Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Why wide Jupiter-mass binary objects cannot form

Subjects

The Original Article was published on 19 April 2024

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: JuMBO population at an age of 1 Myr.
Fig. 2: JMO population at an age of 1 Myr.

Data availability

Data related to the simulations in this manuscript can be found at https://doi.org/10.5281/zenodo.10149241 (ref. 15).

Code availability

The code for this manuscript is available from GitHub (https://github.com/amusecode/Starlab), the Astrophysics Multipurpose Software Environment (http://amusecode.org) and GitLab (https://gitlab.strw.leidenuniv.nl/spz/jumboformation; specific script for reproducing the runs).

References

  1. Pearson, S. G. & McCaughrean, M. J. Jupiter mass binary objects in the Trapezium cluster. Preprint at https://doi.org/10.48550/arXiv.2310.01231 (2023).

  2. Wang, Y., Perna, R. & Zhu, Z. Free-floating binary planets from ejections during close stellar encounters. Nat. Astron. 8, 756–764 (2024).

    Article  Google Scholar 

  3. Portegies Zwart, S. & Hochart, E. The origin and evolution of wide Jupiter mass binary objects in young stellar clusters. SciPost Astro. 3, 001 (2024).

    Article  Google Scholar 

  4. Yu, F. & Lai, D. Free-floating planets, survivor planets, captured planets, and binary planets from stellar flybys. Astrophys. J. 970, 97 (2024).

    Article  Google Scholar 

  5. Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    Article  ADS  Google Scholar 

  6. Hillenbrand, L. A. & Hartmann, L. W. A preliminary study of the Orion Nebula cluster structure and dynamics. Astrophys. J. 492, 540–553 (1998).

    Article  ADS  Google Scholar 

  7. Hut, P. & Bahcall, J. N. Binary-single star scattering. I—Numerical experiments for equal masses. Astrophys. J. 268, 319–341 (1983).

    Article  ADS  Google Scholar 

  8. Jones, B. F. & Walker, M. F. Proper motions and variabilities of stars near the Orion Nebula. Astron. J. 95, 1755 (1988).

    Article  ADS  Google Scholar 

  9. Vicente, S. M. & Alves, J. Size distribution of circumstellar disks in the Trapezium cluster. Astron. Astrophys. 441, 195–205 (2005).

    Article  ADS  Google Scholar 

  10. Barenfeld, S. A., Carpenter, J. M., Sargent, A. I., Isella, A. & Ricci, L. Measurement of circumstellar disk sizes in the Upper Scorpius OB association with ALMA. Astrophys. J. 851, 85 (2017).

    Article  ADS  Google Scholar 

  11. Gurrutxaga, N., Johansen, A., Lambrechts, M. & Appelgren, J. Formation of wide-orbit giant planets in protoplanetary disks with a decreasing pebble flux. Astron. Astrophys. 682, 43 (2024).

    Article  ADS  Google Scholar 

  12. Portegies Zwart, S. F., McMillan, S. L. W., van Elteren, A., Pelupessy, F. I. & de Vries, N. Multi-physics simulations using a hierarchical interchangeable software interface. Comput. Phys. Commun. 184, 456–468 (2013).

    Article  ADS  Google Scholar 

  13. Whitworth, A. P. & Stamatellos, D. The minimum mass for star formation, and the origin of binary brown dwarfs. Astron. Astrophys. 458, 817–829 (2006).

    Article  ADS  MATH  Google Scholar 

  14. Barenfeld, S. A., Carpenter, J. M., Ricci, L. & Isella, A. ALMA observations of circumstellar disks in the Upper Scorpius OB association. Astrophys. J. 827, 142 (2016).

    Article  ADS  Google Scholar 

  15. Portegies Zwart, S. & Hochart, E. JuMBOs: Jupiter-mass binary objects as originating from four models ISF, FFC, SPP and SPP. Zenodo https://doi.org/10.5281/zenodo.10149241 (2023).

  16. Plummer, H. C. On the problem of distribution in globular star clusters. Mon. Not. R. Astron. Soc. 71, 460–470 (1911).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. McCaughrean, A. L. Varri, A. Brown, M. Kenworthy and R. Perna for discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.P.Z. and E.H. initiated the topic and discussed the science. S.P.Z. wrote the run scripts, performed the simulations, analysed the data, wrote the first version of the manuscript and dealt with the refereeing and editorial contacts. E.H. checked the run scripts, performed independent validation runs and wrote the final version of the manuscript.

Corresponding author

Correspondence to Simon Portegies Zwart.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, Software, Data and References.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portegies Zwart, S., Hochart, E. Why wide Jupiter-mass binary objects cannot form. Nat Astron 9, 957–959 (2025). https://doi.org/10.1038/s41550-025-02609-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-025-02609-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing