Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of interior dynamics and differentiation on the surface and in the atmosphere of lava planets

Abstract

Lava planets are rocky exoplanets that orbit so close to their host star that their dayside is hot enough to melt silicate rock. Their short orbital periods ensure that lava planets are tidally locked into synchronous rotation, with permanent day and night hemispheres. Such asymmetric magma oceans have no analogues in the Solar System and their internal dynamics and evolution are still poorly understood. Here we report the results of numerical simulations showing that solid–liquid fractionation has a major impact on the composition and evolution of lava planets. We explored two different interior thermal states. If the interior is fully molten, the atmosphere will reflect the planet’s bulk silicate composition, and the nightside solid surface is gravitationally unstable and constantly replenished. If the interior is mostly solid with only a shallow magma ocean on the dayside, the outgassed atmosphere will lack in Na, K and FeO, and the nightside will have an entirely solid mantle with a cold surface. We show that these two end-member cases can be distinguished with observations from JWST, offering an avenue to probe the thermal and chemical evolution of exoplanet interiors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Numerical simulations of lava planet interior dynamics with no rotation.
Fig. 2: Three-dimensional simulations of global magma ocean dynamics accounting for rotation.
Fig. 3: Thermal and chemical evolution of a lava planet’s magma ocean.
Fig. 4: Stages of lava planet magma ocean for a hot versus cold interior.
Fig. 5: Simulated JWST constraints on the nightside temperature of lava planets.
Fig. 6: Simulated emission spectra for five potential lava planet targets.

Similar content being viewed by others

Data availability

All data used in this paper are accessible via the fair depository of the Institut de Physique du Globe de Paris at https://doi.org/10.18715/IPGP.2024.m41y3glp (ref. 85).

Code availability

The code MagIc72,73,74 is open source and can be accessed at https://magic-sph.github.io/. MagIc version 6.0 was used and is also available via Zenodo at https://doi.org/10.5281/zenodo.595153 (ref. 86). The code Bambari can be accessed on GitHub upon reasonable request.

References

  1. Léger, A. et al. Transiting exoplanets from the CoRoT space mission: VIII. CoRoT-7b: the first super-Earth with measured radius. Astron. Astrophys. 506, 287–302 (2009).

    Article  ADS  Google Scholar 

  2. Espinoza, N. et al. The first near-infrared spectroscopic phase-curve of a super-Earth. JWST Proposal Cycle 1 2159 (2021).

  3. Driscoll, P. E. & Barnes, R. Tidal heating of earth-like exoplanets around M stars: thermal, magnetic, and orbital evolutions. Astrobiology 15, 739–760 (2015).

    Article  ADS  Google Scholar 

  4. Valencia, D., Ikoma, M., Guillot, T. & Nettelmann, N. Composition and fate of short-period super-Earths—the case of CoRoT-7b. Astron. Astrophys. 516, A20 (2010).

    Article  ADS  Google Scholar 

  5. Owen, J. E. Atmospheric escape and the evolution of close-in exoplanets. Annu. Rev. Earth Planet. Sci. 47, 67–90 (2019).

    Article  ADS  Google Scholar 

  6. Schaefer, L. & Fegley, B. Jr Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellites. Icarus 186, 462–483 (2007).

    Article  ADS  Google Scholar 

  7. Castan, T. & Menou, K. Atmospheres of hot super-Earths. Astrophys. J. Lett. 743, L36 (2011).

    Article  ADS  Google Scholar 

  8. Kite, E. S., Fegley, B. Jr, Schaefer, L. & Gaidos, E. Atmosphere-interior exchange on hot, rocky exoplanets. Astrophys. J. 828, 80 (2016).

    Article  ADS  Google Scholar 

  9. Ito, Y. et al. Theoretical emission spectra of atmospheres of hot rocky super-Earths. Astrophys. J. 801, 144 (2015).

    Article  ADS  Google Scholar 

  10. Nguyen, T. G., Cowan, N. B., Pierrehumbert, R. T., Lupu, R. E. & Moores, J. E. The impact of ultraviolet heating and cooling on the dynamics and observability of lava planet atmospheres. Mon. Not. R. Astron. Soc. 513, 6125–6133 (2022).

    Article  ADS  Google Scholar 

  11. Zilinskas, M. et al. Observability of evaporating lava worlds. Astron. Astrophys. 661, A126 (2022).

    Article  Google Scholar 

  12. Schaefer, L. & Fegley, B. Chemistry of silicate atmospheres of evaporating super-earths. Astrophys. J. 703, L113 (2009).

    Article  ADS  Google Scholar 

  13. Meier, T. G., Bower, D. J., Lichtenberg, T., Hammond, M. & Tackley, P. J. Interior dynamics of super-Earth 55 Cancri e. Astron. Astrophys. 678, A29 (2023).

    Article  ADS  Google Scholar 

  14. Nguyen, T. G., Cowan, N. B., Banerjee, A. & Moores, J. E. Modelling the atmosphere of lava planet K2-141b: implications for low-and high-resolution spectroscopy. Mon. Not. R. Astron. Soc. 499, 4605–4612 (2020).

    Article  ADS  Google Scholar 

  15. Lammer, H. et al. Origin and loss of nebula-captured hydrogen envelopes from ‘sub’-to ‘super-Earths’ in the habitable zone of Sun-like stars. Mon. Not. R. Astron. Soc. 439, 3225–3238 (2014).

    Article  ADS  Google Scholar 

  16. Lai, Y., Yang, J. & Kang, W. Ocean circulation on tide-locked lava worlds. I. An idealized 2D numerical model. Planet. Sci. J. 5, 204 (2024).

    Article  Google Scholar 

  17. Lai, Y., Kang, W. & Yang, J. Ocean circulation on tide-locked lava worlds. II. Scalings. Planet. Sci. J. 5, 205 (2024).

    Article  Google Scholar 

  18. Miguel, Y., Kaltenegger, L., Fegley, B. & Schaefer, L. Compositions of hot super-earth atmospheres: exploring Kepler candidates. Astrophys. J. Lett. 742, L19 (2011).

    Article  ADS  Google Scholar 

  19. Chao, K.-H. et al. Lava worlds: from early earth to exoplanets. Geochemistry 81, 125735 (2021).

    Article  Google Scholar 

  20. Rizo, H., Boyet, M., Blichert-Toft, J. & Rosing, M. T. Early mantle dynamics inferred from 142Nd variations in archean rocks from southwest Greenland. Earth Planet. Sci. Lett. 377-378, 324–335 (2013).

    Article  Google Scholar 

  21. Blichert-Toft, J., Gleason, J. D., Télouk, P. & Albarède, F. The Lu–Hf isotope geochemistry of shergottites and the evolution of the Martian mantle–crust system. Earth Planet. Sci. Lett. 173, 25–39 (1999).

    Article  ADS  Google Scholar 

  22. Bouvier, L. C. et al. Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature 558, 586–589 (2018).

    Article  ADS  Google Scholar 

  23. Barragán, O. et al. K2-141 b. A 5-M super-Earth transiting a K7 V star every 6.7 h. Astron. Astrophys. 612, A95 (2018).

    Article  Google Scholar 

  24. Curry, A., Booth, R., Owen, J. E. & Mohanty, S. The evolution of catastrophically evaporating rocky planets. Mon. Not. R. Astron. Soc. 528, 4314–4336 (2024).

    Article  ADS  Google Scholar 

  25. Jura, M. & Young, E. Extrasolar cosmochemistry. Annu. Rev. Earth Planet. Sci. 42, 45–67 (2014).

    Article  ADS  Google Scholar 

  26. Fiquet, G. et al. Melting of peridotite to 140 gigapascals. Science 329, 1516–1518 (2010).

    Article  ADS  Google Scholar 

  27. Hughes, G. O. & Griffiths, R. W. Horizontal convection. Annu. Rev. Fluid Mech. 40, 185–208 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  28. Lebrun, T. et al. Thermal evolution of an early magma ocean in interaction with the atmosphere. J. Geophys. Res. Planets 118, 1155–1176 (2013).

    Article  ADS  Google Scholar 

  29. Maas, C. & Hansen, U. Dynamics of a terrestrial magma ocean under planetary rotation: a study in spherical geometry. Earth Planet. Sci. Lett. 513, 81–94 (2019).

    Article  ADS  Google Scholar 

  30. Zhang, K. & Gubbins, D. On convection in the Earth’s core driven by lateral temperature variations in the lower mantle. Geophys. J. Int. 108, 247–255 (1992).

    Article  ADS  Google Scholar 

  31. Dietrich, W., Hori, K. & Wicht, J. Core flows and heat transfer induced by inhomogeneous cooling with sub-and supercritical convection. Phys. Earth Planet. Inter. 251, 36–51 (2016).

    Article  ADS  Google Scholar 

  32. Showman, A. P. & Polvani, L. M. Equatorial superrotation on tidally locked exoplanets. Astrophys. J. 738, 71 (2011).

    Article  ADS  Google Scholar 

  33. Lejeune, A.-M. & Richet, P. Rheology of crystal-bearing silicate melts: an experimental study at high viscosities. J. Geophys. Res. 100, 4215–4229 (1995).

    Article  ADS  Google Scholar 

  34. Herath, M., Boukaré, C.-É. & Cowan, N. B. Thermal evolution of lava planets. Mon. Not. R. Astron. Soc. 535, 2404–2414 (2024).

    Article  Google Scholar 

  35. Nomura, R. et al. Spin crossover and iron-rich silicate melt in the Earth’s deep mantle. Nature 473, 199–202 (2011).

  36. Boukaré, C.-É., Cowan, N. B. & Badro, J. Deep two-phase, hemispherical magma oceans on lava planets. Astrophys. J. 936, 148 (2022).

    Article  ADS  Google Scholar 

  37. Labrosse, S., Hernlund, J. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450, 866–869 (2007).

    Article  ADS  Google Scholar 

  38. Samuel, H. et al. The thermo-chemical evolution of mars with a strongly stratified mantle. J. Geophys. Res. Planets 126, e2020JE006613 (2021).

    Article  ADS  Google Scholar 

  39. O’Rourke, J. G. Venus: a thick basal magma ocean may exist today. Geophys. Res. Lett. 47, e2019GL086126 (2020).

    Article  ADS  Google Scholar 

  40. Hu, R. et al. Determining the atmospheric composition of the super-Earth 55 Cancri e. JWST Proposal. Cycle 1 1952 (2021).

  41. Brandeker, A. et al. Is it raining lava in the evening on 55 Cancri-e? JWST Proposal Cycle 1 2084 (2021).

  42. Dang, L. et al. A hell of a phase curve: mapping the surface and atmosphere of a lava planet K2-141b. JWST Proposal Cycle 1 2347 (2021).

  43. Hammond, M. & Pierrehumbert, R. T. Linking the climate and thermal phase curve of 55 Cancri e. Astrophys. J. 849, 152 (2017).

    Article  ADS  Google Scholar 

  44. Ito, Y. & Ikoma, M. Hydrodynamic escape of mineral atmosphere from hot rocky exoplanet. I. Model description. Mon. Not. R. Astron. Soc. 502, 750–771 (2021).

    Article  ADS  Google Scholar 

  45. Piette, A. A. A. et al. Rocky planet or water world? Observability of low-density lava world atmospheres. Astrophys. J. 954, 29 (2023).

    Article  ADS  Google Scholar 

  46. Mcdonough, W. & Sun, S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article  ADS  Google Scholar 

  47. Wolf, A. S., Jäggi, N., Sossi, P. A. & Bower, D. J. VapoRock: thermodynamics of vaporized silicate melts for modeling volcanic outgassing and magma ocean atmospheres. Astrophys. J. 947, 64 (2023).

    Article  ADS  Google Scholar 

  48. van Buchem, C., Miguel, Y., Zilinskas, M. & van Westrenen, W. LavAtmos: gas–melt equilibrium calculations for a given temperature and melt composition. Meteorit. Planet. Sci. 58, 1149–1161 (2023).

    ADS  Google Scholar 

  49. Charnoz, S. et al. The effect of a small amount of hydrogen in the atmosphere of ultrahot magma-ocean planets: atmospheric composition and escape. Astron. Astrophys. 674, A224 (2023).

    Article  Google Scholar 

  50. Tremblin, P. et al. Cloudless atmospheres for L/T dwarfs and extrasolar giant planets. Astrophys. J. 817, L19 (2016).

    Article  ADS  Google Scholar 

  51. Feinstein, A. D. et al. Early Release Science of the exoplanet WASP-39b with JWST NIRISS. Nature 614, 670–675 (2023).

    Article  ADS  Google Scholar 

  52. Lustig-Yaeger, J., Meadows, V. S. & Lincowski, A. P. The detectability and characterization of the TRAPPIST-1 exoplanet atmospheres with JWST. Astron. J. 158, 27 (2019).

    Article  ADS  Google Scholar 

  53. Ehrenreich, D. et al. A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b. Nature 522, 459–461 (2015).

    Article  ADS  Google Scholar 

  54. Kervazo, M., Tobie, G., Choblet, G., Dumoulin, C. & Běhounková, M. Inferring Io’s interior from tidal monitoring. Icarus 373, 114737 (2022).

    Article  Google Scholar 

  55. Boukaré, C.-E. & Ricard, Y. Modeling phase separation and phase change for magma ocean solidification dynamics. Geochem. Geophys. Geosyst. 18, 3385–3404 (2017).

    Article  ADS  Google Scholar 

  56. Boukaré, C.-E., Badro, J. & Samuel, H. Solidification of Earth’s mantle led inevitably to a basal magma ocean. Nature 640, 114–119 (2025).

    Article  Google Scholar 

  57. Drew, D. A. Averaged field equations for two-phase media. Stud. Appl. Math. 50, 133–166 (1971).

    Article  Google Scholar 

  58. Mckenzie, D. The generation and compaction of partially molten rock. J. Petrol. 25, 713–765 (1984).

    Article  ADS  Google Scholar 

  59. Bercovici, D., Ricard, Y. & Schubert, G. A two-phase model for compaction and damage: 1. General theory. J. Geophys. Res. Solid Earth 106, 8887–8906 (2001).

    Article  Google Scholar 

  60. Keller, T. & Suckale, J. A continuum model of multi-phase reactive transport in igneous systems. Geophys. J. Int. 219, 185–222 (2019).

    Article  ADS  Google Scholar 

  61. Šrámek, O., Ricard, Y. & Bercovici, D. Simultaneous melting and compaction in deformable two-phase media. Geophys. J. Int. 168, 964–982 (2007).

    Article  ADS  Google Scholar 

  62. Šrámek, O. Modèle d’écoulement biphasé en sciences de la Terre: fusion partielle, compaction et différenciation. PhD thesis, Univ. Lyon - Ecole Normale Supérieure (2007).

  63. Samuel, H. Time-domain parallelization for computational geodynamics. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2011GC003905 (2012).

  64. Samuel, H. A deformable particle-in-cell method for advective transport in geodynamic modelling. Geophys. J. Int. 214, 1744–1773 (2018).

    Article  ADS  Google Scholar 

  65. Samuel, H. & Evonuk, M. Modeling advection in geophysical flows with particle level sets. Geochem. Geophys. Geosyst. 11, Q08020 (2010).

  66. Boukaré, C.-E., Ricard, Y. & Fiquet, G. Thermodynamics of the MgO–FeO–SiO2 system up to 140 GPa: application to the crystallization of Earth’s magma ocean. J. Geophys. Res. 120, 6085–6101 (2015).

    Article  ADS  Google Scholar 

  67. Karato, S.-i & Wu, P. Rheology of the upper mantle: a synthesis. Science 260, 771–778 (1993).

    Article  ADS  Google Scholar 

  68. Solomatov, V. & Moresi, L.-N. Three regimes of mantle convection with non-newtonian viscosity and stagnant lid convection on the terrestrial planets. Geophys. Res. Lett. 24, 1907–1910 (1997).

    Article  ADS  Google Scholar 

  69. Wallner, H. & Schmeling, H. Numerical models of mantle lithosphere weakening, erosion and delamination induced by melt extraction and emplacement. Int. J. Earth Sci. 105, 1741–1760 (2016).

    Article  Google Scholar 

  70. Alappat, C. et al. A recursive algebraic coloring technique for hardware-efficient symmetric sparse matrix-vector multiplication. ACM Trans. Parallel Comput. 7, 1–37 (2020).

    Article  Google Scholar 

  71. Bollhöfer, M., Schenk, O., Janalik, R., Hamm, S. & Gullapalli, K. in Parallel Algorithms in Computational Science and Engineering (eds Grama, A. & Sameh, A.) 3–33 (Springer Nature, 2020).

  72. Wicht, J. Inner-core conductivity in numerical dynamo simulations. Phys. Earth Planet. Inter. 132, 281–302 (2002).

    Article  ADS  Google Scholar 

  73. Christensen, U. R. et al. A numerical dynamo benchmark. Phys. Earth Planet. Inter. 128, 25–34 (2001).

    Article  ADS  Google Scholar 

  74. Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations. Geochem. Geophys. Geosyst. 14, 751–758 (2013).

    Article  ADS  Google Scholar 

  75. Gastine, T., Wicht, J. & Aubert, J. Scaling regimes in spherical shell rotating convection. J. Fluid Mech. 808, 690–732 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  76. Léger, A. et al. The extreme physical properties of the CoRoT-7b super-Earth. Icarus 213, 1–11 (2011).

    Article  ADS  Google Scholar 

  77. Gilman, P. A. Nonlinear dynamics of Boussinesq convection in a deep rotating spherical shell-i. Geophys. Astrophys. Fluid Dyn. 8, 93–135 (1977).

    Article  ADS  Google Scholar 

  78. Aurnou, J. M., Horn, S. & Julien, K. Connections between nonrotating, slowly rotating, and rapidly rotating turbulent convection transport scalings. Phys. Rev. A 2, 043115 (2020).

    Google Scholar 

  79. Falco, A., Tremblin, P., Charnoz, S., Ridgway, R. J. & Lagage, P.-O. Hydrogenated atmospheres of lava planets: atmospheric structure and emission spectra. Astron. Astrophys. 683, A194 (2024).

    Article  ADS  Google Scholar 

  80. Amundsen, D. S. et al. Accuracy tests of radiation schemes used in hot Jupiter global circulation models. Astron. Astrophys. 564, A59 (2014).

    Article  Google Scholar 

  81. Moses, J. I. Chemical kinetics on extrasolar planets. Phil. Trans. R. Soc. A 372, 20130073 (2014).

    Article  ADS  Google Scholar 

  82. Batalha, N. E. et al. PandExo: a community tool for transiting exoplanet science with JWST & HST. Publ. Astron. Soc. Pac. 129, 064501 (2017).

    Article  ADS  Google Scholar 

  83. Kreidberg, L. batman: basic transit model calculation in Python. Publ. Astron. Soc. Pac. 127, 1161 (2015).

    Article  ADS  Google Scholar 

  84. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article  ADS  Google Scholar 

  85. Boukaré, C.-E. et al. The role of interior dynamics and differentiation on the surface and atmosphere of lava planets. IPGP Research Collection https://doi.org/10.18715/IPGP.2024.m41y3glp (2025).

  86. Gastine, T. et al. magic-sph/magic: release MagIC 6.0. Zenodo https://doi.org/10.5281/zenodo.595153 (2021).

Download references

Acknowledgements

We thank the organizing committee of the Diversity of Rocky Planets workshop held in Leiden in 2022, where the ideas developed in this project first emerged. This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 101019965- SEPtiM). Parts of this work were supported by the UnivEarthS Labex programme at Université de Paris and IPGP (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02) and Natural Sciences and Engineering Research Council of Canada (RGPIN-2024-06174). Two-dimensional numerical computations were performed on the IPGP S-CAPAD/DANTE platform. D.L. acknowledges the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing high performance computing and visualization resources that have contributed to the research results reported within this paper (http://www.tacc.utexas.edu). L.D. acknowledges support from the Banting Postdoctoral Fellowship programme, administered by the Government of Canada and the Trottier Family Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.-E.B. conceived of and designed the analysis, designed the numerical simulations, performed the numerical simulations, produced the figures and wrote the paper. D.L. performed the numerical simulations, produced the figures and analysed the data, and revised the paper. N.B.C. conceived of and designed the analysis, and wrote the paper. H.S. designed the numerical simulations and revised the paper. J.B. conceived of the analysis and revised the paper. L.D. performed the analysis and produced the figures. A.F. performed the analysis and produced the figures. S.C. performed the analysis and revised the paper.

Corresponding author

Correspondence to Charles-Édouard Boukaré.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Christy Till and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary information providing detailed modelling parameters, supporting analytical calculations and fluid dynamics simulations. The documents contain 10 supplementary figures.

Supplementary Video 1

Time evolution of the temperature field corresponding to Fig. 3.

Supplementary Video 2

Time evolution of the compositional field corresponding to Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukaré, CÉ., Lemasquerier, D., Cowan, N.B. et al. The role of interior dynamics and differentiation on the surface and in the atmosphere of lava planets. Nat Astron (2025). https://doi.org/10.1038/s41550-025-02617-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-025-02617-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing