Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids

An Author Correction to this article was published on 21 January 2022

This article has been updated

Abstract

Strategies for selectively imaging and delivering drugs to tumours typically leverage differentially upregulated surface molecules on cancer cells. Here, we show that intravenously injected carbon quantum dots, functionalized with multiple paired α-carboxyl and amino groups that bind to the large neutral amino acid transporter 1 (which is expressed in most tumours), selectively accumulate in human tumour xenografts in mice and in an orthotopic mouse model of human glioma. The functionalized quantum dots, which structurally mimic large amino acids and can be loaded with aromatic drugs through ππ stacking interactions, enabled—in the absence of detectable toxicity—near-infrared fluorescence and photoacoustic imaging of the tumours and a reduction in tumour burden after the targeted delivery of chemotherapeutics to the tumours. The versatility of functionalization and high tumour selectivity of the quantum dots make them broadly suitable for tumour-specific imaging and drug delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and characterization of LAAM TC-CQDs.
Fig. 2: LAAM TC-CQDs selectively target cancer cells in vitro and in vivo.
Fig. 3: The mechanism of the tumour-specific targeting property of LAAM TC-CQDs.
Fig. 4: LAAM TC-CQDs for tumour-specific drug delivery.
Fig. 5: The use of LAAM TC-CQDs for brain cancer imaging and treatment.
Fig. 6: Characterization of LAAM CQDs for tumour-specific imaging and drug delivery.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the Article and its Supplementary Information. The raw and analysed datasets that were generated during the study are too large to be publicly shared, but they are available for research purposes from the corresponding authors on reasonable request.

Change history

  • 04 May 2020

    Editor’s note: The editors of Nature Biomedical Engineering have been notified about issues with a few images in this Article. Two micrographs within Fig. 4 and Supplementary Figs. 20, 25 and 61 are duplicated. In addition, a few of the mice panels in Figs. 2c and Supplementary Figs. 29, 31, 37 and 56 appear to be duplicates. The authors have informed us that these are inadvertent errors and believe that the overall data and conclusions are solid, and that they need to retrieve data from the Cell Imaging Facility and Animal Imaging Facility at Beijing Normal University before they can fully clarify the image issues. They have also informed us that access to the data will be delayed because of COVID-19 access restrictions.

  • 21 January 2022

    A Correction to this paper has been published: https://doi.org/10.1038/s41551-022-00845-x

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin. 66, 7–30 (2016).

    PubMed  Google Scholar 

  2. Kim, S. M., Faix, P. H. & Schnitzer, J. E. Overcoming key biological barriers to cancer drug delivery and efficacy. J. Control. Release 267, 15–30 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Tringale, K. R., Pang, J. & Nguyen, Q. T. Image-guided surgery in cancer: a strategy to reduce incidence of positive surgical margins. Wiley Interdiscip. Rev. Syst. Biol. Med. 10, e1412 (2018).

    PubMed  Google Scholar 

  4. Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    CAS  Google Scholar 

  5. Park, K. Facing the truth about nanotechnology in drug delivery. ACS Nano 7, 7442–7447 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Belfiore, L. et al. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: challenges and opportunities. J. Control. Release 277, 1–13 (2018).

    CAS  PubMed  Google Scholar 

  7. Bae, Y. H. & Park, K. Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Release 153, 198–205 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou, J., Atsina, K. B., Himes, B. T., Strohbehn, G. W. & Saltzman, W. M. Novel delivery strategies for glioblastoma. Cancer J. 18, 89–99 (2012).

    PubMed  Google Scholar 

  9. Deeken, J. F. & Loscher, W. The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin. Cancer Res. 13, 1663–1674 (2007).

    CAS  PubMed  Google Scholar 

  10. Patel, T., Zhou, J., Piepmeier, J. M. & Saltzman, W. M. Polymeric nanoparticles for drug delivery to the central nervous system. Adv. Drug Deliv. Rev. 64, 701–705 (2012).

    CAS  PubMed  Google Scholar 

  11. Nakanishi, T. & Tamai, I. Solute carrier transporters as targets for drug delivery and pharmacological intervention for chemotherapy. J. Pharm. Sci. 100, 3731–3750 (2011).

    CAS  PubMed  Google Scholar 

  12. Liu, R. et al. GLUT1-mediated selective tumor targeting with fluorine containing platinum(II) glycoconjugates. Oncotarget 8, 39476–39496 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. Jin, S. E., Jin, H. E. & Hong, S. S. Targeting l-type amino acid transporter 1 for anticancer therapy: clinical impact from diagnostics to therapeutics. Expert Opin. Ther. Targets. 19, 1319–1337 (2015).

    CAS  PubMed  Google Scholar 

  14. Bodoy, S., Fotiadis, D., Stoeger, C., Kanai, Y. & Palacin, M. The small SLC43 family: facilitator system l amino acid transporters and the orphan EEG1. Mol. Asp. Med. 34, 638–645 (2013).

    CAS  Google Scholar 

  15. Hayashi, K. & Anzai, N. Novel therapeutic approaches targeting l-type amino acid transporters for cancer treatment. World J. Gastrointest. Oncol. 9, 21–29 (2017).

    PubMed  PubMed Central  Google Scholar 

  16. Wu, W. et al. Aspartate-modified doxorubicin on its N-terminal increases drug accumulation in LAT1-overexpressing tumors. Cancer Sci. 106, 747–756 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fan, Z., Zhou, S., Garcia, C., Fan, L. & Zhou, J. pH-responsive fluorescent graphene quantum dots for fluorescence-guided cancer surgery and diagnosis. Nanoscale 9, 4928–4933 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yuan, F. et al. Shining carbon dots: synthesis and biomedical and optoelectronic applications. Nanotoday 11, 565–586 (2016).

    CAS  Google Scholar 

  19. Yuan, F. et al. Nitrogen-rich D-π-A structural carbon quantum dots with a bright two-photon fluorescence for deep-tissue imaging. ACS Appl. Bio. Mater. 1, 853–858 (2018).

    CAS  PubMed  Google Scholar 

  20. Peng, J. et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 12, 844–849 (2012).

    CAS  PubMed  Google Scholar 

  21. Kendall, P. A. Use of ninhydrin reaction for quantitative estimation of amino groups in insoluble specimens. Nature 197, 1305–1306 (1963).

    CAS  PubMed  Google Scholar 

  22. Fan, Z. T. et al. Surrounding media sensitive photoluminescence of boron-doped graphene quantum dots for highly fluorescent dyed crystals, chemical sensing and bioimaging. Carbon 70, 149–156 (2014).

    CAS  Google Scholar 

  23. Li, S. et al. Exceptionally high payload of the IR780 Iodide on folic acid-functionalized graphene quantum dots for targeted photothermal therapy. ACS Appl. Mater. Inter. 9, 22332–22341 (2017).

    CAS  Google Scholar 

  24. Zhang, M. et al. Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J. Mater. Chem. 22, 7461–7467 (2012).

    CAS  Google Scholar 

  25. Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Weber, J., Beard, P. C. & Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 13, 639–650 (2016).

    CAS  PubMed  Google Scholar 

  27. Zhou, J. et al. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc. Natl Acad. Sci. USA 104, 16158–16163 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiao, Y. et al. Ex vivo dynamics of human glioblastoma cells in a microvasculature-on-a-chip system correlates with tumor heterogeneity and subtypes. Adv. Sci. 6, 1801531 (2019).

    Google Scholar 

  29. Zhou, J. et al. Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proc. Natl Acad. Sci. USA 110, 11751–11756 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ren, D., Kratz, F. & Wang, S. W. Engineered drug-protein nanoparticle complexes for folate receptor targeting. Biochem. Eng. J. 89, 33–41 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gillies, R. J. The tumour microenvironment: causes and consequences of hypoxia and acidity. Introduction. Novartis Found. Symp. 240, 1–6 (2001).

    CAS  PubMed  Google Scholar 

  32. Vaupel, P., Kallinowski, F. & Okunieff, P. Blood-flow, oxygen and nutrient supply, and metabolic microenvironment of human-tumors—a review. Cancer Res. 49, 6449–6465 (1989).

    CAS  PubMed  Google Scholar 

  33. Uchino, H. et al. Transport of amino acid-related compounds mediated by l-type amino acid transporter 1 (LAT1): insights into the mechanisms of substrate recognition. Mol. Pharm. 61, 729–737 (2002).

    CAS  Google Scholar 

  34. Yan, R., Zhao, X., Lei, J. & Zhou, Q. Structure of the human LAT1–4F2hc heteromeric amino acid transporter complex. Nature 568, 127–130 (2019).

    CAS  PubMed  Google Scholar 

  35. dos Santos, T., Varela, J., Lynch, I., Salvati, A. & Dawson, K. A. Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLoS ONE 6, e24438 (2011).

    PubMed  PubMed Central  Google Scholar 

  36. Ganbold, T., Han, S., Hasi, A. & Baigude, H. Receptor-mediated delivery of therapeutic RNA by peptide functionalized curdlan nanoparticles. Int. J. Biol. Macromol. 126, 633–640 (2019).

    CAS  PubMed  Google Scholar 

  37. Poirier, C., van Effenterre, D., Delord, B., Johannes, L. & Roux, D. Specific adsorption of functionalized colloids at the surface of living cells: a quantitative kinetic analysis of the receptor-mediated binding. Biochim. Biophys. Acta 1778, 2450–2457 (2008).

    CAS  PubMed  Google Scholar 

  38. Cheung-Ong, K., Giaever, G. & Nislow, C. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem. Biol. 20, 648–659 (2013).

    CAS  PubMed  Google Scholar 

  39. Yin, J., Deng, X. D., Zhang, J. & Lin, J. Current understanding of interactions between nanoparticles and ABC transporters in cancer cells. Curr. Med. Chem. 25, 5930–5944 (2018).

    CAS  PubMed  Google Scholar 

  40. Yuan, Y. L. et al. Nanoparticle delivery of anticancer drugs overcomes multidrug resistance in breast cancer. Drug Deliv. 23, 3350–3357 (2016).

    CAS  PubMed  Google Scholar 

  41. Bulbake, U., Doppalapudi, S., Kommineni, N. & Khan, W. Liposomal formulations in clinical use: an updated review. Pharmaceutics 9, 12 (2017).

    PubMed Central  Google Scholar 

  42. Geier, E. G. et al. Structure-based ligand discovery for the large-neutral amino acid transporter 1, LAT-1. Proc. Natl Acad. Sci. USA 110, 5480–5485 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, G. et al. Permeability of endothelial and astrocyte cocultures: in vitro blood-brain barrier models for drug delivery studies. Ann. Biomed. Eng. 38, 2499–2511 (2010).

    PubMed  PubMed Central  Google Scholar 

  44. Sun, M. et al. Realization of the photostable intrinsic core emission from carbon dots through surface deoxidation by ultraviolet irradiation. J. Phys. Chem. Lett. 10, 3094–3100 (2019).

    CAS  PubMed  Google Scholar 

  45. Yuan, F. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 9, 2249 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. Yuan, F. et al. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv. Mater. 29, 1604436 (2017).

    Google Scholar 

  47. Lim, S. Y., Shen, W. & Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362–381 (2015).

    CAS  PubMed  Google Scholar 

  48. Mabray, M. C., Barajas, R. F. Jr & Cha, S. Modern brain tumor imaging. Brain Tumor Res. Treat. 3, 8–23 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. Kim, D. K. et al. Characterization of the system l amino acid transporter in T24 human bladder carcinoma cells. Biochim. Biophys. Acta 1565, 112–121 (2002).

    CAS  PubMed  Google Scholar 

  50. Puris, E., Gynther, M., Huttunen, J., Auriola, S. & Huttunen, K. M. l-type amino acid transporter 1 utilizing prodrugs of ferulic acid revealed structural features supporting the design of prodrugs for brain delivery. Eur. J. Pharm. Sci. 129, 99–109 (2019).

    CAS  PubMed  Google Scholar 

  51. Gynther, M. et al. Large neutral amino acid transporter enables brain drug delivery via prodrugs. J. Med. Chem. 51, 932–936 (2008).

    CAS  PubMed  Google Scholar 

  52. Gynther, M. et al. Brain uptake of ketoprofen-lysine prodrug in rats. Int. J. Pharm. 399, 121–128 (2010).

    CAS  PubMed  Google Scholar 

  53. Huttunen, K. M. et al. l-Type amino acid transporter 1 (LAT1)-mediated targeted delivery of perforin inhibitors. Int. J. Pharm. 498, 205–216 (2016).

    CAS  PubMed  Google Scholar 

  54. Peura, L. et al. Large amino acid transporter 1 (LAT1) prodrugs of valproic acid: new prodrug design ideas for central nervous system delivery. Mol. Pharm. 8, 1857–1866 (2011).

    CAS  PubMed  Google Scholar 

  55. Puris, E., Gynther, M., Huttunen, J., Petsalo, A. & Huttunen, K. M. L-type amino acid transporter 1 utilizing prodrugs: how to achieve effective brain delivery and low systemic exposure of drugs. J. Control. Release 261, 93–104 (2017).

    CAS  PubMed  Google Scholar 

  56. Gynther, M. et al. Amino acid promoieties alter valproic acid pharmacokinetics and enable extended brain exposure. Neurochem. Res. 41, 2797–2809 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC grants (numbers 21573019 and 21872010, to L.F.), a NSFC Major Research Plan grant (number 21233003, to L.F.), a NSFC grant (21773016, to J.Zhu) and NIH grants (NS095817 and NS110721, to J.Zhou).

Author information

Authors and Affiliations

Authors

Contributions

L.F., J.Zhu, S.L., W.S., H.W. and J.Zhou designed the experiments. S.L., W.S., H.W., T.Y., C.Y., J.L., G.D., F.Y., S.Z., Y.L., X.L., H.T., A.T.C., F.L. and Y.Z. performed the experiments. All of the authors were involved in the analyses and interpretation of data. S.L., L.F. and J.Zhou wrote the paper, with help from the co-authors.

Corresponding authors

Correspondence to Louzhen Fan, Jia Zhu or Jiangbing Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, figures, tables and references.

Reporting Summary

Supplementary Video 1

Penetration of LAAM TC-CQDs into HeLa cells.

Supplementary Video 2

Penetration of LAAM TC-CQDs into CCC-ESF-1 cells.

Supplementary Video 3

Three-dimensional reconstruction of FL images of LAAM TC-CQDs in mice bearing HeLa tumours.

Supplementary Video 4

Three-dimensional reconstruction of FL images of G-CQDs in mice bearing HeLa tumours.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Su, W., Wu, H. et al. Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids. Nat Biomed Eng 4, 704–716 (2020). https://doi.org/10.1038/s41551-020-0540-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41551-020-0540-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research