Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extended enriched gas in a multi-galaxy merger at redshift 6.7

Abstract

Recent JWST observations have uncovered high-redshift galaxies characterized by multiple star-forming clumps, many of which appear to be undergoing mergers. Such mergers, especially those of two galaxies with equivalent masses, play a critical role in driving galaxy evolution and regulating the chemical composition of their environments. Here we report a major merger of at least 5 galaxies, dubbed JWST’s Quintet (JQ), at redshift 6.7. This system resides in a small area of approximately 4.5″ × 4.5″ (24.6 × 24.6 pkpc2), containing over 17 galaxy-size clumps with a total stellar mass of 1010M. JQ has a total star formation rate of 255 M yr−1, placing it approximately 1 dex above the star formation rate–mass main sequence at this epoch. The high mass and star formation rate of JQ are consistent with the star formation history of those unexpected massive quiescent galaxies observed at redshift 4–5, offering a plausible evolutionary pathway for the formation of such galaxies. We also detect a large [O iii] + Hβ gaseous halo surrounding and connecting four galaxies in JQ, suggesting the existence of metals in the surrounding medium—the inner part of its circumgalactic medium. This provides direct evidence for metal enrichment of galaxies’ environments through merger-induced tidal stripping, just 800 Myr after the Big Bang.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The pseudo-colour images of JQ at redshift 6.71.
Fig. 2: Redshift measurements and SEDs of the ELGs in JQ.
Fig. 3: Distribution of the five galaxies, the associated clumps, and the entire JQ system in the star formation rate–stellar mass plane.
Fig. 4: The expected stellar mass growth of the JQ system.

Similar content being viewed by others

Data availability

The unprocessed JWST data are available through the Mikulski Archive for Space Telescopes (https://mast.stsci.edu/search/ui/#/jwst; PID 1180, 1181, 1210, 1286, 1895, 1963 and 3215). The reduced JWST images and spectra in this work are publicly available through the STSci High-Level Science Products (https://archive.stsci.edu/hlsp/jades; https://doi.org/10.17909/8tdj-8n28). The mock catalogues from the lightcone simulation are publicly available through the Semi-analytic forecasts for the Universe homepage (https://www.simonsfoundation.org/semi-analytic-forecasts).

Code availability

Codes used in this study are publicly available: Astropy (https://www.astropy.org), Bagpipes (https://github.com/ACCarnall/bagpipes), CIGALE (https://cigale.lam.fr), Pysersic (https://github.com/pysersic/pysersic), sep (https://github.com/sep-developers/sep), SExtractor (https://www.astromatic.net/software/sextractor, and MVT binning (https://github.com/pierrethx/MVT-binning).

References

  1. Rieke, M. J. et al. JADES initial data release for the Hubble Ultra Deep Field: revealing the faint infrared sky with deep JWST NIRCam imaging. Astrophys. J. Suppl. Ser. 269, 16 (2023).

    Article  ADS  Google Scholar 

  2. D’Eugenio, F. et al. JADES Data Release 3: NIRSpec/Microshutter Assembly Spectroscopy for 4000 galaxies in the GOODS fields. Astrophys. J. Suppl. Ser. 277, 4 (2025).

    Article  Google Scholar 

  3. Moles, M., Sulentic, J. W. & Márquez, I. The dynamical status of Stephan’s Quintet. Astrophys. J. Lett. 485, L69–L73 (1997).

    Article  ADS  Google Scholar 

  4. Appleton, P. N. et al. Multiphase gas interactions on subarcsec scales in the shocked intergalactic medium of Stephan’s Quintet with JWST and ALMA. Astrophys. J. 951, 104 (2023).

    Article  ADS  Google Scholar 

  5. Witstok, J. et al. Inside the bubble: exploring the environments of reionisation-era Lyman-α emitting galaxies with JADES and FRESCO. Astron. Astrophys. 682, A40 (2024).

    Article  Google Scholar 

  6. Adamo, A. et al. Bound star clusters observed in a lensed galaxy 460 Myr after the Big Bang. Nature 632, 513–516 (2024).

    Article  Google Scholar 

  7. Vanzella, E. et al. JWST/NIRCam probes young star clusters in the reionization era Sunrise Arc. Astrophys. J. 945, 53 (2023).

    Article  ADS  Google Scholar 

  8. Fujimoto, S. et al. Primordial rotating disk composed of ≥15 dense star-forming clumps at cosmic dawn. Nat. Astron. https://doi.org/10.1038/s41550-025-02592-w (2025).

  9. Morishita, T. et al. Enhanced subkiloparsec-scale star formation: results from a JWST size analysis of 341 galaxies at 5 < z <14. Astrophys. J. 963, 9 (2024).

    Article  ADS  Google Scholar 

  10. Chen, Z. et al. JWST/NIRCam observations of stars and H ii regions in z ~ 6–8 galaxies: properties of star-forming complexes on 150 pc scales. Mon. Not. R. Astron. Soc. 518, 5607–5619 (2023).

    Article  ADS  Google Scholar 

  11. Hainline, K. N. et al. The cosmos in its infancy: JADES galaxy candidates at z > 8 in GOODS-S and GOODS-N. Astrophys. J. 964, 71 (2024).

    Article  ADS  Google Scholar 

  12. Jones, G. C. et al. GA-NIFS: witnessing the complex assembly of a star-forming system at z = 5.7. Mon. Not. R. Astron. Soc. 540, 3311–3329 (2025).

    Article  Google Scholar 

  13. Hashimoto, T. et al. Reionization and the ISM/stellar Origins with JWST and ALMA (RIOJA): the core of the highest-redshift galaxy overdensity at z = 7.88 confirmed by NIRSpec/JWST. Astrophys. J. Lett. 955, L2 (2023).

    Article  ADS  Google Scholar 

  14. Arribas, S. et al. GA-NIFS: the core of an extremely massive protocluster at the epoch of reionisation probed with JWST/NIRSpec. Astron. Astrophys. 688, A146 (2024).

    Article  Google Scholar 

  15. Nakazato, Y., Ceverino, D. & Yoshida, N. A merger-driven scenario for clumpy galaxy formation in the epoch of reionization: physical properties of clumps in the firstlight simulation. Astrophys. J. 975, 238 (2024).

    Article  Google Scholar 

  16. Yung, L. Y. A. et al. Semi-analytic forecasts for Roman—the beginning of a new era of deep-wide galaxy surveys. Mon. Not. R. Astron. Soc. 519, 1578–1600 (2023).

    Article  ADS  Google Scholar 

  17. Cole, J. W. et al. CEERS: increasing scatter along the star-forming main sequence indicates early galaxies form in bursts. Astrophys. J. 979, 193 (2025).

    Article  Google Scholar 

  18. Curti, M. et al. JADES: insights into the low-mass end of the mass-metallicity-SFR relation at 3 < z < 10 from deep JWST/NIRSpec spectroscopy. Astron. Astrophys. 684, A75 (2024).

    Article  Google Scholar 

  19. Pirie, C. A. et al. The JWST Emission Line Survey (JELS): an untargeted search for Hα emission line galaxies at z > 6 and Their physical properties. Mon. Not. R. Astron. Soc. 541, 1348–1376 (2025).

    Article  Google Scholar 

  20. Popesso, P. et al. The main sequence of star-forming galaxies across cosmic times. Mon. Not. R. Astron. Soc. 519, 1526–1544 (2023).

    Article  ADS  Google Scholar 

  21. Conroy, C. Modeling the panchromatic spectral energy distributions of galaxies. Annu. Rev. Astron. Astrophys. 51, 393–455 (2013).

    Article  ADS  Google Scholar 

  22. Papovich, C. et al. CEERS key paper. V. Galaxies at 4 < z < 9 are bluer than they appear—characterizing galaxy stellar populations from rest-frame ~ 1 μm imaging. Astrophys. J. Lett. 949, L18 (2023).

    Article  ADS  Google Scholar 

  23. Tacchella, S. et al. Morphology and star formation in IllustrisTNG: the build-up of spheroids and discs. Mon. Not. R. Astron. Soc. 487, 5416–5440 (2019).

    Article  ADS  Google Scholar 

  24. Carnall, A. C. et al. A massive quiescent galaxy at redshift 4.658. Nature 619, 716–719 (2023).

    Article  ADS  Google Scholar 

  25. de Graaff, A. et al. Efficient formation of a massive quiescent galaxy at redshift 4.9. Nat. Astron. 9, 280–292 (2025).

    Article  Google Scholar 

  26. Carnall, A. C. et al. The JWST EXCELS survey: too much, too young, too fast? Ultra-massive quiescent galaxies at 3 < z < 5. Mon. Not. R. Astron. Soc. 534, 325–348 (2024).

    Article  Google Scholar 

  27. Glazebrook, K. et al. A massive galaxy that formed its stars at z ≈ 11. Nature 628, 277–281 (2024).

    Article  ADS  Google Scholar 

  28. Nanayakkara, T. et al. The formation histories of massive and quiescent galaxies in the 3 < z < 4.5 universe. Astrophys. J. 981, 78 (2025).

    Article  Google Scholar 

  29. Turner, C. et al. Age-dating early quiescent galaxies: high star formation efficiency, but consistent with direct, higher-redshift observations. Mon. Not. R. Astron. Soc. 537, 1826–1848 (2025).

    Article  Google Scholar 

  30. Mihos, J. C. & Hernquist, L. Gasdynamics and starbursts in major mergers. Astrophys. J. 464, 641 (1996).

    Article  ADS  Google Scholar 

  31. Di Matteo, T., Springel, V. & Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604–607 (2005).

    Article  ADS  Google Scholar 

  32. Hopkins, P. F., Hernquist, L., Cox, T. J. & Kereš, D. A cosmological framework for the co-evolution of quasars, supermassive black holes, and elliptical galaxies. I. Galaxy mergers and quasar activity. Astrophys. J. Suppl. Ser. 175, 356–389 (2008).

    Article  ADS  Google Scholar 

  33. Xie, L. et al. The first quenched galaxies: when and how? Astrophys. J. Lett. 966, L2 (2024).

    Article  ADS  Google Scholar 

  34. Rieke, G. et al. JWST/NIRCam Slitless Spectroscopy in the JWST/MIRI HUDF Region. JWST Proposal Cycle 3, 4549 (2023).

    Google Scholar 

  35. Parlanti, E. et al. GA-NIFS: multiphase analysis of a star-forming galaxy at z ~ 5.5. Astron. Astrophys. 695, A6 (2025).

    Article  Google Scholar 

  36. Marshall, M. A. et al. GA-NIFS: black hole and host galaxy properties of two z ~ 6.8 quasars from the NIRSpec IFU. Astron. Astrophys. 678, A191 (2023).

    Article  Google Scholar 

  37. Vayner, A. et al. First results from the JWST Early Release Science Program Q3D: ionization cone, clumpy star formation, and shocks in a z = 3 extremely red quasar host. Astrophys. J. 955, 92 (2023).

    Article  ADS  Google Scholar 

  38. Solimano, M. et al. A hidden active galactic nucleus powering bright [O iii] nebulae in a protocluster at z = 4.5 revealed by JWST. Astron. Astrophys. 693, A70 (2025).

    Article  Google Scholar 

  39. Thompson, T. A., Quataert, E., Zhang, D. & Weinberg, D. H. An origin for multiphase gas in galactic winds and haloes. Mon. Not. R. Astron. Soc. 455, 1830–1844 (2016).

    Article  ADS  Google Scholar 

  40. Peng, Z. et al. Physical origins of outflowing cold clouds in local star-forming dwarf galaxies. Astrophys. J. 981, 171 (2025).

    Article  Google Scholar 

  41. Di Cesare, C. et al. Carbon envelopes around merging galaxies at z ~ 4.5. Astron. Astrophys. 690, A255 (2024).

    Article  Google Scholar 

  42. Sparre, M. et al. Gas flows in galaxy mergers: supersonic turbulence in bridges, accretion from the circumgalactic medium, and metallicity dilution. Mon. Not. R. Astron. Soc. 509, 2720–2735 (2022).

    Article  ADS  Google Scholar 

  43. Moreno, J. et al. Interacting galaxies on FIRE-2: the connection between enhanced star formation and interstellar gas content. Mon. Not. R. Astron. Soc. 485, 1320–1338 (2019).

    Article  ADS  Google Scholar 

  44. Sinha, M. & Holley-Bockelmann, K. Numerical simulations of hot halo gas in galaxy mergers. Mon. Not. R. Astron. Soc. 397, 190–207 (2009).

    Article  ADS  Google Scholar 

  45. Cox, T. J. et al. X-ray emission from hot gas in galaxy mergers. Astrophys. J. 643, 692–706 (2006).

    Article  ADS  Google Scholar 

  46. O’Sullivan, E., Giacintucci, S., Vrtilek, J. M., Raychaudhury, S. & David, L. P. A Chandra X-ray view of Stephan’s Quintet: shocks and star formation. Astrophys. J. 701, 1560–1568 (2009).

    Article  ADS  Google Scholar 

  47. Allen, R. J. & Hartsuiker, J. W. Radio continuum emission at 21 cm near Stephan’s Quintet. Nature 239, 324–325 (1972).

    Article  ADS  Google Scholar 

  48. Xu, C. K., Lu, N., Condon, J. J., Dopita, M. & Tuffs, R. J. Physical conditions and star formation activity in the intragroup medium of Stephan’s Quintet. Astrophys. J. 595, 665–684 (2003).

    Article  ADS  Google Scholar 

  49. Iglesias-Páramo, J., López-Martín, L., Vílchez, J. M., Petropoulou, V. & Sulentic, J. W. New insights on Stephan’s Quintet: exploring the shock in three dimensions. Astron. Astrophys. 539, A127 (2012).

    Article  ADS  Google Scholar 

  50. Rodríguez-Baras, M., Rosales-Ortega, F. F., Díaz, A. I., Sánchez, S. F. & Pasquali, A. A study of the ionized gas in Stephan’s Quintet from integral field spectroscopy observations. Mon. Not. R. Astron. Soc. 442, 495–508 (2014).

    Article  ADS  Google Scholar 

  51. Planck Collaboration et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  52. Eisenstein, D. J. et al. Overview of the JWST Advanced Deep Extragalactic Survey (JADES). Preprint at https://arxiv.org/abs/2306.02465 (2023).

  53. Eisenstein, D. J. et al. The JADES Origins Field: a new JWST deep field in the JADES Second NIRCam Data Release. Preprint at https://arxiv.org/abs/2310.12340 (2023).

  54. Williams, C. C. et al. JEMS: a deep medium-band imaging survey in the Hubble Ultra Deep Field with JWST NIRCam and NIRISS. Astrophys. J. Suppl. Ser. 268, 64 (2023).

    Article  ADS  Google Scholar 

  55. Grogin, N. A. et al. CANDELS: the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. Astrophys. J. Suppl. Ser. 197, 35 (2011).

    Article  ADS  Google Scholar 

  56. Koekemoer, A. M. et al. CANDELS: the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey—the Hubble Space Telescope observations, imaging data products, and mosaics. Astrophys. J. Suppl. Ser. 197, 36 (2011).

    Article  ADS  Google Scholar 

  57. Wang, X. et al. The Lyman continuum escape fraction of star-forming galaxies at 2.4 z 3.0 from UVCANDELS. Astrophys. J. 980, 74 (2025).

    Article  Google Scholar 

  58. Bouwens, R. J. et al. Ultraviolet luminosity functions from 132 z ~7 and z ~8 Lyman-break galaxies in the ultra-deep HUDF09 and wide-area Early Release Science WFC3/IR observations. Astrophys. J. 737, 90 (2011).

    Article  ADS  Google Scholar 

  59. Oesch, P. A. et al. The JWST FRESCO survey: legacy NIRCam/grism spectroscopy and imaging in the two GOODS fields. Mon. Not. R. Astron. Soc. 525, 2864–2874 (2023).

    Article  ADS  Google Scholar 

  60. Bunker, A. J. et al. JADES NIRSpec initial data release for the Hubble Ultra Deep Field: redshifts and line fluxes of distant galaxies from the deepest JWST Cycle 1 NIRSpec multi-object spectroscopy. Astron. Astrophys. 690, A288 (2024).

    Article  Google Scholar 

  61. Carnall, A. C., McLure, R. J., Dunlop, J. S. & Davé, R. Inferring the star formation histories of massive quiescent galaxies with BAGPIPES: evidence for multiple quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379–4401 (2018).

    Article  ADS  Google Scholar 

  62. Eldridge, J. J. et al. Binary Population and Spectral Synthesis Version 2.1: construction, observational verification, and new results. Publ. Astron. Soc. Aust. 34, e058 (2017).

    Article  ADS  Google Scholar 

  63. Stanway, E. R. & Eldridge, J. J. Re-evaluating old stellar populations. Mon. Not. R. Astron. Soc. 479, 75–93 (2018).

    Article  ADS  Google Scholar 

  64. Iyer, K. G. et al. Nonparametric star formation history reconstruction with Gaussian processes. I. Counting major episodes of star formation. Astrophys. J. 879, 116 (2019).

    Article  ADS  Google Scholar 

  65. Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    Article  ADS  Google Scholar 

  66. Barbary, K. sep: source extractor as a library. J. Open Source Softw. 1, 58 (2016).

    Article  ADS  Google Scholar 

  67. Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. Suppl. Ser. 117, 393–404 (1996).

    Article  ADS  Google Scholar 

  68. Pasha, I. & Miller, T. B. pysersic: a Python package for determining galaxy structural properties via Bayesian inference, accelerated with jax. J. Open Source Softw. 8, 5703 (2023).

    Article  ADS  Google Scholar 

  69. Hoffman, M. D. & Gelman, A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Preprint at https://arxiv.org/abs/1111.4246 (2011).

  70. Endsley, R. et al. The star-forming and ionizing properties of dwarf z ~ 6–9 galaxies in JADES: insights on bursty star formation and ionized bubble growth. Mon. Not. R. Astron. Soc. 533, 1111–1142 (2024).

    Article  Google Scholar 

  71. Puskás, D. et al. Constraining the major merger history of z ~ 3–9 galaxies using JADES: dominant in situ star formation. Mon. Not. R. Astron. Soc. 540, 2146–2175 (2025).

    Article  Google Scholar 

  72. Claeyssens, A. et al. Star formation at the smallest scales: a JWST study of the clump populations in SMACS0723. Mon. Not. R. Astron. Soc. 520, 2180–2203 (2023).

    Article  ADS  Google Scholar 

  73. Allen, N. et al. Galaxy size and mass build-up in the first 2 Gyr of cosmic history from multi-wavelength JWST NIRCam imaging. Astron. Astrophys. 698, A30 (2025).

    Article  Google Scholar 

  74. Shen, L. et al. CEERS: spatially resolved UV and mid-infrared star formation in galaxies at 0.2 <z < 2.5: the picture from the Hubble and James Webb Space telescopes. Astrophys. J. 950, 7 (2023).

    Article  ADS  Google Scholar 

  75. Sorba, R. & Sawicki, M. Spatially unresolved SED fitting can underestimate galaxy masses: a solution to the missing mass problem. Mon. Not. R. Astron. Soc. 476, 1532–1547 (2018).

    Article  ADS  Google Scholar 

  76. Shen, L. et al. NGDEEP Epoch 1: spatially resolved Hα observations of disk and bulge growth in star-forming galaxies at z ~ 0.6–2.2 from JWST NIRISS slitless spectroscopy. Astrophys. J. Lett. 963, L49 (2024).

    Article  ADS  Google Scholar 

  77. Boquien, M. et al. CIGALE: a Python Code Investigating Galaxy Emission. Astron. Astrophys. 622, A103 (2019).

    Article  Google Scholar 

  78. Cappellari, M. & Copin, Y. Adaptive spatial binning of integral-field spectroscopic data using Voronoi tessellations. Mon. Not. R. Astron. Soc. 342, 345–354 (2003).

    Article  ADS  Google Scholar 

  79. Diehl, S. & Statler, T. S. Adaptive binning of X-ray data with weighted Voronoi tessellations. Mon. Not. R. Astron. Soc. 368, 497–510 (2006).

    Article  ADS  Google Scholar 

  80. Applebaum, E., Brooks, A. M., Quinn, T. R. & Christensen, C. R. A stochastically sampled IMF alters the stellar content of simulated dwarf galaxies. Mon. Not. R. Astron. Soc. 492, 8–21 (2020).

    Article  ADS  Google Scholar 

  81. Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

    Article  ADS  Google Scholar 

  82. Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    Article  ADS  Google Scholar 

  83. Inoue, A. K. Rest-frame ultraviolet-to-optical spectral characteristics of extremely metal-poor and metal-free galaxies. Mon. Not. R. Astron. Soc. 415, 2920–2931 (2011).

    Article  ADS  Google Scholar 

  84. Klypin, A., Yepes, G., Gottlöber, S., Prada, F. & Heß, S. MultiDark simulations: the story of dark matter halo concentrations and density profiles. Mon. Not. R. Astron. Soc. 457, 4340–4359 (2016).

    Article  ADS  Google Scholar 

  85. Somerville, R. S., Popping, G. & Trager, S. C. Star formation in semi-analytic galaxy formation models with multiphase gas. Mon. Not. R. Astron. Soc. 453, 4337–4367 (2015).

    Article  ADS  Google Scholar 

  86. Somerville, R. S. et al. Mock light-cones and theory friendly catalogues for the CANDELS survey. Mon. Not. R. Astron. Soc. 502, 4858–4876 (2021).

    Article  ADS  Google Scholar 

  87. Yung, L. Y. A., Somerville, R. S., Finkelstein, S. L., Popping, G. & Davé, R. Semi-analytic forecasts for JWST—I. UV luminosity functions at z = 4–10. Mon. Not. R. Astron. Soc. 483, 2983–3006 (2019).

    Article  ADS  Google Scholar 

  88. Yung, L. Y. A. et al. Semi-analytic forecasts for JWST—VI. Simulated light-cones and galaxy clustering predictions. Mon. Not. R. Astron. Soc. 515, 5416–5436 (2022).

    Article  ADS  Google Scholar 

  89. Yung, L. Y. A. et al. Semi-analytic forecasts for JWST—II. Physical properties and scaling relations for galaxies at z = 4–10. Mon. Not. R. Astron. Soc. 490, 2855–2879 (2019).

    Article  ADS  Google Scholar 

  90. Somerville, R. S., Hopkins, P. F., Cox, T. J., Robertson, B. E. & Hernquist, L. A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei. Mon. Not. R. Astron. Soc. 391, 481–506 (2008).

    Article  ADS  Google Scholar 

  91. Duan, Q. et al. Galaxy mergers in the epoch of reionization II: major merger-triggered star formation and AGN activities at z = 4.5–8.5. Preprint at https://arxiv.org/abs/2411.04944 (2024).

  92. Duan, Q. et al. Galaxy mergers in the epoch of reionization I: a JWST study of pair fractions, merger rates, and stellar mass accretion rates at z = 4.5–11.5. Mon. Not. R. Astron. Soc. 540, 774–805 (2025).

    Article  Google Scholar 

  93. Gehrels, N. Confidence limits for small numbers of events in astrophysical data. Astrophys. J. 303, 336 (1986).

    Article  ADS  Google Scholar 

  94. Mo, H., van den Bosch, F. & White, S. Galaxy Formation and Evolution (Cambridge Univ. Press, 2010).

  95. Chandrasekhar, S. Dynamical friction. I. General considerations: the coefficient of dynamical friction. Astrophys. J. 97, 255 (1943).

    Article  ADS  MathSciNet  Google Scholar 

  96. Somerville, R. S. & Primack, J. R. Semi-analytic modelling of galaxy formation: the local Universe. Mon. Not. R. Astron. Soc. 310, 1087–1110 (1999).

    Article  ADS  Google Scholar 

  97. Jiang, C. Y., Jing, Y. P., Faltenbacher, A., Lin, W. P. & Li, C. A fitting formula for the merger timescale of galaxies in hierarchical clustering. Astrophys. J. 675, 1095–1105 (2008).

    Article  ADS  Google Scholar 

  98. Binney, J. & Tremaine, S. Galactic Dynamics 2nd edn (Princeton Univ. Press, 2008).

Download references

Acknowledgements

This research was supported in part by grant NSF PHY-2309135 to the Kavli Institute for Theoretical Physics (KITP). This work is based on observations made with the NASA/ESA/CSA JWST. The data were obtained from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for JWST. This work was supported in part by generous funding provided by Marsha and Ralph Schilling through Texas A&M University.

Author information

Authors and Affiliations

Authors

Contributions

W.H. and C.P. designed the layout of this paper. W.H. reduced the data, performed scientific analysis and wrote the paper. C.P. helped with the paper writing and scientific analysis. L.S. performed the spatially resolved analysis. C.P. and L.Y.A.Y. helped with the lightcone simulation and merging timescale estimation. Z.P. performed the outflow analysis based on analytical galactic wind models. B.C.L., J.S. and J.C. helped with the interpretation of the results. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Weida Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Takuya Hashimoto, Themiya Nanayakkara and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Illustration of clump identification.

a) The original F115W image of JQ. We adopt the F115W as the detection image because it has the best spatial resolution and is not affected by the Lyα breaks of the galaxies. b) The smoothed F115W image of JQ. We smooth the original F115W image by a two-dimensional Gaussian Kernel with σ = 2 pixel (0.06 arcsec). c) The contrast image, which is derived by subtracting the smoothed F115W image from the original F115W image. This step removes the outshining component and enhances the contrast of clump cores. We detect the clumps from this contrast image and mark the automatically-identified clumps as red circles. d) The F356W image of JQ. We notice several clumps that are only marginally detected in F115W but are clearly visible in F356W (green circles). Therefore, we manually add them to the catalog. e) The best-fit Sèrsic models of all galaxies in the image. This includes all galaxies and clumps. f) The residual map after subtracting the best-fit Sèrsic models for galaxies and the clumps from the original F115W image. The lack of large structures indicates we have well-modeled the light in these galaxies and their clumps.

Extended Data Fig. 2 Size – SFR relation and size – mass relation of the JQ clumps.

a) The size – SFR relation. The red dots indicate the individual clumps in the JQ system. The error bars correspond to the 1σ confidence intervals of the posterior distributions from the SED fitting and morphological fitting. For comparison, we compile several objects from the lensing galaxies and field galaxies at similar redshifts. The blue open triangles represent the field galaxies at z ~ 5 – 149. The purple open diamonds, squares, and pentagons represent the star clusters and star-forming clumps identified within the individual lensing galaxies at z > 66,7,8. The error bars correspond to the 1σ confidence intervals. The dashed lines indicate the star formation rate surface densities of 104, 103, 102, 101, 100, and 10−1Mkpc−2 from left to right. b) The size – mass relation. We present the JQ clumps as the red dots. The purple triangles and pentagons represent the star clusters and star-forming clumps identified within the individual lensing galaxies at z > 58,72. The error bars correspond to the 1σ confidence intervals. The blue and orange solid lines indicate the best-fit size – mass relation for 5≤z < 6 and 6≤z < 9 galaxies73, and the shaded regions represent their 1σ scatter. The dashed lines represent the extrapolation of these relations.

Extended Data Fig. 3 Expected distribution of clump numbers in galaxy systems in the JADES survey.

We select the galaxy systems with sizes similar to the JQ from a 2-deg2 cosmological simulation16 and rescale them to match the survey volume like JADES. The black solid curve indicates the cumulative fraction of systems as a function of galaxy counts. The black dashed line marks the selection criterion of the JQ-like system in the lightcone.

Extended Data Fig. 4 Distribution of all the JQ clumps, and the entire JQ system in the star formation rate – stellar mass plane.

The red squares and red dots represent the best-fit values from the SED fitting, with the error bars showing the 16th and 84th percentiles of the distributions of 400 posteriors. The clump C16 with a very small SFR of \(0.00{5}_{-0.005}^{+0.057}{M}_{\odot }{{\rm{yr}}}^{-1}\) is marked by a red triangle. We also plot a series of measurements at similar redshifts from the literature and the best-fit SFMS relations based on those samples17,18,19,20. The error bars represent the 1σ confidence intervals. In all cases, the clumps in JQ with stellar masses \(\log {M}_{\star }/{M}_{\odot }\lesssim 9\) have SFRs more than 1 dex above the measured SFMS relation of ref. 17, indicating the clumps are in a bursting phase. The total SFR of galaxies in the JQ system is higher than the SFMS by ~ 1 dex and among the top SFR of the galaxies at similar redshifts.

Extended Data Fig. 5 Illustration of generating the [O III]+Hβ map.

a) The F356W image after removing the foreground galaxies. b) The continuum model generated based on the best-fit SEDs of clumps, the Sèrsic profiles of clumps, and the F356W PSF. c) The [O III]+Hβ map derived by subtracting the continuum model from the foreground-removed F356W image. The green contour indicates surface brightnesses of \(8.8\times 1{0}^{-17}{\rm{erg}}\,{{\rm{s}}}^{-1}\,{{\rm{cm}}}^{-2}{{\rm{arcsec}}}^{-2}\), the same as Fig. 1.

Extended Data Table 1 Physical properties of the 17 galaxy-size clumps and the entire JQ system

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Papovich, C., Shen, L. et al. Extended enriched gas in a multi-galaxy merger at redshift 6.7. Nat Astron (2025). https://doi.org/10.1038/s41550-025-02636-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-025-02636-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing