Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The origin of hypervelocity white dwarfs in the merger disruption of He–C–O white dwarfs

Abstract

Hypervelocity white dwarfs (HVWDs) are stellar remnants moving at speeds that exceed the Milky Way’s escape velocity. The origins of the fastest HVWDs are enigmatic, with proposed formation scenarios struggling to explain both their extreme velocities and observed properties. Here we report a three-dimensional hydrodynamic simulation of a merger between two hybrid helium–carbon–oxygen WDs (with masses of 0.69 M and 0.62 M, where M is the mass of the Sun). We find that the merger leads to a partial disruption of the secondary WD, coupled with a double-detonation explosion of the primary WD. This launches the remnant core of the secondary WD at a speed of 2,000 km s−1, consistent with observed HVWDs. The low mass of the ejected remnant and heating from the primary WD’s ejecta explain the observed luminosities and temperatures of hot HVWDs, which are otherwise difficult to reconcile with previous models (such as the dynamically driven double-degenerate double-detonation scenario). This discovery establishes a new formation channel for HVWDs and points to a pathway for producing peculiar type Ia supernovae and faint explosive transients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: WD disruption and shock propagation.
Fig. 2: Production of radioactive elements during the merger.
Fig. 3: Evolution of the MESA model and comparison with HVWD observations.

Similar content being viewed by others

Data availability

The MESA input files for relaxation, heating and evolution are available via Zenodo at https://doi.org/10.5281/zenodo.15700950 (ref. 46). All data underlying this research that are not in the Zenodo repository (particularly the many hydrodynamical simulation snapshots that are too large) are available upon reasonable request from the corresponding authors. Source data are provided with this paper.

Code availability

We made use of the AREPO30,41,43,47, MESA36,44,45,48, Matplotlib49, NumPy50 and SciPy51 codes. MESA inlists are available through the MESA community on Zenodo at https://doi.org/10.5281/zenodo.15700950 (ref. 46).

References

  1. Jordan, G. C., Perets, H. B., Fisher, R. T. & van Rossum, D. R. Failed-detonation supernovae: subluminous low-velocity Ia supernovae and their kicked remnant white dwarfs with iron-rich cores. Astrophys. J. Lett. 761, L23 (2012).

    Article  ADS  Google Scholar 

  2. Vennes, S. et al. An unusual white dwarf star may be a surviving remnant of a subluminous type Ia supernova. Science 357, 680–683 (2017).

    Article  ADS  Google Scholar 

  3. Shen, K. J. et al. Three hypervelocity white dwarfs in Gaia DR2: evidence for dynamically driven double-degenerate double-detonation type Ia supernovae. Astrophys. J. 865, 15 (2018).

    Article  ADS  Google Scholar 

  4. El-Badry, K. et al. The fastest stars in the Galaxy. Open J. Astrophys. 6, 28 (2023).

    Google Scholar 

  5. Raddi, R. et al. Further insight on the hypervelocity white dwarf, LP 40-365 (GD 492): a nearby emissary from a single-degenerate type Ia supernova. Astrophys. J. 858, 3 (2018).

    Article  ADS  Google Scholar 

  6. Raddi, R. et al. Partly burnt runaway stellar remnants from peculiar thermonuclear supernovae. Mon. Not. R. Astron. Soc. 489, 1489–1508 (2019).

    Article  ADS  Google Scholar 

  7. Gaia Collaboration et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

    Article  Google Scholar 

  8. Gaia Collaborationet al. Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys. 674, A1 (2023).

    Article  Google Scholar 

  9. Igoshev, A. P., Perets, H. & Hallakoun, N. Hyper-runaway and hypervelocity white dwarf candidates in Gaia Data Release 3: possible remnants from Ia/Iax supernova explosions or dynamical encounters. Mon. Not. R. Astron. Soc. 518, 6223–6237 (2023).

    Article  ADS  Google Scholar 

  10. Scholz, R. D. Hypervelocity star candidates from Gaia DR2 and DR3 proper motions and parallaxes. Astron. Astrophys. 685, A162 (2024).

    Article  ADS  Google Scholar 

  11. Bhat, A. et al. Supernova shocks cannot explain the inflated state of hypervelocity runaways from white dwarf binaries. Astron. Astrophys. 693, A114 (2025).

    Article  Google Scholar 

  12. Wong, T. L. S., White, C. J. & Bildsten, L. Shocking and mass loss of compact donor stars in type Ia supernovae. Astrophys. J. 973, 65 (2024).

    Article  Google Scholar 

  13. Hansen, B. M. S. Type Ia supernovae and high-velocity white dwarfs. Astrophys. J. 582, 915–918 (2003).

    Article  ADS  Google Scholar 

  14. Blaauw, A. On the origin of the O- and B-type stars with high velocities (the “run-away” stars), and some related problems. Bull. Astron. Inst. Neth. 15, 265 (1961).

    ADS  Google Scholar 

  15. Guillochon, J., Dan, M., Ramirez-Ruiz, E. & Rosswog, S. Surface detonations in double degenerate binary systems triggered by accretion stream instabilities. Astrophys. J. Lett. 709, L64–L69 (2010).

    Article  ADS  Google Scholar 

  16. Pakmor, R., Kromer, M., Taubenberger, S. & Springel, V. Helium-ignited violent mergers as a unified model for normal and rapidly declining type Ia supernovae. Astrophys. J. Lett. 770, L8 (2013).

    Article  ADS  Google Scholar 

  17. Sato, Y. et al. A systematic study of carbon-oxygen white dwarf mergers: mass combinations for type Ia supernovae. Astrophys. J. 807, 105 (2015).

    Article  ADS  Google Scholar 

  18. Iben Jr, I. & Tutukov, A. V. On the evolution of close binaries with components of initial mass between 3 solar masses and 12 solar masses. Astrophys. J. Suppl. Ser. 58, 661–710 (1985).

    Article  ADS  Google Scholar 

  19. Iben Jr, I., Nomoto, K. I., Tornambe, A. & Tutukov, A. V. On interacting helium star–white dwarf pairs as supernova precursors. Astrophys. J. 317, 717 (1987).

    Article  ADS  Google Scholar 

  20. Bauer, E. B., Chandra, V., Shen, K. J. & Hermes, J. J. Masses of white dwarf binary companions to type Ia supernovae measured from runaway velocities. Astrophys. J. Lett. 923, L34 (2021).

    Article  ADS  Google Scholar 

  21. Bauer, E. B., White, C. J. & Bildsten, L. Remnants of subdwarf helium donor stars ejected from close binaries with thermonuclear supernovae. Astrophys. J. 887, 68 (2019).

    Article  ADS  Google Scholar 

  22. Shields, J. V. et al. No surviving sn Ia companion in SNR 0509-67.5: stellar population characterization and comparison to models. Astrophys. J. Lett. 950, L10 (2023).

    Article  ADS  Google Scholar 

  23. Tanikawa, A., Nomoto, K., Nakasato, N. & Maeda, K. Double-detonation models for Type Ia Supernovae: trigger of detonation in companion white dwarfs and signatures of companions’ stripped-off materials. Astrophys. J. 885, 103 (2019).

    Article  ADS  Google Scholar 

  24. Pakmor, R., Zenati, Y., Perets, H. B. & Toonen, S. Thermonuclear explosion of a massive hybrid HeCO white dwarf triggered by a He detonation on a companion. Mon. Not. R. Astron. Soc. 503, 4734–4747 (2021).

    Article  ADS  Google Scholar 

  25. Pakmor, R. et al. On the fate of the secondary white dwarf in double-degenerate double-detonation type Ia supernovae. Mon. Not. R. Astron. Soc. 517, 5260–5271 (2022).

    Article  ADS  Google Scholar 

  26. Boos, S. J., Townsley, D. M. & Shen, K. J. Type Ia supernovae can arise from the detonations of both stars in a double degenerate binary. Astrophys. J. 972, 200 (2024).

    Article  Google Scholar 

  27. Pollin, J. M. et al. On the fate of the secondary white dwarf in double-degenerate double-detonation type Ia supernovae - II. 3D synthetic observables. Mon. Not. R. Astron. Soc. 533, 3036–3052 (2024).

    Article  Google Scholar 

  28. Iben Jr, I. & Tutukov, A. V. On the evolution of close binaries with components of initial mass between 3 M and 12 M. Astrophys. J. Suppl. Ser. 58, 661–710 (1985).

    Article  ADS  Google Scholar 

  29. Zenati, Y., Toonen, S. & Perets, H. B. Formation and evolution of hybrid He-CO white dwarfs and their properties. Mon. Not. R. Astron. Soc. 482, 1135–1142 (2019).

    Article  ADS  Google Scholar 

  30. Springel, V. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. R. Astron. Soc. 401, 791–851 (2010).

    Article  ADS  Google Scholar 

  31. Waldman, R. et al. Helium shell detonations on low-mass white dwarfs as a possible explanation for SN 2005E. Astrophys. J. 738, 21 (2011).

    Article  ADS  Google Scholar 

  32. Sim, S. A. et al. 2D simulations of the double-detonation model for thermonuclear transients from low-mass carbon-oxygen white dwarfs. Mon. Not. R. Astron. Soc. 420, 3003–3016 (2012).

    Article  ADS  Google Scholar 

  33. Zenati, Y. et al. The origins of calcium-rich supernovae from disruptions of CO white dwarfs by hybrid He-CO white dwarfs. Astrophys. J. 944, 22 (2023).

    Article  ADS  Google Scholar 

  34. Taubenberger, S. in The Extremes of Thermonuclear Supernovae (eds Alsabti, A. W. & Murdin, P.) Handbook of Supernovae 317 (Springer, 2017).

  35. Perets, H. B. et al. A faint type of supernova from a white dwarf with a helium-rich companion. Nature 465, 322–325 (2010).

    Article  ADS  Google Scholar 

  36. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3 (2011).

    Article  ADS  Google Scholar 

  37. Werner, K., El-Badry, K., Gänsicke, B. T. & Shen, K. J. Ultraviolet spectroscopy of the supernova Ia hypervelocity runaway white dwarf J0927-6335. Astron. Astrophys. 689, L6 (2024).

    Article  Google Scholar 

  38. Perets, H. B., Zenati, Y., Toonen, S. & Bobrick, A. Normal type Ia supernovae from disruptions of hybrid He-CO white-dwarfs by CO white-dwarfs. Preprint at https://arxiv.org/abs/1910.07532 (2019).

  39. Zenati, Y., Toonen, S. & Perets, H. B. Formation and evolution of hybrid He-CO white dwarfs and their properties. Mon. Not. R. Astron. Soc. 482, 1135–1142 (2018).

    Article  ADS  Google Scholar 

  40. Zenati, Y., Perets, H. B. & Toonen, S. Neutron star-white dwarf mergers: early evolution, physical properties, and outcomes. Mon. Not. R. Astron. Soc. 486, 1805–1813 (2019).

    Article  ADS  Google Scholar 

  41. Pakmor, R., Bauer, A. & Springel, V. Magnetohydrodynamics on an unstructured moving grid. Mon. Not. R. Astron. Soc. 418, 1392–1401 (2011).

    Article  ADS  Google Scholar 

  42. Zhu, C., Pakmor, R., van Kerkwijk, M. H. & Chang, P. Magnetized moving mesh merger of a carbon-oxygen white dwarf binary. Astrophys. J. Lett. 806, L1 (2015).

    Article  ADS  Google Scholar 

  43. Weinberger, R., Springel, V. & Pakmor, R. The AREPO public code release. Astrophys. J. Suppl. Ser. 248, 32 (2020).

    Article  ADS  Google Scholar 

  44. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. Ser. 208, 4 (2013).

    Article  ADS  Google Scholar 

  45. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): pulsating variable stars, rotation, convective boundaries, and energy conservation. Astrophys. J. Suppl. Ser. 243, 10 (2019).

    Article  ADS  Google Scholar 

  46. Bhat, A. MESA files for origins of the fastest stars from merger-disruption of he-co white dwarfs. Zenodo https://doi.org/10.5281/zenodo.15700950 (2025).

  47. Pakmor, R. et al. Improving the convergence properties of the moving-mesh code AREPO. Mon. Not. R. Astron. Soc. 455, 1134–1143 (2016).

    Article  ADS  Google Scholar 

  48. Jermyn, A. S. et al. Modules for Experiments in Stellar Astrophysics (MESA): time-dependent convection, energy conservation, automatic differentiation, and infrastructure. Astrophys. J. Suppl. Ser. 265, 15 (2023).

    Article  ADS  Google Scholar 

  49. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

  50. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article  ADS  Google Scholar 

  51. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

H.B.P. acknowledges support for this project from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 865932-ERC-SNeX. H.G. acknowledges support for the project from the Council for Higher Education of Israel. A.B. was supported by the Deutsche Forschungsgemeinschaft (DFG) through grant number GE2506/18-1 and by the Kavli Summer Program, which took place at MPA in Garching in July 2023 and was supported by the Kavli Foundation. We thank E. Bauer and R. Fisher for their valuable comments and discussions.

Author information

Authors and Affiliations

Authors

Contributions

H.G. led the key research, ran the hydrodynamical simulations and analysed the results. H.B.P. initiated and supervised the project, suggested the main ideas, analysed the results and wrote the main parts of the paper. A.B. ran the long-term WD evolution modelling and analysis. R.P. assisted with running the hydrodynamical simulations. All authors contributed to writing the paper, making the figures and reviewing the manuscript.

Corresponding authors

Correspondence to Hila Glanz or Hagai B. Perets.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–3, Tables 1–3 and Sections 2.1–2.6.

Supplementary Video 1

Simulation video. Showing slices of the different densities and temperature and presenting the beginning of the mass transfer, the disruption of the secondary during the interaction, the double detonation and the ejection of the HVWD.

Source data

Source Data Fig. 2

Full data behind Fig. 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glanz, H., Perets, H.B., Bhat, A. et al. The origin of hypervelocity white dwarfs in the merger disruption of He–C–O white dwarfs. Nat Astron (2025). https://doi.org/10.1038/s41550-025-02633-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-025-02633-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing