Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A fast X-ray transient from a weak relativistic jet associated with a type Ic-BL supernova

Abstract

Massive stars end their lives as core-collapse supernovae, among which some extremes are broad-lined type Ic supernovae from Wolf–Rayet stars associated with long-duration gamma-ray bursts (LGRBs) with powerful relativistic jets. Their less-extreme brethren make unsuccessful jets that are choked inside the stars, appearing as X-ray flashes or low-luminosity GRBs. However, there exists a population of extragalactic fast X-ray transients with timescales ranging from seconds to thousands of seconds, whose origins remain obscure. Here we report the discovery of the bright X-ray transient EP240414a detected by the Einstein Probe, which is associated with the type Ic supernova SN 2024gsa at a redshift of 0.401. The X-ray emission evolution is characterized by a very soft energy spectrum peaking at <1.3 keV, which makes it different from known LGRBs, X-ray flashes or low-luminosity GRBs. Follow-up observations at optical and radio bands revealed the existence of a weak relativistic jet that interacts with an extended shell surrounding the progenitor star. Located on the outskirts of a massive galaxy, this event reveals a population of explosions of Wolf–Rayet stars characterized by a less powerful engine that drives a successful but weak jet, possibly owing to a progenitor star with a smaller core angular momentum than in traditional LGRB progenitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multiwavelength images and host-galaxy spectrum of EP240414a and SN 2024gsa.
Fig. 2: X-ray properties of EP240414a.
Fig. 3: Optical and NIR light curves of SN 2024gsa.
Fig. 4: Comparison of the optical spectrum of SN 2024gsa with those of selected stripped-envelope supernovae.

Similar content being viewed by others

Data availability

The light curves and spectra of EP-WXT and EP-FXT and the spectroscopic data are available at https://github.com/huisungh/EP240414a.git. The light curves of Swift-BAT GRBs are public and can be found at https://www.swift.ac.uk/burst_analyser.

Code availability

Upon reasonable request, the code (mostly in Python) used to produce the results and figures will be provided.

References

  1. Jonker, P. G. et al. Discovery of a new kind of explosive X-ray transient near M86. Astrophys. J. 779, 14 (2013).

    Article  ADS  Google Scholar 

  2. Glennie, A., Jonker, P. G., Fender, R. P., Nagayama, T. & Pretorius, M. L. Two fast X-ray transients in archival Chandra data. Mon. Not. R. Astron. Soc. 450, 3765–3770 (2015).

    Article  ADS  Google Scholar 

  3. Xue, Y. Q. et al. A magnetar-powered X-ray transient as the aftermath of a binary neutron-star merger. Nature 568, 198–201 (2019).

    Article  ADS  Google Scholar 

  4. Lin, D., Irwin, J. A., Berger, E. & Nguyen, R. Discovery of three candidate magnetar-powered fast X-ray transients from Chandra archival data. Astrophys. J. 927, 211 (2022).

    Article  ADS  Google Scholar 

  5. Quirola-Vásquez, J. et al. Extragalactic fast X-ray transient candidates discovered by Chandra (2000–2014). Astron. Astrophys. 663, A168 (2022).

    Article  Google Scholar 

  6. Zhang, B. The Physics of Gamma-Ray Bursts (Cambridge Univ. Press, 2018).

  7. Liu, Y. et al. Soft X-ray prompt emission from the high-redshift gamma-ray burst EP240315a. Nat. Astron. 9, 564–576 (2025).

    Article  Google Scholar 

  8. Yin, Y.-H. I. et al. Triggering the untriggered: the first Einstein Probe-detected gamma-ray burst 240219A and its implications. Astrophys. J. Lett. 975, L27 (2024).

    Article  Google Scholar 

  9. Klein, R. I. & Chevalier, R. A. X-ray bursts from type II supernovae. Astrophys. J. Lett. 223, L109–L112 (1978).

    Article  ADS  Google Scholar 

  10. Soderberg, A. M. et al. An extremely luminous X-ray outburst at the birth of a supernova. Nature 453, 469–474 (2008).

    Article  ADS  Google Scholar 

  11. Waxman, E. & Katz, B. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 967–1015 (Springer, 2017).

  12. Sakamoto, T. et al. Global characteristics of X-ray flashes and X-ray-rich gamma-ray bursts observed by HETE-2. Astrophys. J. 629, 311 (2005).

    Article  ADS  Google Scholar 

  13. Campana, S. et al. The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature 442, 1008–1010 (2006).

    Article  ADS  Google Scholar 

  14. Zhang, B. Early X-ray and optical afterglow of gravitational wave bursts from mergers of binary neutron stars. Astrophys. J. Lett. 763, L22 (2013).

    Article  ADS  Google Scholar 

  15. Sun, H. et al. Magnetar emergence in a peculiar gamma-ray burst from a compact star merger. Natl Sci. Rev. 12, nwae401 (2025).

    Article  Google Scholar 

  16. Lian, T. Y. et al. EP240414a: EP-WXT detection of a fast X-ray transient. GRB Coord. Netw. Circ. No. 36091 (2024).

  17. Srivastav, S. et al. Identification of the optical counterpart of the fast X-ray transient EP240414a. Astrophys. J. Lett. 978, L21 (2025).

    Article  Google Scholar 

  18. Bright, J., Carotenuto, F., Jonker, P. G., Fender, R. & Smartt, S. MeerKAT discovery of a probable radio counterpart to EP240414a. GRB Coord. Netw. Circ. No. 36362 (2024).

  19. Bright, J. S. et al. The radio counterpart to the fast X-ray transient EP240414a. Astrophys. J. 981, 48 (2025).

    Article  Google Scholar 

  20. Nakar, E. & Sari, R. Early supernovae light curves following the shock breakout. Astrophys. J. 725, 904–921 (2010).

    Article  ADS  Google Scholar 

  21. Virgili, F. J., Liang, E.-W. & Zhang, B. Low-luminosity gamma-ray bursts as a distinct GRB population: a firmer case from multiple criteria constraints. Mon. Not. R. Astron. Soc. 392, 91–103 (2009).

    Article  ADS  Google Scholar 

  22. Hjorth, J. & Bloom, J. S. in Gamma-Ray Bursts (eds Kouveliotou, C. et al.) 169–190 (Cambridge Univ. Press, 2012).

  23. Sun, H., Zhang, B. & Li, Z. Extragalactic high-energy transients: event rate densities and luminosity functions. Astrophys. J. 812, 33 (2015).

    Article  ADS  Google Scholar 

  24. Wang, X.-Y., Li, Z., Waxman, E. & Mészáros, P. Nonthermal gamma-ray/X-ray flashes from shock breakout in gamma-ray burst-associated supernovae. Astrophys. J. 664, 1026 (2007).

    Article  ADS  Google Scholar 

  25. Nakar, E. & Sari, R. Relativistic shock breakouts—a variety of gamma-ray flares: from low-luminosity gamma-ray bursts to type Ia supernovae. Astrophys. J. 747, 88 (2012).

    Article  ADS  Google Scholar 

  26. Amati, L. et al. Intrinsic spectra and energetics of BeppoSAX gamma-ray bursts with known redshifts. Astron. Astrophys. 390, 81–89 (2002).

    Article  ADS  Google Scholar 

  27. Zhang, B. et al. Discerning the physical origins of cosmological gamma-ray bursts based on multiple observational criteria: the cases of z = 6.7 GRB 080913, z = 8.2 GRB 090423, and some short/hard GRBs. Astrophys. J. 703, 1696–1724 (2009).

    Article  ADS  Google Scholar 

  28. Guan, J. et al. EP240414a: EP-FXT follow-up observation. GRB Coord. Netw. Circ. No. 36129 (2024).

  29. Oke, J. B. et al. The Keck Low-Resolution Imaging Spectrometer. Publ. Astron. Soc. Pac. 107, 375 (1995).

    Article  ADS  Google Scholar 

  30. Woosley, S. E. & Bloom, J. S. The supernova gamma-ray burst connection. Annu. Rev. Astron. Astrophys. 44, 507–556 (2006).

    Article  ADS  Google Scholar 

  31. Cano, Z., Wang, S.-Q., Dai, Z.-G. & Wu, X.-F. The observer’s guide to the gamma-ray burst supernova connection. Adv. Astron. 2017, 8929054 (2017).

    Article  ADS  Google Scholar 

  32. Galama, T. J. et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395, 670–672 (1998).

    Article  ADS  Google Scholar 

  33. Pian, E. et al. An optical supernova associated with the X-ray flash XRF 060218. Nature 442, 1011–1013 (2006).

    Article  ADS  Google Scholar 

  34. Crowther, P. A. Physical properties of Wolf–Rayet stars. Annu. Rev. Astron. Astrophys. 45, 177–219 (2007).

    Article  ADS  Google Scholar 

  35. Japelj, J. et al. Host galaxies of SNe Ic-BL with and without long gamma-ray bursts. Astron. Astrophys. 617, A105 (2018).

    Article  Google Scholar 

  36. Fruchter, A. S. et al. Long γ-ray bursts and core-collapse supernovae have different environments. Nature 441, 463–468 (2006).

    Article  ADS  Google Scholar 

  37. Margalit, B. Analytic light curves of dense CSM shock breakout and cooling. Astrophys. J. 933, 238 (2022).

    Article  ADS  Google Scholar 

  38. Arnett, W. D. Type I supernovae. I—analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982).

    Article  ADS  Google Scholar 

  39. Yuan, W., Zhang, C., Chen, Y. & Ling, Z. in Handbook of X-ray and Gamma-ray Astrophysics (eds Bambi, C. & Santangelo, A.) 1171–1200 (Springer, 2022).

  40. Zhang, C. et al. First wide field-of-view X-ray observations by a lobster-eye focusing telescope in orbit. Astrophys. J. Lett. 941, L2 (2022).

    Article  ADS  Google Scholar 

  41. Cheng, H. et al. Ground calibration result of the Lobster Eye Imager for Astronomy. Exp. Astron. 57, 10 (2024).

    Article  ADS  Google Scholar 

  42. Chen, Y. et al. Status of the follow-up X-ray telescope onboard the Einstein Probe satellite. Proc. SPIE 11444, 114445B (2020).

  43. Howell, D. A. & Global Supernova Project. The Global Supernova Project. In American Astronomical Society Meeting Abstracts Vol. 230, 318.03 (2017).

  44. Brown, T. M. et al. Las Cumbres Observatory global telescope network. Publ. Astron. Soc. Pac. 125, 1031 (2013).

    Article  ADS  Google Scholar 

  45. Castro-Tirado, A. J. Tracking transients night and day. Nat. Astron. 7, 1136 (2023).

    Article  ADS  Google Scholar 

  46. Brennan, S. J. & Fraser, M. The Automated Photometry of Transients pipeline (AUTOPHOT). Astron. Astrophys. 667, A62 (2022).

    Article  ADS  Google Scholar 

  47. Landolt, A. U. UBVRI photometric standard stars in the magnitude range 11.5 < V < 16.0 around the celestial equator. Astron. J. 104, 340 (1992).

    Article  ADS  Google Scholar 

  48. SDSS Collaboration et al. The 13th Data Release of the Sloan Digital Sky Survey: first spectroscopic data from the SDSS-IV survey mapping nearby galaxies at Apache Point Observatory. Astrophys. J. Suppl. Ser. 233, 25 (2017).

    Article  Google Scholar 

  49. Chambers, K. C. et al. The Pan-STARRS1 surveys. Preprint at https://arxiv.org/abs/1612.05560 (2016).

  50. Wilson, J. C. et al. A wide-field infrared camera for the Palomar 200-inch telescope. Proc. SPIE 4841, 451–458 (2003).

  51. Bertin, E. et al. The terapix pipeline. In Astronomical Data Analysis Software and Systems XI, Astronomical Society of the Pacific Conference Series Vol. 281 (eds Bohlender, D. A. et al.) 228–237 (Astronomical Society of the Pacific, 2002).

  52. Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).

    Article  ADS  Google Scholar 

  53. Zackay, B., Ofek, E. O. & Gal-Yam, A. Proper image subtraction-optimal transient detection, photometry, and hypothesis testing. Astrophys. J. 830, 27 (2016).

    Article  ADS  Google Scholar 

  54. Guevel, D. & Hosseinzadeh, G. PyZOGY: initial release. GitHub https://github.com/dguevel/PyZOGY (2017).

  55. Perley, D. A. Fully automated reduction of longslit spectroscopy with the Low Resolution Imaging Spectrometer at the Keck Observatory. Publ. Astron. Soc. Pac. 131, 084503 (2019).

    Article  ADS  Google Scholar 

  56. Gaia Collaboration et al. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

    Article  Google Scholar 

  57. Gaia Collaboration et al. Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys. 674, A1 (2023).

    Article  Google Scholar 

  58. van Leeuwen, F. et al. Gaia DR3 Documentation (European Space Agency and Gaia Data Processing and Analysis Consortium, 2022).

  59. Wilson, J. C. et al. Mass producing an efficient NIR spectrograph. Proc. SPIE 5492, 1295–1305 (2004).

  60. Harutyunyan, A. H. et al. ESC supernova spectroscopy of non-ESC targets. Astron. Astrophys. 488, 383–399 (2008).

    Article  ADS  Google Scholar 

  61. Howell, D. A. et al. Gemini spectroscopy of supernovae from the Supernova Legacy Survey: improving high-redshift supernova selection and classification. Astrophys. J. 634, 1190–1201 (2005).

    Article  ADS  Google Scholar 

  62. Xiang, D. et al. Observations of SN 2017ein reveal shock breakout emission and a massive progenitor star for a type Ic supernova. Astrophys. J. 871, 176 (2019).

    Article  ADS  Google Scholar 

  63. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  Google Scholar 

  64. Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    Article  ADS  Google Scholar 

  65. Planck Collaboration et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  66. Du, P. DASpec: a code for spectral decomposition of active galactic nuclei. GitHub https://github.com/PuDu-Astro/DASpec (2024).

  67. Pettini, M. & Pagel, B. E. J. [O iii]/[N ii] as an abundance indicator at high redshift. Mon. Not. R. Astron. Soc. 348, L59–L63 (2004).

    Article  ADS  Google Scholar 

  68. Graham, J. F. & Fruchter, A. S. The metal aversion of long-duration gamma-ray bursts. Astrophys. J. 774, 119 (2013).

    Article  ADS  Google Scholar 

  69. Qin, Y.-J. & Zabludoff, A. Linking transients to their host galaxies—II. A comparison of host galaxy properties and rate dependencies across supernova types. Mon. Not. R. Astron. Soc. 533, 3517–3545 (2024).

    Article  Google Scholar 

  70. Dey, A. et al. Overview of the DESI Legacy Imaging Surveys. Astron. J. 157, 168 (2019).

    Article  ADS  Google Scholar 

  71. Alam, S. et al. The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: final data from SDSS-III. Astrophys. J. Supp. 219, 12 (2015).

    Article  ADS  Google Scholar 

  72. Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Demleitner, M. & Andrae, R. Estimating distances from parallaxes. V. Geometric and photogeometric distances to 1.47 billion stars in Gaia Early Data Release 3. Astron. J. 161, 147 (2021).

    Article  ADS  Google Scholar 

  73. Bloom, J. S., Kulkarni, S. R. & Djorgovski, S. G. The observed offset distribution of gamma-ray bursts from their host galaxies: a robust clue to the nature of the progenitors. Astron. J. 123, 1111–1148 (2002).

    Article  ADS  Google Scholar 

  74. Willingale, R., Starling, R. L. C., Beardmore, A. P., Tanvir, N. R. & O’Brien, P. T. Calibration of X-ray absorption in our Galaxy. Mon. Not. R. Astron. Soc. 431, 394–404 (2013).

    Article  ADS  Google Scholar 

  75. Li, T. P. & Ma, Y. Q. Analysis methods for results in gamma-ray astronomy. Astrophys. J. 272, 317–324 (1983).

    Article  ADS  Google Scholar 

  76. Mukai, K. PIMMS and viewing: proposal preparation tools. Legacy 3, 21–31 (1993).

    Google Scholar 

  77. Sari, R., Piran, T. & Narayan, R. Spectra and light curves of gamma-ray burst afterglows. Astrophys. J. Lett. 497, L17–L20 (1998).

    Article  ADS  Google Scholar 

  78. Gao, H., Lei, W.-H., Zou, Y.-C., Wu, X.-F. & Zhang, B. A complete reference of the analytical synchrotron external shock models of gamma-ray bursts. N. Astron. Rev. 57, 141–190 (2013).

    Article  ADS  Google Scholar 

  79. Mészáros, P., Rees, M. J. & Wijers, R. A. M. J. Viewing angle and environment effects in gamma-ray bursts: sources of afterglow diversity. Astrophys. J. 499, 301–308 (1998).

    Article  ADS  Google Scholar 

  80. Zhang, B. & Mészáros, P. Gamma-ray burst afterglow with continuous energy injection: signature of a highly magnetized millisecond pulsar. Astrophys. J. Lett. 552, L35–L38 (2001).

    Article  ADS  Google Scholar 

  81. Li, G. et al. A shock flash breaking out of a dusty red supergiant. Nature 627, 754–758 (2024).

    Article  ADS  Google Scholar 

  82. Ofek, E. O. et al. Supernova PTF 09UJ: a possible shock breakout from a dense circumstellar wind. Astrophys. J. 724, 1396–1401 (2010).

    Article  ADS  Google Scholar 

  83. Chevalier, R. A. & Irwin, C. M. Shock breakout in dense mass loss: luminous supernovae. Astrophys. J. Lett. 729, L6 (2011).

    Article  ADS  Google Scholar 

  84. Khatami, D. K. & Kasen, D. N. The landscape of thermal transients from supernovae interacting with a circumstellar medium. Astrophys. J. 972, 140 (2024).

    Article  Google Scholar 

  85. Piro, A. L. Using double-peaked supernova light curves to study extended material. Astrophys. J. Lett. 808, L51 (2015).

    Article  ADS  Google Scholar 

  86. Piro, A. L., Haynie, A. & Yao, Y. Shock cooling emission from extended material revisited. Astrophys. J. 909, 209 (2021).

    Article  ADS  Google Scholar 

  87. Nakar, E. A unified picture for low-luminosity and long gamma-ray bursts based on the extended progenitor of llGRB 060218/SN 2006aj. Astrophys. J. 807, 172 (2015).

    Article  ADS  Google Scholar 

  88. De, K. et al. A hot and fast ultra-stripped supernova that likely formed a compact neutron star binary. Science 362, 201–206 (2018).

    Article  ADS  Google Scholar 

  89. Whitesides, L. et al. iPTF 16asu: a luminous, rapidly evolving, and high-velocity supernova. Astrophys. J. 851, 107 (2017).

    Article  ADS  Google Scholar 

  90. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article  ADS  Google Scholar 

  91. Yüksel, H., Kistler, M. D., Beacom, J. F. & Hopkins, A. M. Revealing the high-redshift star formation rate with gamma-ray bursts. Astrophys. J. Lett. 683, L5 (2008).

    Article  ADS  Google Scholar 

  92. Gehrels, N. Confidence limits for small numbers of events in astrophysical data. Astrophys. J. 303, 336 (1986).

    Article  ADS  Google Scholar 

  93. Evans, P. A. et al. The Swift Burst Analyser. I. BAT and XRT spectral and flux evolution of gamma ray bursts. Astron. Astrophys. 519, A102 (2010).

    Article  Google Scholar 

  94. Modjaz, M. et al. From shock breakout to peak and beyond: extensive panchromatic observations of the type Ib supernova 2008D associated with Swift X-ray transient 080109. Astrophys. J. 702, 226–248 (2009).

    Article  ADS  Google Scholar 

  95. Kaneko, Y. et al. Prompt and afterglow emission properties of gamma-ray bursts with spectroscopically identified supernovae. Astrophys. J. 654, 385–402 (2007).

    Article  ADS  Google Scholar 

  96. Clocchiatti, A., Suntzeff, N. B., Covarrubias, R. & Candia, P. The ultimate light curve of SN 1998bw/GRB 980425. Astron. J. 141, 163 (2011).

    Article  ADS  Google Scholar 

  97. van Dalen, J. N. D. et al. The Einstein Probe Transient EP240414a: linking fast X-ray transients, gamma-ray bursts, and luminous fast blue optical transients. Astrophys. J. Lett. 982, L47 (2025).

    Article  Google Scholar 

  98. Patat, F. et al. The metamorphosis of SN 1998bw. Astrophys. J. 555, 900–917 (2001).

    Article  ADS  Google Scholar 

  99. Mazzali, P. A. et al. The metamorphosis of supernova SN 2008D/XRF 080109: a link between supernovae and GRBs/hypernovae. Science 321, 1185–1188 (2008).

    Article  ADS  Google Scholar 

  100. Berger, E. et al. Radio monitoring of the tidal disruption event Swift J164449.3+573451. I. Jet energetics and the pristine parsec-scale environment of a supermassive black hole. Astrophys. J. 748, 36 (2012).

    Article  ADS  Google Scholar 

  101. Alexander, K. D., Berger, E., Guillochon, J., Zauderer, B. A. & Williams, P. K. G. Discovery of an outflow from radio observations of the tidal disruption event ASASSN-14li. Astrophys. J. Lett. 819, L25 (2016).

    Article  ADS  Google Scholar 

  102. Soderberg, A. M. et al. The radio and X-ray-luminous type Ibc supernova 2003L. Astrophys. J. 621, 908–920 (2005).

    Article  ADS  Google Scholar 

  103. Salas, P., Bauer, F. E., Stockdale, C. & Prieto, J. L. SN 2007bg: the complex circumstellar medium around one of the most radio-luminous broad-lined type Ic supernovae. Mon. Not. R. Astron. Soc. 428, 1207–1217 (2013).

    Article  ADS  Google Scholar 

  104. Kulkarni, S. R. et al. Radio emission from the unusual supernova 1998bw and its association with the γ-ray burst of 25 April 1998. Nature 395, 663–669 (1998).

    Article  ADS  Google Scholar 

  105. Soderberg, A. M. et al. A relativistic type Ibc supernova without a detected γ-ray burst. Nature 463, 513–515 (2010).

    Article  ADS  Google Scholar 

  106. Berger, E. et al. A common origin for cosmic explosions inferred from calorimetry of GRB030329. Nature 426, 154–157 (2003).

    Article  ADS  Google Scholar 

  107. Soderberg, A. M. et al. Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions. Nature 442, 1014–1017 (2006).

    Article  ADS  Google Scholar 

  108. Perley, D. A. et al. The afterglow of GRB 130427A from 1 to 1016 GHz. Astrophys. J. 781, 37 (2014).

    Article  ADS  Google Scholar 

  109. Margutti, R. et al. An embedded X-ray source shines through the aspherical AT 2018cow: revealing the inner workings of the most luminous fast-evolving optical transients. Astrophys. J. 872, 18 (2019).

    Article  ADS  Google Scholar 

  110. Coppejans, D. L. et al. A mildly relativistic outflow from the energetic, fast-rising blue optical transient CSS161010 in a dwarf galaxy. Astrophys. J. Lett. 895, L23 (2020).

    Article  ADS  Google Scholar 

  111. Ho, A. Y. Q. et al. The Koala: a fast blue optical transient with luminous radio emission from a starburst dwarf galaxy at z = 0.27. Astrophys. J. 895, 49 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is based on data obtained with the Einstein Probe, a space mission supported by the Strategic Priority Program on Space Science of the Chinese Academy of Sciences, in collaboration with ESA, MPE and CNES (grant XDA15310000); the Strategic Priority Program on Space Science of the Chinese Academy of Sciences (grant number E02212A02S) and the Strategic Priority Research Program of the Chinese Academy of Sciences (grant number XDB0550200). We acknowledge the support by the National Natural Science Foundation of China (NSFC grants 12288102, 12373040, 12021003, 12103065, 12333004, 12203071, 12033003, 12233002 and 12303047). This work is also supported by the National Key R&D Program of China (grant 2022YFF0711500). W.-X.L., S.-J.X., H.Z. and W.-J.G. acknowledge the support from the Strategic Priority Research Program of the Chinese Academy of Sciences (grant numbers XDB0550100 and XDB0550000), National Key R&D Program of China (grant numbers 2023YFA1607804, 2022YFA1602902 and 2023YFA1608100) and National Natural Science Foundation of China (NSFC; grant numbers 12120101003, 12373010 and 12233008) X.-F. Wang’s group at Tsinghua University is supported by NSFC (grants 12288102 and 12033003), and the Tencent Xplorer Prize. A.V.F.’s group at UC Berkeley is grateful for financial assistance from the Christopher R. Redlich Fund, G. and C. Bengier, C. and S. Winslow, A. Eustace (W.-K.Z. is a Bengier–Winslow–Eustace Specialist in Astronomy), W. Draper, T. and M. Draper, B. and K. Wood, S. Robertson (T.G.B. is a Draper–Wood–Robertson Specialist in Astronomy), and many other donors. S.A. has received support from the Carlsberg Foundation (CF18-0183, principal investigator I. Tamborra). This work is supported by the ANID FONDECYT project number 3220029. Z.G. is funded by ANID, Millennium Science Initiative, AIM23-001. Partly based on observations made with the Nordic Optical Telescope, owned in collaboration by the University of Turku and Aarhus University, and operated jointly by Aarhus University, the University of Turku and the University of Oslo, representing Denmark, Finland and Norway, the University of Iceland and Stockholm University at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. A.J.C.T. acknowledges support from the Spanish Ministry projects PID2020-118491GB-I00 and PID2023-151905OB-I00 and Junta de Andalucía grant P20_010168 and from the Severo Ochoa grant CEX2021-001131-S funded by MCIN/AEI/10.13039/501100011033. We acknowledge the support of the staff of the 10.4 m Gran Telescopio Canarias (GTC) and Keck I 10 m telescope. This work makes use of the Las Cumbres Observatory global network of robotic telescopes. The LCO group is supported by NSF grants AST-1911225 and AST-1911151. S.B. and N.E.-R. acknowledge support from the PRIN-INAF 2022, ‘Shedding light on the nature of gap transients: from the observations to the models’. We gratefully acknowledge the China National Astronomical Data Center (NADC), the Astronomical Data Center of the Chinese Academy of Sciences, and the Chinese Virtual Observatory (China-VO) for providing data resources and technical support. The work of D.S.S., A.V.R. and D.D.F. was supported by the basic funding programme of the Ioffe Institute number FFUG-2024-0002. The radio data processing was conducted using China SKA Regional Center compute system. The Australia Telescope Compact Array is part of the Australia Telescope National Facility which is funded by the Australian Government for operation as a National Facility managed by CSIRO. This research has made use of the Common Astronomy Software Applications (CASA). T. An acknowledges the support of the Xinjiang Tianchi Talent Program. T. An and Y.-Q.L. are supported by the National SKA Program of China grant numbers 2022SKA0130103 and FAST special funding (NSFC 12041301).

Author information

Authors and Affiliations

Authors

Contributions

W.Y. has been leading the Einstein Probe project as principal investigator since the mission proposal stage. H.G., H.S., B.Z., W.-X.L., X.-F. Wang and Y.L. initiated the study. H.G., X.-F. Wang, B.Z., X.-F. Wu, H.S., W.-X.L. and L.-D. Liu coordinated the scientific investigations of the event and led the discussions. H.S., Y.L., T.-Y.L. processed and analysed the WXT data. Q.-Y.W. and H.S. processed and analysed the FXT data. Q.-Y.W. processed and analysed the XRT data. W.-X.L., X.-F. Wang and D.X. led the optical and near-infrared data taking and data analysis. A.V.F., W.-K.Z. Y.Y., T.G.B. and N.E.-R. obtained and reduced the optical/NIR spectroscopy and photometry. T. An and Y.-Q.L. helped with the radio data taking and analysis. S.B. helped with the reduction of GTC photometry and spectroscopy. D.M., S.A.E. and D.A.H. contributed to the optical data taking with AZT-22 telescope and LCO 1 m telescopes, respectively. L.-D. Liu, H.G., B.Z. and S.A. led the theoretical investigation of the event. W.-X.L, H.S., B.-B.Z., X.-F. Wang and D.X. contributed to the theoretical investigation of the event. C.-Y.W., B.-B.Z. and B.Z. contributed to comparing this event with GRBs. H.S. contributed to the event rate density. J.D. performed the GRB search in Swift/BAT data and the upper limit. D.S.S., A.V.R. and D.D.F. performed GRB search in the Konus-Wind data and the upper limit. T.-Y.L., X.P., Y.-F.L., J.Y. and C.-Y.D. are the transient advocates on 14 April 2024 and contributed to the discovery and preliminary analysis of the event. Z.-X.L., C.Z., S.-N.Z., X.-J.S., S.-L.S., X.-F.Z., Y.-H.Z., Z.-M.C. F.-S.C. and W.Y. contributed to the development of the WXT instrument. C.Z., Z.-X.L., H.-Q.C., D.-H.Z. and Y.L. contributed to the calibration of WXT data. Y.L., H.-Q.C., C.-C.J., W.-D.Z., D.-Y.L., J.-W.H., H.-Y.L., H.S., H.-W.P. and M.-J.L. contributed to the development of WXT data analysis software. Y.C., S.-M.J., W.-W.C., C.-K.L., D.-W.H., J.W., W.L., Y.-J.Y., Y.-S.W., H.-S.Z., J.G., J.Z., X.-F.Z., J.-J.X., J.M., L.-D. Luo, H.W., X.-T.Y., T.-X.C., J.H., Z.-J.Z., Z.-L.Z., M.-S.L., Y.-X.Z., D.-J.H., L.-M.S., F.-J.L., C.-Z.L., Q.-J.T. and H.-L.C. contributed to the development of the FXT instrument. S.-M.J., H.-S.Z., C.-K.L., J.Z. and J.G. contributed to the development of FXT data analysis software. W.-X.L., H.S., L.-D. Liu, H.G., X.-F. Wang, B.Z. and S.A. drafted the paper with help from all authors. A.V.F. assisted with editing the paper.

Corresponding authors

Correspondence to H. Gao, X.-F. Wang, W. Yuan or B. Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The WXT spectrum in the time interval of T90.

a, The WXT observed spectrum and the predicted best-fit absorbed power-law model. Data are presented as the count rate spectrum with 1σ uncertainties. b, Best-fit values of photon index and intrinsic absorption Nint and the 1σ, 2σ confidence contours. c, The spectral energy distribution. Data are presented as the energy flux density with 1σ uncertainties. The upper limits displayed in brown and green represent those of Konus Wind and Swift/BAT, respectively.

Extended Data Fig. 2 Fitting of the theoretical afterglow model to the X-ray, optical, and radio data.

Left panel: The early X-ray (1 keV) and optical (r and i band) afterglow light curves and the modeling with the classical GRB afterglow model77,78. Data are presented as the measured flux density with 1σ uncertainties. Right panel: The synchrotron spectrum in the radio band at T0 + 19 days. The νa and νm are the selfabsorption frequency and the synchrotron frequency related to the accelerated electrons at the low-energy end, respectively.

Extended Data Fig. 3 Radio luminosity of EP240414a/SN 2024g sa.

The 9 GHz radio luminosity of EP240414a/SN 2024gsa is compared to low-frequency (1–10 GHz) light curves of different classes of energetic explosions: tidal disruption events100,101, SNe102,103, relativistic Ic-BL SNe104,105, long-duration GRBs106,107,108, and fast blue optical transients109,110,111.

Extended Data Fig. 4 Redshift-corrected optical and NIR spectra of SN 2024gsa.

The optical spectrum was obtained on April 19.9 using the GTC/OSIRIS+ instrument (light blue) and the NIR spectrum was obtained on April 19.3 using the Keck/NIRES instrument (light red). Rebinned versions of both spectra, generated using a bin width of 20 Å, are also overplotted in blue and red, respectively. Two photometric data points taken at similar phases in the i and z bands, converted to flux density, are also plotted along with their transmission curves. The uncertainties associated with the two data points are shown at the 1σ confidence level. The effective wavelengths have been redshift-corrected, while the flux density remains uncorrected for redshift.

Extended Data Fig. 5 Projected offsets of SNe Ic-BL and GRBSNe.

The cumulative distributions of the projected offsets from the host-galaxy centres for a sample of SNe Ic-BL (blue) and GRBSNe (yellow) are shown as solid lines35, with SN 2024gsa marked by a red star. An I-band image of the host galaxy, obtained with the Keck-I telescope, is overlaid as an inset; Object 1 corresponds to J1246, the faint Object 2 to SN 2024gsa, and Object 3 to a foreground point source.

Extended Data Table 1 Spectral results of Xray observations of EP240414a
Extended Data Table 2 Log of X-ray follow-up observations by EP-FXT and Swift/XRT
Extended Data Table 3 Optical and NIR photometry of SN 2024gsa
Extended Data Table 4 Afterglow C-band flux density observed on May 3 by ATCA

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Li, WX., Liu, LD. et al. A fast X-ray transient from a weak relativistic jet associated with a type Ic-BL supernova. Nat Astron 9, 1073–1085 (2025). https://doi.org/10.1038/s41550-025-02571-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-025-02571-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing