo, E. & Ida, S. Formation of protoplanets from planetesimals in the solar nebula. Icarus 143, 15–27 (2000).

  112. Lega, E., Crida, A., Bitsch, B. & Morbidelli, A. Migration of Earth-sized planets in 3D radiative discs. Mon. Not. R. Astron. Soc. 440, 683–695 (2014).

    Article  ADS  Google Scholar 

  113. Bitsch, B. & Izidoro, A. Giants are bullies: how their growth influences systems of inner sub-Neptunes and super-Earths. Astron. Astrophys. 674, A178 (2023).

    Article  ADS  Google Scholar 

  114. Wang, J. J. et al. Dynamical constraints on the HR 8799 planets with GPI. Astron. J. 156, 192 (2018).

    Article  ADS  Google Scholar 

  115. Morbidelli, A. & Crida, A. The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus 191, 158–171 (2007).

    Article  ADS  Google Scholar 

  116. Izidoro, A., Raymond, S. N., Morbidelli, A., Hersant, F. & Pierens, A. Gas giant planets as dynamical barriers to inward-migrating super-Earths. Astrophys. J. 800, L22 (2015).

    Article  ADS  Google Scholar 

  117. Hayashi, C. Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981).

    Article  ADS  Google Scholar 

  118. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

    ADS  Google Scholar 

  119. Cresswell, P. & Nelson, R. P. Three-dimensional simulations of multiple protoplanets embedded in a protostellar disc. Astron. Astrophys. 482, 677–690 (2008).

    Article  ADS  Google Scholar 

  120. Coleman, G. A. L. & Nelson, R. P. On the formation of planetary systems via oligarchic growth in thermally evolving viscous discs. Mon. Not. R. Astron. Soc. 445, 479–499 (2014).

    Article  ADS  Google Scholar 

  121. Paaaardekooper, S.-J., Baruteau, C., Crida, A. & Kley, W. A torque formula for non-isothermal type I planetary migration—I. Unsaturated horseshoe drag. Mon. Not. R. Astron. Soc. 401, 1950–1964 (2010).

    Article  ADS  Google Scholar 

  122. Paardekooper, S.-J., Baruteau, C. & Kley, W. A torque formula for non-isothermal type I planetary migration—II. Effects of diffusion. Mon. Not. R. Astron. Soc. 410, 293–303 (2011).

    Article  ADS  Google Scholar 

  123. Ida, S., Muto, T., Matsumura, S. & Brasser, R. A new and simple prescription for planet orbital migration and eccentricity damping by planet–disc interactions based on dynamical friction. Mon. Not. R. Astron. Soc. 494, 5666–5674 (2020).

    Article  ADS  Google Scholar 

  124. Papaloizou, J. C. B. & Larwood, J. D. On the orbital evolution and growth of protoplanets embedded in a gaseous disc. Mon. Not. R. Astron. Soc. 315, 823–833 (2000).

    Article  ADS  Google Scholar 

  125. de Sousa, R. R. et al. Dynamical evidence for an early giant planet instability. Icarus 339, 113605 (2020).

    Article  Google Scholar 

  126. Brasser, R., Duncan, M. J. & Levison, H. F. Embedded star clusters and the formation of the Oort cloud. II. The effect of the primordial solar nebula. Icarus 191, 413–433 (2007).

    Article  ADS  Google Scholar 

  127. Johansen, A. et al. Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007).

    Article  ADS  Google Scholar 

  128. Simon, J. B., Armitage, P. J., Li, R. & Youdin, A. N. The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. Astrophys. J. 822, 55 (2016).

    Article  ADS  Google Scholar 

  129. smirik/mercury. GitHub https://github.com/smirik/mercury (2023).

Download references

Acknowledgements

A. Izidoro is grateful to R. Dasgupta for insightful discussions, help with proofreading, valuable input on paper clarity and partial financial support for this project. A. Izidoro and N.A.K. thank support from the NASA Emerging Worlds Program Grant 80NSSC23K0868. Contributions from N.A.K. were also supported by NASA Exoplanets Research Program grant 80NSSC19K0445 and NSF CAREER Award 2405121. S.N.R. acknowledges funding from the Programme Nationale de Planetologie (PNP) of the INSU (CNRS), and in the framework of the Investments for the Future programme IdEx, Université de Bordeaux/RRI ORIGINS. A.M. acknowledges support from ERC grant 101019380 HolyEarth. This work was supported in part by the Big-Data Private-Cloud Research Cyberinfrastructure MRI-award funded by NSF under grant CNS-1338099 and by Rice University’s Center for Research Computing (CRC).

Author information

Authors and Affiliations

Authors

Contributions

A. Izidoro, S.N.R., N.A.K. and A.M. conceived of the original idea of this project. N.A.K. and A. Izidoro wrote and tested the adapted versions of MERCURY code used in this work. A. Izidoro performed numerical simulations, analysed results and prepared all the figures in the paper. S.N.R., A. Izidoro and N.A.K. drafted the paper with inputs from A.M. and A. Isella. All authors contributed to the interpretation and discussion of the results, writing and editing of the paper.

Corresponding author

Correspondence to André Izidoro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks John Chambers and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Final eccentricity distribution of giant exoplanets surviving in the inner systems after dynamical instabilities.

It shows only giant planets with semi-major axis smaller than 40 au. The eccentricity distribution of radial velocity exoplanets is shown in grey.

Extended Data Fig. 2 Unsuccessful trapping of a wide-orbit planet in an exoplanet gas giant instability simulation.

A planetary dynamical instability takes place at about 3 kyr which scatters Planet-1 and 2 on wide orbits. Planet-2 is ejected from the host star at 25 kyr. Planet-1 evolves onto a high eccentricity orbit and is eventually kicked by Star-4 at about 0.4 Myr. A passage of the host star near the cluster barycenter at 0.7 Myr also affects the orbit of Planet-1. Planet-1 is ultimately ejected from the host start due to multiple flybys of stars 1, 47, 153, and 181, which take place after 1-2 Myr. The simulation stops at 3 Myr. Orbital elements are given with respect to the barycenter of the host-star system.

Extended Data Fig. 3 Planetary system architecture at the end of the gas disk phase in two different simulations modelling the accretion of Uranus and Neptune.

These simulations produced planetary systems that broadly match solar system constraints (almost unitary mass ratio of the ice giants, two planets with masses larger than about 12M, and a dynamically cold planetesimal disk population consistent with the dynamically cold kernel of the Kuiper-belt). Each plot (panels a and b) is composed by two stacked panels. The top-component shows semi-major axis versus eccentricity. The bottom-component shows semi-major axis versus orbital inclination. Jupiter and Saturn are represented by the big black filled circles showed at about 5.25 and about 7.18 AU (near the 3:2 MMR). Color-coded circles represent the formed ice giants and their sizes scale as M1/3, where M is the mass. The color-coding shows the masses of the final planets. The small black circles represent primordial planetesimals. The gray-region show the expected location of Planet-9. The orange-ish regions (a ≈ 45 au, e < 0.1, and i < 10 degrees) are used to represent the Kernel of the current Kuiper-belt. Note that, in both simulations, the dynamical excitation of the primordial disk – after the accretion of the ice giants – is broadly consistent with the cold dynamical architecture of the Kuiper-belt kernel.

Supplementary information

Supplementary Information

Supplementary Text and Figs. 1–6.

Supplementary Video 1

This video corresponds to the simulation shown in Fig. 2a. The large left-side panel shows a top-view projection of the stellar cluster. The top-right panel shows a zoomed-in region around the central star and the bottom-right panel illustrates the dynamical evolution of the planets orbiting the central star in a semi-major axis versus eccentricity diagram. It illustrates the trapping of a wide-orbit exoplanet during a dynamical instability in a system of gas-giant planets. The host star is a solar-mass star embedded in a stellar cluster with 200 members and a Plummer radius of Rc = 40,000 au. The simulation begins with fully formed planets. Planet-2 is scattered onto a wide, eccentric orbit during a planetary instability around 10 kyr. At 100 kyr, a close encounter with Star-197 lifts Planet-2’s pericentre, trapping it on a stable wide orbit. The video stops at 1.35 Myr. Planet-2 remains bound until the simulation ends at 10 Myr (Fig. 2a).

Supplementary Video 2

This video corresponds to the simulation shown in Fig. 2b, which models a similar wide-orbit planet trapping process of Supplementary Video 1, but in the context of a Solar System-like early dynamical instability. The large left-side panel shows a top-view projection of the stellar cluster. The top-right panel shows a zoomed-in region around the Sun and the bottom-right panel illustrates the dynamical evolution of the Solar System giant planets orbiting the central star in a semi-major axis versus eccentricity diagram. The trapped planet survives in a wide orbit consistent with that expected for the putative Planet-9 until the end of the simulation at 6 Myr. This video was rendered with a variable frame rate (VFR) to better illustrate the dynamics and effects of stellar flybys.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izidoro, A., Raymond, S.N., Kaib, N.A. et al. Very-wide-orbit planets from dynamical instabilities during the stellar birth cluster phase. Nat Astron 9, 982–994 (2025). https://doi.org/10.1038/s41550-025-02556-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-025-02556-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing