Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The first billion years according to JWST

Abstract

With stunning clarity, the JWST has revealed the Universe’s first billion years. The scientific community is analysing a wealth of JWST imaging and spectroscopic data from that era, and is in the process of rewriting the astronomy textbooks. Here, as a result of the 2024 ISSI Breakthrough Workshop, we provide a snapshot of the great progress made towards understanding the initial chapters of our cosmic history 1.5 years into the JWST science mission. We present the current census of early galaxies, their luminosities, appearance, chemical composition, masses and formation histories as revealed by JWST. We relate the discovery of massive black holes in early galaxies and discuss their demographics and implications for their formations and growth. We conclude by describing the potential sources of reionization and our current understanding of how the Universe became fully ionized. Throughout the Perspective, we highlight discoveries and breakthroughs, topics and issues that are not yet understood, and questions that will be addressed in the coming years, as JWST continues its revolutionary observations of the early Universe.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The cosmic timeline.
Fig. 2: JWST spectroscopic redshift compilation.
Fig. 3: JWST morphologies of galaxies in the first billion years.
Fig. 4: Spectral signatures of early galaxies with JWST.
Fig. 5: Distribution of bolometric luminosity of known AGN as a function of redshift.
Fig. 6: Potential ionized bubbles in the reionization era.

Similar content being viewed by others

References

  1. Rigby, J. et al. The science performance of JWST as characterized in commissioning. Publ. Astron. Soc. Pac. 135, 048001 (2023).

    Article  ADS  Google Scholar 

  2. Planck Collaborationet al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  3. Atek, H. et al. Revealing galaxy candidates out to z ~ 16 with JWST observations of the lensing cluster SMACS0723. Mon. Not. R. Astron. Soc. 519, 1201–1220 (2023).

    Article  ADS  Google Scholar 

  4. Harikane, Y. et al. Pure spectroscopic constraints on UV luminosity functions and cosmic star formation history from 25 galaxies at zspec = 8.61–13.20 confirmed with JWST/NIRSpec. Astrophys. J. 960, 56 (2024).

    Article  ADS  Google Scholar 

  5. Hsiao, T. Y.-Y. et al. JWST reveals a possible z ~ 11 galaxy merger in triply lensed MACS0647−JD. Astrophys. J. Lett. 949, L34 (2023).

    Article  ADS  Google Scholar 

  6. Curtis-Lake, E. et al. Spectroscopic confirmation of four metal-poor galaxies at z = 10.3–13.2. Nat. Astron. 7, 622–632 (2023).

    Article  ADS  Google Scholar 

  7. Bunker, A. J. et al. JADES NIRSpec initial data release for the Hubble Ultra Deep Field: redshifts and line fluxes of distant galaxies from the deepest JWST Cycle 1 NIRSpec multi-object spectroscopy. Astron. Astrophys. 690, A288 (2024).

    Article  Google Scholar 

  8. Arrabal Haro, P. et al. Spectroscopic confirmation of CEERS NIRCam-selected galaxies at z = 8–10. Astrophys. J. Lett. 951, L22 (2023).

    Article  ADS  Google Scholar 

  9. Finkelstein, S. L. et al. CEERS key paper. I. An early look into the first 500 Myr of galaxy formation with JWST. Astrophys. J. Lett. 946, L13 (2023).

    Article  ADS  Google Scholar 

  10. Castellano, M. et al. JWST NIRSpec spectroscopy of the remarkable bright galaxy GHZ2/GLASS-z12 at redshift 12.34. Astrophys. J. 972, 143 (2024).

    Article  Google Scholar 

  11. Carniani, S. et al. Spectroscopic confirmation of two luminous galaxies at a redshift of 14. Nature 633, 318–322 (2024).

    Article  Google Scholar 

  12. Donnan, C. T. et al. JWST PRIMER: a new multifield determination of the evolving galaxy UV luminosity function at redshifts z 9–15. Mon. Not. R. Astron. Soc. 533, 3222–3237 (2024).

    Article  Google Scholar 

  13. Bouwens, R. J. et al. Evolution of the UV LF from z ~ 15 to z ~ 8 using new JWST NIRCam medium-band observations over the HUDF/XDF. Mon. Not. R. Astron. Soc. 523, 1036–1055 (2023).

    Article  ADS  Google Scholar 

  14. Harikane, Y. et al. A comprehensive study of galaxies at z ~ 9–16 found in the early JWST data: ultraviolet luminosity functions and cosmic star formation history at the pre-reionization epoch. Astrophys. J. Suppl. Ser. 265, 5 (2023).

    Article  ADS  Google Scholar 

  15. Pérez-González, P. G. et al. Life beyond 30: probing the −20 < MUV < −17 luminosity function at 8 < z < 13 with the NIRCam parallel field of the MIRI Deep Survey. Astrophys. J. Lett. 951, L1 (2023).

    Article  ADS  Google Scholar 

  16. McLeod, D. J. et al. The galaxy UV luminosity function at z = 11 from a suite of public JWST ERS, ERO, and Cycle-1 programs. Mon. Not. R. Astron. Soc. 527, 5004–5022 (2024).

    Article  ADS  Google Scholar 

  17. Robertson, B. et al. Earliest galaxies in the JADES Origins Field: luminosity function and cosmic star formation rate density 300 Myr after the Big Bang. Astrophys. J. 970, 31 (2024).

    Article  Google Scholar 

  18. Willott, C. J. et al. A steep decline in the galaxy space density beyond redshift 9 in the CANUCS UV luminosity function. Astrophys. J. 966, 74 (2024).

    Article  ADS  Google Scholar 

  19. Naidu, R. P. et al. Two remarkably luminous galaxy candidates at z ≈ 10–12 revealed by JWST. Astrophys. J. Lett. 940, L14 (2022).

    Article  ADS  Google Scholar 

  20. Finkelstein, S. L. et al. The complete CEERS early universe galaxy sample: a surprisingly slow evolution of the space density of bright galaxies at z ~ 8.5–14.5. Astrophys. J. Lett. 969, L2 (2024).

    Article  ADS  Google Scholar 

  21. Leung, G. C. K. et al. NGDEEP epoch 1: the faint end of the luminosity function at z ~ 9–12 from ultradeep JWST imaging. Astrophys. J. Lett. 954, L46 (2023).

    Article  ADS  Google Scholar 

  22. Chemerynska, I. et al. JWST UNCOVER: the overabundance of ultraviolet-luminous galaxies at z > 9. Mon. Not. R. Astron. Soc. 531, 2615–2625 (2024).

    Article  ADS  Google Scholar 

  23. Casey, C. M. et al. COSMOS-Web: intrinsically luminous z 10 galaxy candidates test early stellar mass assembly. Astrophys. J. 965, 98 (2024).

    Article  ADS  Google Scholar 

  24. Topping, M. W. et al. The UV continuum slopes of early star-forming galaxies in JADES. Mon. Not. R. Astron. Soc. 529, 4087–4103 (2024).

    Article  ADS  Google Scholar 

  25. Cullen, F. et al. The ultraviolet continuum slopes of high-redshift galaxies: evidence for the emergence of dust-free stellar populations at z > 10. Mon. Not. R. Astron. Soc. 531, 997–1020 (2024).

    Article  ADS  Google Scholar 

  26. Wilkins, S. M. et al. First Light and Reionization Epoch Simulations (FLARES) V: the redshift frontier. Mon. Not. R. Astron. Soc. 519, 3118–3128 (2023).

    Article  ADS  Google Scholar 

  27. Mauerhofer, V. & Dayal, P. The dust enrichment of early galaxies in the JWST and ALMA era. Mon. Not. R. Astron. Soc. 526, 2196–2209 (2023).

    Article  ADS  Google Scholar 

  28. Ferrara, A., Pallottini, A. & Dayal, P. On the stunning abundance of super-early, luminous galaxies revealed by JWST. Mon. Not. R. Astron. Soc. 522, 3986–3991 (2023).

    Article  ADS  Google Scholar 

  29. Ferrara, A. Super-early JWST galaxies, outflows, and Lyα visibility in the epoch of reionization. Astron. Astrophys. 684, A207 (2024).

    Article  ADS  Google Scholar 

  30. Mason, C. A., Trenti, M. & Treu, T. The brightest galaxies at cosmic dawn. Mon. Not. R. Astron. Soc. 521, 497–503 (2023).

    Article  ADS  Google Scholar 

  31. Mirocha, J. & Furlanetto, S. R. Balancing the efficiency and stochasticity of star formation with dust extinction in z 10 galaxies observed by JWST. Mon. Not. R. Astron. Soc. 519, 843–853 (2023).

    Article  ADS  Google Scholar 

  32. Pallottini, A. & Ferrara, A. Stochastic star formation in early galaxies: Implications for the James Webb Space Telescope. Astron. Astrophys. 677, L4 (2023).

    Article  ADS  Google Scholar 

  33. Dekel, A., Sarkar, K. C., Birnboim, Y., Mandelker, N. & Li, Z. Efficient formation of massive galaxies at cosmic dawn by feedback-free starbursts. Mon. Not. R. Astron. Soc. 523, 3201–3218 (2023).

    Article  ADS  Google Scholar 

  34. Li, Z. et al. Feedback-free starbursts at cosmic dawn: observable predictions for JWST. Astron. Astrophys. 690, A108 (2024).

    Article  Google Scholar 

  35. Inayoshi, K., Harikane, Y., Inoue, A. K., Li, W. & Ho, L. C. A lower bound of star formation activity in ultra-high-redshift galaxies detected with JWST: implications for stellar populations and radiation sources. Astrophys. J. Lett. 938, L10 (2022).

    Article  ADS  Google Scholar 

  36. Rasmussen Cueto, E. R. et al. ASTRAEUS. IX. Impact of an evolving stellar initial mass function on early galaxies and reionisation. Astron. Astrophys. 686, A138 (2024).

    Article  Google Scholar 

  37. Liu, B. & Bromm, V. Accelerating early massive galaxy formation with primordial black holes. Astrophys. J. Lett. 937, L30 (2022).

    Article  ADS  Google Scholar 

  38. Moffat, J. W. Galaxy formation in the early Universe. Preprint at https://arxiv.org/abs/2412.03534 (2024).

  39. Menci, N., Adil, S. A., Mukhopadhyay, U., Sen, A. A. & Vagnozzi, S. Negative cosmological constant in the dark energy sector: tests from JWST photometric and spectroscopic observations of high-redshift galaxies. J. Cosmol. Astropart. Phys. 2024, 072 (2024).

    Article  Google Scholar 

  40. Harvey, T. et al. EPOCHS IV: SED modelling assumptions and their impact on the stellar mass function at 6.5 ≤ z ≤ 13.5 using PEARLS and public JWST observations. Astrophys. J. 978, 89 (2025).

    Article  Google Scholar 

  41. Weibel, A., Oesch, P. & Barrufet, L. et al. Galaxy build-up in the first 1.5 Gyr of cosmic history: insights from the stellar mass function at z ~ 4–9 from JWST NIRCam observations. Mon. Not. R. Astron. Soc. 533, 1808–1838 (2024).

    Article  Google Scholar 

  42. Barrufet, L. et al. Unveiling the nature of infrared bright, optically dark galaxies with early JWST data. Mon. Not. R. Astron. Soc. 522, 449–456 (2023).

    Article  ADS  Google Scholar 

  43. Gottumukkala, R. et al. Unveiling the hidden universe with JWST: the contribution of dust-obscured galaxies to the stellar mass function at z ~ 3–8. Mon. Not. R. Astron. Soc. 530, 966–983 (2024).

    Article  ADS  Google Scholar 

  44. Williams, C. C. et al. The galaxies missed by Hubble and ALMA: the contribution of extremely red galaxies to the cosmic census at 3 < z < 8. Astrophys. J. 968, 34 (2024).

    Article  ADS  Google Scholar 

  45. Wang, T. et al. Massive galaxies across cosmic time revealed by JWST/MIRI (MACROSS): the true number density of massive galaxies in the early Universe. Preprint at https://arxiv.org/abs/2403.02399 (2024).

  46. Labbé, I. et al. A population of red candidate massive galaxies 600 Myr after the Big Bang. Nature 616, 266–269 (2023).

    Article  ADS  Google Scholar 

  47. Xiao, M. et al. Accelerated formation of ultra-massive galaxies in the first billion years. Nature 635, 311–315 (2024).

    Article  Google Scholar 

  48. Boylan-Kolchin, M. Stress testing ΛCDM with high-redshift galaxy candidates. Nat. Astron. 7, 731–735 (2023).

    Article  ADS  Google Scholar 

  49. Desprez, G. et al. ΛCDM not dead yet: massive high-z Balmer break galaxies are less common than previously reported. Mon. Not. R. Astron. Soc. 530, 2935–2952 (2024).

    Article  ADS  Google Scholar 

  50. Kocevski, D. D. et al. CEERS key paper. II. A first look at the resolved host properties of AGN at 3 < z < 5 with JWST. Astrophys. J. Lett. 946, L14 (2023).

    Article  ADS  Google Scholar 

  51. Carnall, A. C. et al. A massive quiescent galaxy at redshift 4.658. Nature 619, 716–719 (2023).

    Article  ADS  Google Scholar 

  52. Glazebrook, K. et al. A massive galaxy that formed its stars at z ~ 11. Nature 628, 277–281 (2024).

    Article  ADS  Google Scholar 

  53. Nanayakkara, T. et al. A population of faint, old, and massive quiescent galaxies at 3 < z < 4 revealed by JWST NIRSpec spectroscopy. Sci. Rep. 14, 3724 (2024).

    Article  ADS  Google Scholar 

  54. Setton, D. J. et al. UNCOVER NIRSpec/PRISM spectroscopy unveils evidence of early core formation in a massive, centrally dusty quiescent galaxy at zspec = 3.97. Astrophys. J. 974, 145 (2024).

    Article  Google Scholar 

  55. Carnall, A. C. et al. A surprising abundance of massive quiescent galaxies at 3 < z < 5 in the first data from JWST CEERS. Mon. Not. R. Astron. Soc. 520, 3974–3985 (2023).

    Article  ADS  Google Scholar 

  56. Valentino, F. et al. An atlas of color-selected quiescent galaxies at z > 3 in public JWST fields. Astrophys. J. 947, 20 (2023).

    Article  ADS  Google Scholar 

  57. Sun, G., Faucher-Giguère, C.-A., Hayward, C. C. & Shen, X. Seen and unseen: bursty star formation and its implications for observations of high-redshift galaxies with JWST. Mon. Not. R. Astron. Soc. 526, 2665–2672 (2023).

    Article  ADS  Google Scholar 

  58. Whitler, L. et al. On the ages of bright galaxies 500 Myr after the Big Bang: insights into star formation activity at z 15 with JWST. Mon. Not. R. Astron. Soc. 519, 157–171 (2023).

    Article  ADS  Google Scholar 

  59. Whitler, L. et al. Insight from JWST/NIRCam into galaxy overdensities around bright Lyman-alpha emitters during reionization: implications for ionized bubbles at z ~ 9. Mon. Not. R. Astron. Soc. 529, 855–872 (2024).

  60. Endsley, R. et al. The star-forming and ionizing properties of dwarf z ~ 6–9 galaxies in JADES: insights on bursty star formation and ionized bubble growth. Mon. Not. R. Astron. Soc. 533, 1111–1142 (2024).

    Article  Google Scholar 

  61. Carnall, A. C. et al. A first look at the SMACS0723 JWST ERO: spectroscopic redshifts, stellar masses, and star-formation histories. Mon. Not. R. Astron. Soc. 518, L45–L50 (2023).

    Article  ADS  Google Scholar 

  62. Pérez-González, P. G. et al. What is the nature of Little Red Dots and what is not, MIRI SMILES edition. Astrophys. J. 968, 4 (2024).

    Article  ADS  Google Scholar 

  63. Looser, T. J. et al. A recently quenched galaxy 700 million years after the Big Bang. Nature 629, 53–57 (2024).

    Article  ADS  Google Scholar 

  64. Strait, V. et al. An extremely compact, low-mass galaxy on its way to quiescence at z = 5.2. Astrophys. J. Lett. 949, L23 (2023).

    Article  ADS  Google Scholar 

  65. Topping, M. W. et al. Searching for extremely blue UV continuum slopes at z = 7–11 in JWST/NIRCam imaging: implications for stellar metallicity and ionizing photon escape in early galaxies. Astrophys. J. 941, 153 (2022).

    Article  ADS  Google Scholar 

  66. Endsley, R. et al. A JWST/NIRCam study of key contributors to reionization: the star-forming and ionizing properties of UV-faint z ~ 7–8 galaxies. Mon. Not. R. Astron. Soc. 524, 2312–2330 (2023).

    Article  ADS  Google Scholar 

  67. Looser, T. J. et al. JADES: differing assembly histories of galaxies: observational evidence for bursty star-formation histories and (mini-)quenching in the first billion years of the Universe. Astron. Astrophys. 697, A88 (2024).

    Article  Google Scholar 

  68. Giménez-Arteaga, C. et al. Spatially resolved properties of galaxies at 5 < z < 9 in the SMACS 0723 JWST ERO field. Astrophys. J. 948, 126 (2023).

    Article  ADS  Google Scholar 

  69. Fujimoto, S. et al. Primordial rotating disk composed of at least 15 dense star-forming clumps at cosmic dawn. Nat. Astron. (in the press).

  70. Bradač, M. et al. Star formation at the epoch of reionization with CANUCS: the ages of stellar populations in MACS1149−JD1. Astrophys. J. Lett. 961, L21 (2024).

    Article  ADS  Google Scholar 

  71. Cutler, S. E. et al. Two distinct classes of quiescent galaxies at cosmic noon revealed by JWST PRIMER and UNCOVER. Astrophys. J. Lett. 967, L23 (2024).

    Article  ADS  Google Scholar 

  72. Yang, L. et al. Early results from GLASS-JWST. V: the first rest-frame optical size–luminosity relation of galaxies at z > 7. Astrophys. J. Lett. 938, L17 (2022).

    Article  ADS  Google Scholar 

  73. Morishita, T. & Stiavelli, M. Physical characterization of early galaxies in the Webb’s First Deep Field SMACS J0723.3−7323. Astrophys. J. Lett. 946, L35 (2023).

    Article  ADS  Google Scholar 

  74. Ito, K. et al. Size–stellar mass relation and morphology of quiescent galaxies at z≥3 in public JWST fields. Astrophys. J. 964, 192 (2024).

    Article  ADS  Google Scholar 

  75. Kartaltepe, J. S. et al. CEERS key paper. III. The diversity of galaxy structure and morphology at z = 3–9 with JWST. Astrophys. J. Lett. 946, L15 (2023).

    Article  ADS  Google Scholar 

  76. Robertson, B. E. et al. Morpheus reveals distant disk galaxy morphologies with JWST: the first AI/ML analysis of JWST images. Astrophys. J. Lett. 942, L42 (2023).

    Article  ADS  Google Scholar 

  77. Treu, T. et al. Early results from GLASS-JWST. XII. The morphology of galaxies at the epoch of reionization. Astrophys. J. Lett. 942, L28 (2023).

    Article  ADS  Google Scholar 

  78. Pandya, V. et al. Galaxies going bananas: inferring the 3D geometry of high-redshift galaxies with JWST-CEERS. Astrophys. J. 963, 54 (2024).

    Article  ADS  Google Scholar 

  79. Nelson, E. J. et al. JWST reveals a population of ultrared, flattened galaxies at 2 z 6 previously missed by HST. Astrophys. J. Lett. 948, L18 (2023).

    Article  ADS  Google Scholar 

  80. Costantin, L. et al. A Milky Way-like barred spiral galaxy at a redshift of 3. Nature 623, 499–501 (2023).

    Article  ADS  Google Scholar 

  81. Baker, W. M. et al. A core in a star-forming disc as evidence of inside-out growth in the early Universe. Nat. Astron. 9, 141–154 (2025).

    Article  Google Scholar 

  82. Vega-Ferrero, J. et al. On the nature of disks at high redshift seen by JWST/CEERS with contrastive learning and cosmological simulations. Astrophys. J. 961, 51 (2024).

    Article  ADS  Google Scholar 

  83. Huertas-Company, M. et al. Galaxy morphology from z~ 6 through the eyes of JWST. Astron. Astrophys. 685, A48 (2024).

    Article  Google Scholar 

  84. Tohill, C. et al. A robust study of high-redshift galaxies: unsupervised machine learning for characterizing morphology with JWST up to z ~ 8. Astrophys. J. 962, 164 (2024).

    Article  ADS  Google Scholar 

  85. Asada, Y. et al. Bursty star formation and galaxy-galaxy interactions in low-mass galaxies 1 Gyr after the Big Bang. Mon. Not. R. Astron. Soc. 527, 11372–11392 (2024).

    Article  ADS  Google Scholar 

  86. de Graaff, A. et al. Ionised gas kinematics and dynamical masses of z 6 galaxies from JADES/NIRSpec high-resolution spectroscopy. Astron. Astrophys. 684, A87 (2024).

    Article  Google Scholar 

  87. Arribas, S. et al. GA-NIFS: the core of an extremely massive proto-cluster at the epoch of reionization probed with JWST/NIRSpec. Astron. Astrophys. 688, A146 (2024).

    Article  Google Scholar 

  88. Carniani, S. et al. JADES: the incidence rate and properties of galactic outflows in low-mass galaxies across 3<z<9. Astron. Astrophys. 685, A99 (2024).

    Article  Google Scholar 

  89. D’Eugenio, F. et al. A fast-rotator post-starburst galaxy quenched by supermassive black-hole feedback at z=3. Nat. Astron. 9, 1443–1456 (2024).

    Article  Google Scholar 

  90. Belli, S. et al. Star formation shut down by multiphase gas outflow in a galaxy at a redshift of 2.45. Nature 630, 54–58 (2024).

    Article  ADS  Google Scholar 

  91. Topping, M. W. et al. Metal-poor star formation at z > 6 with JWST: new insight into hard radiation fields and nitrogen enrichment on 20 pc scales. Mon. Not. R. Astron. Soc. 529, 3301–3322 (2024).

    Article  ADS  Google Scholar 

  92. Williams, H. et al. A magnified compact galaxy at redshift 9.51 with strong nebular emission lines. Science 380, 416–420 (2023).

    Article  ADS  Google Scholar 

  93. Hsiao, T. Y.-Y. et al. JWST NIRSpec spectroscopy of the triply-lensed z=10.17 galaxy MACS0647−JD. Astrophys. J. 973, 8 (2024).

    Article  Google Scholar 

  94. Claeyssens, A. et al. Star formation at the smallest scales: a JWST study of the clump populations in SMACS0723. Mon. Not. R. Astron. Soc. 520, 2180–2203 (2023).

    Article  ADS  Google Scholar 

  95. Vanzella, E. et al. JWST/NIRCam probes young star clusters in the reionization era Sunrise arc. Astrophys. J. 945, 53 (2023).

    Article  ADS  Google Scholar 

  96. Adamo, A. et al. Bound star clusters observed in a lensed galaxy 460 Myr after the Big Bang. Nature 632, 513–516 (2024).

    Article  Google Scholar 

  97. Mowla, L. et al. Formation of a low-mass galaxy from star clusters in a 600-million-year-old Universe. Nature 636, 332–336 (2024).

    Article  Google Scholar 

  98. Antonini, F., Gieles, M., Dosopoulou, F. & Chattopadhyay, D. Coalescing black hole binaries from globular clusters: mass distributions and comparison to gravitational wave data from GWTC-3. Mon. Not. R. Astron. Soc. 522, 466–476 (2023).

    Article  ADS  Google Scholar 

  99. Cameron, A. J., Katz, H., Rey, M. P. & Saxena, A. Nitrogen enhancements 440 Myr after the big bang: supersolar N/O, a tidal disruption event, or a dense stellar cluster in GN-z11? Mon. Not. R. Astron. Soc. 523, 3516–3525 (2023).

    Article  ADS  Google Scholar 

  100. Gratton, R. et al. What is a globular cluster? An observational perspective. Astron. Astrophys. Rev. 27, 8 (2019).

    Article  ADS  Google Scholar 

  101. Welch, B. et al. TEMPLATES: direct abundance constraints for two lensed Lyman-break galaxies. Astrophys. J. 975, 196 (2024).

    Article  Google Scholar 

  102. Meena, A. K. et al. Two lensed star candidates at z = 4.8 behind the galaxy cluster MACS J0647.7+7015. Astrophys. J. Lett. 944, L6 (2023).

    Article  ADS  Google Scholar 

  103. Lundqvist, E., Zackrisson, E., Hawcroft, C., Amarsi, A. M. & Welch, B. Spectroscopic characterisation of gravitationally lensed stars at high redshifts. Astron. Astrophys. 690, A291 (2024).

    Article  Google Scholar 

  104. Schaerer, D. et al. First look with JWST spectroscopy: resemblance among z ~ 8 galaxies and local analogs. Astron. Astrophys. 665, L4 (2022).

    Article  ADS  Google Scholar 

  105. Laseter, I. H. et al. JADES: detecting [Oiii]λ4363 emitters and testing strong line calibrations in the high-z Universe with ultra-deep JWST/NIRSpec spectroscopy up to z ~ 9.5. Astron. Astrophys. 681, A70 (2024).

    Article  Google Scholar 

  106. Sanders, R. L., Shapley, A. E., Topping, M. W., Reddy, N. A. & Brammer, G. B. Direct Te-based metallicities of z = 2–9 galaxies with JWST/NIRSpec: empirical metallicity calibrations applicable from reionization to cosmic noon. Astrophys. J. 962, 24 (2024).

    Article  ADS  Google Scholar 

  107. Nakajima, K. et al. JWST census for the mass–metallicity star formation relations at z = 4–10 with self-consistent flux calibration and proper metallicity calibrators. Astrophys. J. Suppl. Ser. 269, 33 (2023).

    Article  ADS  Google Scholar 

  108. Sanders, R. L. et al. A preview of JWST metallicity studies at cosmic noon: the first detection of auroral [O ii] emission at high redshift. Astrophys. J. 943, 75 (2023).

    Article  ADS  Google Scholar 

  109. D’Eugenio, F. et al. JADES: carbon enrichment 350 Myr after the Big Bang. Astron. Astrophys. 689, A152 (2024).

    Article  Google Scholar 

  110. Mannucci, F., Cresci, G., Maiolino, R., Marconi, A. & Gnerucci, A. A fundamental relation between mass, star formation rate and metallicity in local and high-redshift galaxies. Mon. Not. R. Astron. Soc. 408, 2115–2127 (2010).

    Article  ADS  Google Scholar 

  111. Curti, M. et al. JADES: insights into the low-mass end of the mass–metallicity–star-formation rate relation at 3 < z < 10 from deep JWST/NIRSpec spectroscopy. Astron. Astrophys. 684, A75 (2024).

    Article  Google Scholar 

  112. Maiolino, R. et al. A small and vigorous black hole in the early Universe. Nature 627, 59–63 (2024).

    Article  ADS  Google Scholar 

  113. Chisholm, J. et al. [Ne v] emission from a faint epoch of reionization-era galaxy: evidence for a narrow-line intermediate-mass black hole. Mon. Not. R. Astron. Soc. 534, 2633–2656 (2024).

    Article  Google Scholar 

  114. Jones, T. et al. Early results from GLASS-JWST. XXI. Rapid asembly of a galaxy at z = 6.23 revealed by its C/O abundance. Astrophys. J. Lett. 951, L17 (2023).

    Article  ADS  Google Scholar 

  115. Senchyna, P., Plat, A., Stark, D. P. & Rudie, G. C. GN-z11 in context: possible signatures of globular cluster precursors at redshift 10. Astrophys. J. 966, 92 (2024).

    Article  ADS  Google Scholar 

  116. Atek, H. et al. Most of the photons that reionized the universe came from dwarf galaxies. Nature 626, 975–978 (2024).

    Article  ADS  Google Scholar 

  117. Maseda, M. V. et al. JWST/NIRSpec measurements of extremely low metallicities in high equivalent width Lyα emitters. Astrophys. J. 956, 11 (2023).

    Article  ADS  Google Scholar 

  118. Vanzella, E. et al. An extremely metal-poor star complex in the reionization era: approaching population III stars with JWST. Astron. Astrophys. 678, A173 (2023).

    Article  Google Scholar 

  119. Cullen, F. et al. The ultraviolet continuum slopes (β) of galaxies at z = 8–16 from JWST and ground-based near-infrared imaging. Mon. Not. R. Astron. Soc. 520, 14–23 (2023).

    Article  ADS  Google Scholar 

  120. Roberts-Borsani, G. et al. Between the extremes: a JWST spectroscopic benchmark for high-redshift galaxies using ~ 500 confirmed sources at z 5. Astrophys. J. 976, 193 (2024).

    Article  ADS  Google Scholar 

  121. Shapley, A. E., Sanders, R. L., Reddy, N. A., Topping, M. W. & Brammer, G. B. JWST/NIRSpec Balmer-line measurements of star formation and dust attenuation at z ~ 3–6. Astrophys. J. 954, 157 (2023).

    Article  ADS  Google Scholar 

  122. Sandles, L. et al. JADES: Balmer decrement measurements at redshifts 4 < z < 7. Astron. Astrophys. 691, A305 (2024).

    Article  Google Scholar 

  123. Kokorev, V. et al. JWST insight into a lensed HST-dark galaxy and its quiescent companion at z = 2.58. Astrophys. J. Lett. 945, L25 (2023).

    Article  ADS  Google Scholar 

  124. Pérez-González, P. G. et al. CEERS key paper. IV. A triality in the nature of HST-dark galaxies. Astrophys. J. Lett. 946, L16 (2023).

    Article  ADS  Google Scholar 

  125. Witstok, J. et al. Carbonaceous dust grains seen in the first billion years of cosmic time. Nature 621, 267–270 (2023).

    Article  ADS  Google Scholar 

  126. Markov, V. et al. The evolution of dust attenuation in z ~ 2–12 galaxies observed by JWST. Nat. Astron. 9, 458–468 (2025).

    Article  Google Scholar 

  127. Herard-Demanche, T. et al. Mapping dusty galaxy growth at z > 5 with FRESCO: detection of Hα in submm galaxy HDF850.1 and the surrounding overdense structures. Mon. Not. R. Astron. Soc. 537, 788–808 (2025).

    Article  Google Scholar 

  128. Kashino, D. et al. EIGER. I. A large sample of [O iii]-emitting galaxies at 5.3 < z < 6.9 and direct evidence for local reionization by galaxies. Astrophys. J. 950, 66 (2023).

    Article  ADS  Google Scholar 

  129. Wang, F. et al. A Spectroscopic Survey of Biased Halos in the Reionization Era (ASPIRE): JWST reveals a filamentary structure around a z = 6.61 quasar. Astrophys. J. Lett. 951, L4 (2023).

    Article  ADS  Google Scholar 

  130. Eilers, A.-C. et al. EIGER VI. The correlation function, host halo mass and duty cycle of luminous quasars at z 6. Astrophys. J. 974, 275 (2024).

    Article  Google Scholar 

  131. Helton, J. M. et al. The JWST Advanced Deep Extragalactic Survey: discovery of an extreme galaxy overdensity at z = 5.4 with JWST/NIRCam in GOODS-S. Astrophys. J. 962, 124 (2024).

    Article  ADS  Google Scholar 

  132. Onoue, M. et al. A candidate for the least-massive black hole in the first 1.1 billion years of the Universe. Astrophys. J. Lett. 942, L17 (2023).

    Article  ADS  Google Scholar 

  133. Barro, G. et al. Extremely red galaxies at z = 5–9 with MIRI and NIRSpec: dusty galaxies or obscured active galactic nuclei? Astrophys. J. 963, 128 (2024).

    Article  ADS  Google Scholar 

  134. Labbe, I. et al. UNCOVER: candidate red active galactic nuclei at 3 < z < 7 with JWST and ALMA. Astrophys. J. 978, 92 (2025).

    Article  Google Scholar 

  135. Kokorev, V. et al. A census of photometrically selected Little Red Dots at 4 < z < 9 in JWST blank fields. Astrophys. J. 968, 38 (2024).

    Article  ADS  Google Scholar 

  136. Kocevski, D. D. et al. Hidden little monsters: spectroscopic identification of low-mass, broad-line AGNs at z > 5 with CEERS. Astrophys. J. Lett. 954, L4 (2023).

    Article  ADS  Google Scholar 

  137. Übler, H. et al. GA-NIFS: JWST discovers an offset AGN 740 million years after the Big Bang. Mon. Not. R. Astron. Soc. 531, 355–365 (2024).

    Article  ADS  Google Scholar 

  138. Matthee, J. et al. Little Red Dots: an abundant population of faint active galactic nuclei at z ~ 5 revealed by the EIGER and FRESCO JWST surveys. Astrophys. J. 963, L129 (2024).

    Article  Google Scholar 

  139. Maiolino, R. et al. JADES. The diverse population of infant black holes at 4 < z < 11: merging, tiny, poor, but mighty. Astron. Astrophys. 691, A145 (2024).

    Article  Google Scholar 

  140. Greene, J. E. et al. UNCOVER spectroscopy confirms a surprising ubiquity of active galactic nuclei in red galaxies at z > 5. Astrophys. J. 964, 39 (2024).

    Article  ADS  Google Scholar 

  141. Übler, H. et al. GA-NIFS: a massive black hole in a low-metallicity AGN at z ~ 5.55 revealed by JWST/NIRSpec IFS. Astron. Astrophys. 677, A145 (2023).

    Article  Google Scholar 

  142. Scholtz, J. et al. JADES: a large population of obscured, narrow-line active galactic nuclei at high redshift. Astron. Astrophys. 697, A175 (2025).

    Article  Google Scholar 

  143. Yue, M. et al. Stacking X-ray observations of ‘Little Red Dots’: implications for their active galactic nucleus properties. Astrophys. J. Lett. 974, L26 (2024).

    Article  Google Scholar 

  144. Ananna, T. T., Bogdán, Á., Kovács, O. E., Natarajan, P. & Hickox, R. C. X-ray view of Little Red Dots: do they host supermassive black holes? Astrophys. J. Lett. 969, L18 (2024).

    Article  Google Scholar 

  145. Maiolino, R. et al. JWST meets Chandra: a large population of Compton thick, feedback-free, and intrinsically X-ray weak AGN, with a sprinkle of SNe. Mon. Not. R. Astron. Soc. 538, 1921–1943 (2025).

    Article  Google Scholar 

  146. Habouzit, M. Is the JWST detecting too many AGN candidates? Mon. Not. R. Astron. Soc. 537, 2323–2333 (2025).

    Article  Google Scholar 

  147. Harikane, Y. et al. A JWST/NIRSpec first census of broad-line AGNs at z = 4–7: detection of 10 faint AGNs with MBH 106–108 M and their host galaxy properties. Astrophys. J. 959, 39 (2023).

    Article  ADS  Google Scholar 

  148. Yang, J. et al. A Spectroscopic Survey of Biased Halos in the Reionization Era (ASPIRE): a first look at the rest-frame optical spectra of z > 6.5 quasars using JWST. Astrophys. J. Lett. 951, L5 (2023).

    Article  ADS  Google Scholar 

  149. Marshall, M. A. et al. GA-NIFS: black hole and host galaxy properties of two z = 6.8 quasars from the NIRSpec IFU. Astron. Astrophys. 678, A191 (2023).

    Article  Google Scholar 

  150. Bosman, S. E. I. et al. A mature quasar at cosmic dawn revealed by JWST rest-frame infrared spectroscopy. Nat. Astron. 8, 1054–1065 (2024).

    Article  Google Scholar 

  151. Loiacono, F. et al. A quasar–galaxy merger at z ~ 6.2: black hole mass and quasar properties from the NIRSpec spectrum. Astron. Astrophys. 685, A121 (2024).

    Article  Google Scholar 

  152. Ding, X. et al. Detection of stellar light from quasar host galaxies at redshifts above 6. Nature 621, 51–55 (2023).

    Article  ADS  Google Scholar 

  153. Stone, M. A., Lyu, J., Rieke, G. H., Alberts, S. & Hainline, K. N. Undermassive host galaxies of five z ~ 6 luminous quasars detected with JWST. Astrophys. J. 964, 90 (2024).

    Article  ADS  Google Scholar 

  154. Yue, M. et al. EIGER V. Characterizing the host galaxies of luminous quasars at z 6. Astrophys. J. 966, 176 (2024).

    Article  ADS  Google Scholar 

  155. Kokorev, V. et al. UNCOVER: a NIRSpec identification of a broad-line AGN at z = 8.50. Astrophys. J. Lett. 957, L7 (2023).

    Article  ADS  Google Scholar 

  156. Juodžbalis, I. et al. A dormant overmassive black hole in the early Universe. Nature 636, 594–597 (2024).

    Article  Google Scholar 

  157. Wylezalek, D. et al. First results from the JWST Early Release Science Program Q3D: turbulent times in the life of a z ~ 3 extremely red quasar revealed by NIRSpec IFU. Astrophys. J. Lett. 940, L7 (2022).

    Article  ADS  Google Scholar 

  158. Inayoshi, K., Onoue, M., Sugahara, Y., Inoue, A. K. & Ho, L. C. The age of discovery with the James Webb Space Telescope: excavating the spectral signatures of the first massive black holes. Astrophys. J. Lett. 931, L25 (2022).

    Article  ADS  Google Scholar 

  159. Schneider, R. et al. Are we surprised to find SMBHs with JWST at z ≥ 9? Mon. Not. R. Astron. Soc. 526, 3250–3261 (2023).

    Article  ADS  Google Scholar 

  160. Bennett, J. S., Sijacki, D., Costa, T., Laporte, N. & Witten, C. The growth of the gargantuan black holes powering high-redshift quasars and their impact on the formation of early galaxies and protoclusters. Mon. Not. R. Astron. Soc. 527, 1033–1054 (2024).

    Article  ADS  Google Scholar 

  161. Perna, M. et al. GA-NIFS: the ultra-dense, interacting environment of a dual AGN at z ~ 3.3 revealed by JWST/NIRSpec IFS. Astron. Astrophys. 679, A89 (2023).

    Article  Google Scholar 

  162. Ishikawa, Y. et al. VODKA-JWST: synchronized growth of two supermassive black holes in a massive gas disk? A 3.8 kpc separation dual quasar at cosmic noon with the NIRSpec Integral Field Unit. Astrophys. J. 982, 22 (2025).

    Article  Google Scholar 

  163. Prieto-Lyon, G. et al. The production of ionizing photons in UV-faint z ~ 3–7 galaxies. Astron. Astrophys. 672, A186 (2023).

    Article  Google Scholar 

  164. Simmonds, C. et al. The ionizing photon production efficiency at z ~ 6 for Lyman-alpha emitters using JEMS and MUSE. Mon. Not. R. Astron. Soc. 523, 5468–5486 (2023).

    Article  ADS  Google Scholar 

  165. Dayal, P. et al. UNCOVERing the contribution of black holes to reionization. Astron. Astrophys. 697, A211 (2025).

    Article  Google Scholar 

  166. Mascia, S. et al. Closing in on the sources of cosmic reionization: first results from the GLASS-JWST program. Astron. Astrophys. 672, A155 (2023).

    Article  Google Scholar 

  167. Lin, Y.-H. et al. An empirical reionization history model inferred from the low-redshift Lyman continuum survey and the star-forming galaxies at z > 8. Mon. Not. R. Astron. Soc. 527, 4173–4182 (2024).

    Article  ADS  Google Scholar 

  168. Nakane, M. et al. Lyα emission at z = 7−13: clear evolution of Lyα equivalent width indicating the late cosmic reionization history. Astrophys. J. 967, 28 (2024).

    Article  ADS  Google Scholar 

  169. Chen, Y., Mo, H. J. & Wang, K. Massive dark matter haloes at high redshift: implications for observations in the JWST era. Mon. Not. R. Astron. Soc. 526, 2542–2559 (2023).

    Article  ADS  Google Scholar 

  170. Umeda, H. et al. JWST measurements of neutral hydrogen fractions and ionized bubble sizes at z = 7–12 obtained with Lyα damping wing absorptions in 27 bright continuum galaxies. Astrophys. J. 971, 124 (2024).

    Article  Google Scholar 

  171. Morishita, T. et al. Early results from GLASS-JWST. XIV. A spectroscopically confirmed protocluster 650 million years after the Big Bang. Astrophys. J. Lett. 947, L24 (2023).

    Article  ADS  Google Scholar 

  172. Chen, Z. et al. JWST spectroscopy of z ~ 5–8 UV-selected galaxies: new constraints on the evolution of the Ly α escape fraction in the reionization era. Mon. Not. R. Astron. Soc. 528, 7052–7075 (2024).

    Article  ADS  Google Scholar 

  173. Napolitano, L. et al. Peering into cosmic reionization: the Lyα visibility evolution from galaxies at z = 4.5–8.5 with JWST. Astron. Astrophys. 688, A106 (2024).

    Article  Google Scholar 

  174. Heintz, K. E. et al. Strong damped Lyman-α absorption in young star-forming galaxies at redshifts 9 to 11. Science 384, 890–894 (2024).

    Article  ADS  Google Scholar 

  175. Lu, T.-Y. et al. The reionizing bubble size distribution around galaxies. Mon. Not. R. Astron. Soc. 528, 4872–4890 (2024).

    Article  ADS  Google Scholar 

  176. Saxena, A. et al. JADES: the production and escape of ionizing photons from faint Lyman-alpha emitters in the epoch of reionization. Astron. Astrophys. 684, A84 (2024).

    Article  Google Scholar 

  177. Tang, M. et al. Lyα emission in galaxies at z 5−6: new insight from JWST into the statistical distributions of Lyα properties at the end of reionization. Mon. Not. R. Astron. Soc. 531, 2701–2730 (2024).

    Article  ADS  Google Scholar 

  178. Witstok, J. et al. Inside the bubble: exploring the environments of reionisation-era Lyman-α emitting galaxies with JADES and FRESCO. Astron. Astrophys. 682, A40 (2024).

    Article  Google Scholar 

  179. Meyer, R. A. et al. JWST FRESCO: a comprehensive census of Hβ + [O iii] emitters at 6.8 < z < 9.0 in the GOODS fields. Mon. Not. R. Astron. Soc. 535, 1067–1094 (2024).

    Article  Google Scholar 

  180. Álvarez-Márquez, J. et al. Spatially resolved Hα and ionizing photon production efficiency in the lensed galaxy MACS1149−JD1 at a redshift of 9.11. Astron. Astrophys. 686, A85 (2024).

    Article  Google Scholar 

  181. Welch, B. et al. JWST imaging of Earendel, the extremely magnified star at redshift z = 6.2. Astrophys. J. Lett. 940, L1 (2022).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

While this Perspective is written by a small number of authors, invited to ISSI Bern in March 2024 as part of the 2024 ISSI Breakthrough Workshop, we acknowledge the work of a large community that is advancing our collective understanding of the evolution of the early Universe. We thank ISSI for sponsoring the 2024 Breakthrough Workshop, and the ISSI staff for their wonderful welcome and support. We are grateful to the author collaborators, who made this paper possible. Collectively, we are grateful to the large group of committed scientists and engineers, worldwide, who designed, built and commissioned the JWST and made a decades-long astronomer dream a reality. R.P.N. is a NASA Hubble Fellow. We are grateful to M. Dickinson for a careful read of the final paper and to F. Crameri (ISSI) for his expert help designing the very best figures. We dedicate this paper to the 20,000 people who spent decades to make JWST an incredible discovery machine.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors were invited participants at a breakthrough workshop at the International Space Science Institute, titled ‘The chronology of the very early Universe according to JWST’, which was held on 11–15 March 2024, in Bern, Switzerland. Most participants were successful JWST Cycle 1 principal investigators of medium and large cosmology programmes. All authors actively participated in workshop discussions and writing of the paper. The conveners of the workshop were A.N., A.A., G.B., D.C., P.A.O. and J.R.R. The editors were the conveners and D.J.E. The leads of the individual sections of the paper were P.A.O., D.C., A.A., R.B., D.J.E., A.F., M.H., R.M., C.M., A.E.S. and M.S. The discussion moderators were J.R.R., D.A.B., J.C., P.D., I.L., M.V.M., J.M., K.B.W.M., D.S., A.L.S., C.C.W. and D.W. The discussion notetakers were G.B., A.d.G., T.A.H., J.S.K., R.M.-C. and R.P.N. G.R.-B. analysed the data and produced Figs. 2 and 4.

Corresponding author

Correspondence to Antonella Nota.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Karl Glazebrook and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamo, A., Atek, H., Bagley, M.B. et al. The first billion years according to JWST. Nat Astron 9, 1134–1147 (2025). https://doi.org/10.1038/s41550-025-02624-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-025-02624-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing