Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Wireless and battery-free technologies for neuroengineering

Abstract

Tethered and battery-powered devices that interface with neural tissues can restrict natural motions and prevent social interactions in animal models, thereby limiting the utility of these devices in behavioural neuroscience research. In this Review Article, we discuss recent progress in the development of miniaturized and ultralightweight devices as neuroengineering platforms that are wireless, battery-free and fully implantable, with capabilities that match or exceed those of wired or battery-powered alternatives. Such classes of advanced neural interfaces with optical, electrical or fluidic functionality can also combine recording and stimulation modalities for closed-loop applications in basic studies or in the practical treatment of abnormal physiological processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Implanted wireless electronics.
Fig. 2: Strategies for supplying power to wireless and battery-free implantable devices.
Fig. 3: Optogenetic interfaces for the regulation of cell activity.
Fig. 4: Implantable and wireless devices for photonic therapy.
Fig. 5: Wireless systems for the programmed microfluidic delivery of pharmacological agents.
Fig. 6: Wireless systems for biosignal recording.
Fig. 7: Fully implantable, wireless and battery-free system for automated closed-loop peripheral neuromodulation.

Similar content being viewed by others

References

  1. Rivnay, J., Wang, H., Fenno, L., Delsseroth, K. & Mallaras, G. G. Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 3, e1601649 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  2. Hong, G. & Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Jeong, J. W. et al. Soft materials in neuroengineering for hard problems in neuroscience. Neuron 86, 175–186 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Tybrandt, K. et al. High-density stretchable electrode grids for chronic neural recording. Adv. Mater. 30, e1706520 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  5. Won, S. M. et al. Emerging modalities and implantable techonlogies for neuromodulation. Cell 181, 115–135 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Azevedo, C. A. & Mammis, A. Neuromodulation therapies for alcohol addiction: a literature review. Neuromodulation 21, 144–148 (2018).

    Article  PubMed  Google Scholar 

  7. Bouthour, W. et al. Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond. Nat. Rev. Neurol. 15, 343–352 (2019).

    Article  PubMed  Google Scholar 

  8. Fang, J. Y. & Tolleson, C. The role of deep brain stimulation in Parkinson’s disease: an overview and update on new developments. Neuropsychiatr. Dis. Treat. 13, 723–732 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kuo, C. H., White-Dzuro, G. A. & Ko, A. L. Approaches to closed-loop deep brain stimulation for movement disorders. Neurosurg. Focus 45, E2 (2018).

    Article  PubMed  Google Scholar 

  10. Wellman, S. M. et al. A materials roadmap to functional neural interface design. Adv. Funct. Mater. 28, 1701269 (2018).

    Article  PubMed  Google Scholar 

  11. Robinson, J. T., Jorgolli, M. & Park, H. Nanowire electrodes for high-density stimulation and measurement of neural circuits. Front. Neural Circuits 7, 38 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  12. Fan, B. & Li, W. Miniaturized optogenetic neural implants: a review. Lab Chip 15, 3838–3855 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Fu, R. et al. Implantable and biodegradable poly(l-lactic acid) fibers for optical neural interfaces. Adv. Opt. Mater. 6, e1700941 (2018).

    Article  Google Scholar 

  14. Gutruf, P. & Rogers, J. A. Implantable, wireless device platforms for neuroscience research. Curr. Opin. Neurobiol. 50, 42–49 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Park, S., Loke, G., Fink, Y. & Anikeeva, P. Flexible fiber-based optoelectronics for neural interfaces. Chem. Soc. Rev. 48, 1826–1852 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Jeong, J. W. et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162, 662–674 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Pons-Faudoa, F. P., Ballerini, A., Sakamoto, J. & Grattoni, A. Advanced implantable drug delivery technologies: transforming the clinical landscape of therapeutics for chronic diseases. Biomed. Microdevices 21, 47 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  18. Sanjay, S. T. et al. Recent advances of controlled drug delivery using microfluidic platforms. Adv. Drug Deliv. Rev. 128, 3–28 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Sim, J. Y., Haney, M. P., Park, S. I., McCall, J. G. & Jeong, J. W. Microfluidic neural probes: in vivo tools for advancing neuroscience. Lab Chip 17, 1406–1435 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, Y. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3, 58–68 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, Y. et al. Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording. Sci. Adv. 5, eaaw1066 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Opie, N. L. et al. Focal stimulation of the sheep motor cortex with a chronically implanted minimally invasive electrode array mounted on an endovascular stent. Nat. Biomed. Eng. 2, 907–914 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Yan, Z. et al. Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots. Proc. Natl Acad. Sci. USA 114, E9455–E9464 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. All, A. H. et al. Expanding the toolbox of upconversion nanoparticles for in vivo optogenetics and neuromodulation. Adv. Mater. 31, e1803474 (2019).

    Article  PubMed  Google Scholar 

  25. Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 359, 679–684 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Christiansen, M. G., Senko, A. W. & Anikeeva, P. Magnetic strategies for nervous system control. Annu. Rev. Neurosci. 42, 271–293 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Roet, M. et al. Progress in neuromodulation of the brain: a role for magnetic nanoparticles? Prog. Neurobiol. 177, 1–14 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, R., Romero, G., Christiansen, M. G., Mohr, A. & Anikeeva, P. Wireless magnetothermal deep brain stimulation. Science 347, 1477–1480 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Chu, P. C. et al. Neuromodulation accompanying focused ultrasound-induced blood–brain barrier opening. Sci. Rep. 5, 15477 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Blackmore, J., Shrivastava, S., Sallet, J., Butler, C. R. & Cleveland, R. O. Ultrasound neuromodulation: a review of results, mechanisms and safety. Ultrasound Med. Biol. 45, 1509–1536 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  31. Farra, R. et al. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl Med. 4, 122ra121 (2012).

    Article  Google Scholar 

  32. Abraham, W. T. et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet 377, 658–666 (2011).

    Article  PubMed  Google Scholar 

  33. Stingl, K. et al. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc. Biol. Sci. 280, 20130077 (2013).

    PubMed Central  PubMed  Google Scholar 

  34. Borton, D. A., Yin, M., Aceros, J. & Nurmikko, A. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates. J. Neural Eng. 10, 026010 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  35. Finkelstein, A. et al. Three-dimensional head-direction coding in the bat brain. Nature 517, 159–164 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, X., Lu, Y., Iseri, E., Shi, Y. & Kuzum, D. A compact closed-loop optogenetics system based on artifact-free transparent graphene electrodes. Front. Neurosci. 12, 132 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Martinez, D. et al. Adaptive quantization of local field potentials for wireless implants in freely moving animals: an open-source neural recording device. J. Neural Eng. 15, 025001 (2018).

    Article  PubMed  Google Scholar 

  38. Matsushita, K. et al. A fully implantable wireless ECoG 128-channel recording device for human brain–machine interfaces: W-HERBS. Front. Neurosci. 12, 511 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  39. Wentz, C. T. et al. A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J. Neural Eng. 8, 046021 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  40. Gutruf, P. et al. Wireless, battery-free fully implantable multimodal and multisite pace makers for applications in small animal models. Nat. Commun. 10, 5742 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Burton, A. et al. Wireless battery-free subdermally implantable photometry systems for chronic recording of neural dynamics. Proc. Natl Acad. Sci. USA 117, 2835–2845 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Ferguson, J. E. & Redish, A. D. Wireless communication with implanted medical devices using the conductive properties of the body. Expert Rev. Med. Devices 8, 427–433 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  43. Ledet, E. H., Liddle, B., Kradinova, K. & Harper, S. Smart implants in orthopedic surgery, improving patient outcomes: a review. Innov. Entrep. Health 5, 41–51 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  44. Yang, W., Khan, W., Wu, J. & Li, W. Single-channel opto-neurostimulators: a review. J. Micromech. Microeng. 29, 043001 (2019).

    Article  CAS  Google Scholar 

  45. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Deisseroth, K. Optogenetics. Nat. Methods 8, 26–29 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Pisanello, F. et al. Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber. Nat. Neurosci. 20, 1180–1188 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Canales, A. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Gunaydin, L. A. et al. Natural neural projection dynamics underlying social behavior. Cell 157, 1535–1551 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Kim, C. K. et al. Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nat. Methods 13, 325–328 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  51. Piatkevich, K. D. et al. A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat. Chem. Biol. 14, 352–360 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Pisano, F. et al. Depth-resolved fiber photometry with a single tapered optical fiber implant. Nat. Methods 16, 1185–1192 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Wu, F. et al. Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals. Neuron 88, 1136–1148 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Ghosh, K. K. et al. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Resendez, S. L. et al. Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses. Nat. Protoc. 11, 566–597 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Gilletti, A. & Muthuswamy, J. Brain micromotion around implants in the rodent somatosensory cortex. J. Neural Eng. 3, 189–195 (2006).

    Article  PubMed  Google Scholar 

  58. Sridharan, A., Rajan, S. D. & Muthuswamy, J. Long-term changes in the material properties of brain tissue at the implant–tissue interface. J. Neural Eng. 10, 066001 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  59. Fan, D. et al. A wireless multi-channel recording system for freely behaving mice and rats. PLoS ONE 6, e22033 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Lu, L. et al. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Proc. Natl Acad. Sci. USA 115, E1374–E1383 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Zhou, A. et al. A wireless and artefact-free 128-channel neuromodulation device for closed-loop stimulation and recording in non-human primates. Nat. Biomed. Eng. 3, 15–26 (2018).

    Article  PubMed  Google Scholar 

  62. Zhang, Y. et al. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proc. Natl Acad. Sci. USA 116, 21427–21437 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Zhang, W. & Yartsev, M. M. Correlated neural activity across the brains of socially interacting bats. Cell 178, 413–428.e22 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Jurgens, U. & Hage, S. R. Telemetric recording of neuronal activity. Methods 38, 195–201 (2006).

    Article  PubMed  Google Scholar 

  65. Stoodley, C. J. et al. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat. Neurosci. 20, 1744–1751 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Wyart, C. et al. Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature 461, 407–410 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Endo, H. et al. Wireless enzyme sensor system for real-time monitoring of blood glucose levels in fish. Biosens. Bioelectron. 24, 1417–1423 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Michael, Y. M. & Ulanovsky, N. Representation of three-dimensional space in the hippocampus of flying bats. Science 340, 367–372 (2013).

    Article  Google Scholar 

  69. Roberts, T. F., Gobes, S. M., Murugan, M., Olveczky, B. P. & Mooney, R. Motor circuits are required to encode a sensory model for imitative learning. Nat. Neurosci. 15, 1454–1459 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Kouhani, M. H. M., Luo, R., Madi, F., Weber, A. J. & Li, W. A wireless smartphone controlled, battery powered, head mounted light delivery system for optogenetic stimulation. In Proc. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 3366–3369 (IEEE, 2018).

  71. Gagnon-Turcotte, G. et al. A wireless headstage for combined optogenetics and multichannel electrophysiological recording. IEEE Trans. Biomed. Circuits Syst. 11, 1–14 (2017).

    Article  PubMed  Google Scholar 

  72. Gutruf, P., Good, C. H. & Rogers, J. A. Perspective: implantable optical systems for neuroscience research in behaving animal models—current approaches and future directions. APL Photonics 3, 120901 (2018).

    Article  Google Scholar 

  73. Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).

    Article  CAS  Google Scholar 

  74. Chen, R., Canales, A. & Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater. 2, 16093 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Kozai, T. D. Y., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C. & Cui, X. T. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem. Neurosci. 6, 48–67 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Salatino, J. W., Ludwig, K. A., Kozai, T. D. Y. & Purcell, E. K. Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1, 862–877 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Rogers, J. A., Someya, T. & Huang, Y. G. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Veiseh, O. et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–651 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Schiavone, G. & Lacour, S. P. Conformable bioelectronic interfaces: mapping the road ahead. Sci. Transl. Med. 11, eaaw5858 (2019).

    Article  PubMed  Google Scholar 

  80. Vitale, F. et al. Fluidic microactuation of flexible electrodes for neural recording. Nano Lett. 18, 326–335 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Du, Z. J. et al. Ultrasoft microwire neural electrodes improve chronic tissue integration. Acta Biomater. 53, 46–58 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Luan, L. et al. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration. Sci. Adv. 3, e1601966 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  83. Sekitani, T. & Someya, T. Stretchable, large‐area organic electronics. Adv. Mater. 22, 2228–2246 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Kim, D. H., Xiao, J. L., Song, J. Z., Huang, Y. G. & Rogers, J. A. Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 22, 2108–2124 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Jang, H. et al. Graphene-based flexible and stretchable electronics. Adv. Mater. 28, 4184–4202 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Wang, S. H. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Sun, Y. G., Choi, W. M., Jiang, H. Q., Huang, Y. G. Y. & Rogers, J. A. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 1, 201–207 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Zhang, Y. H. et al. Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater. 61, 7816–7827 (2013).

    Article  CAS  Google Scholar 

  91. Qiang, Y. et al. Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain. Sci. Adv. 4, eaat0626 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. de la Oliva, N., Mueller, M., Stieglitz, T., Navarro, X. & del Valle, J. On the use of parylene C polymer as substrate for peripheral nerve electrodes. Sci. Rep. 8, 5965 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  93. Chiang, C. H. et al. Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Sci. Transl. Med. 12, eaay4682 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  94. Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599–1605 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Xu, S. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70–74 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Lee, S. et al. Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nat. Nanotechnol. 14, 156–160 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Park, S. I. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 33, 1280–1286 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Kim, T. I. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Shin, G. et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 93, 509–521 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Park, S. I. et al. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics. Proc. Natl Acad. Sci. USA 113, E8169–E8177 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Gutruf, P. et al. Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research. Nat. Electron. 1, 652–660 (2018).

    Article  Google Scholar 

  103. Xu, S. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1543 (2013).

    Article  PubMed  Google Scholar 

  104. Kim, J. et al. Epidermal electronics with advanced capabilities in near-field communication. Small 11, 906–912 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Kim, D. H., Ghaffari, R., Lu, N. S. & Rogers, J. A. Flexible and stretchable electronics for biointegrated devices. Annu. Rev. Biomed. Eng. 14, 113–128 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Kang, S. K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Scholten, K. & Meng, E. A review of implantable biosensors for closed-loop glucose control and other drug delivery applications. Int. J. Pharm. 544, 319–334 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Scholten, K. & Meng, E. Materials for microfabricated implantable devices: a review. Lab Chip 15, 4256–4272 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Hassler, C., Boretius, T. & Stieglitz, T. Polymers for neural implants. J. Polym. Sci. Polym. Phys. 49, 18–33 (2011).

    Article  CAS  Google Scholar 

  110. Joung, Y. H. Development of implantable medical devices: from an engineering perspective. Int. Neurourol. J. 17, 98–106 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  111. Fang, H. et al. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proc. Natl Acad. Sci. USA 113, 11682–11687 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Song, E., Li, J. & Rogers, J. A. Barrier materials for flexible bioelectronic implants with chronic stability—current approaches and future directions. APL Mater. 7, 050902 (2019).

    Article  Google Scholar 

  113. Hashimoto, M., Hata, A., Miyata, T. & Hirase, H. Programmable wireless light-emitting diode stimulator for chronic stimulation of optogenetic molecules in freely moving mice. Neurophotonics 1, 011002 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  114. Gagnon-Turcotte, G. et al. A wireless optogenetic headstage with multichannel electrophysiological recording capability. Sensors 15, 22776–22797 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  115. Mei, H. & Irazoqui, P. P. Miniaturizing wireless implants. Nat. Biotechnol. 32, 1008–1010 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Ben Amar, A., Kouki, A. B. & Cao, H. Power approaches for implantable medical devices. Sensors 15, 28889–28914 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  117. Wang, J., He, T. & Lee, C. Development of neural interfaces and energy harvesters towards self-powered implantable systems for healthcare monitoring and rehabilitation purposes. Nano Energy 65, 104039 (2019).

    Article  CAS  Google Scholar 

  118. Hwang, G.-T. et al. Self-powered deep brain stimulation via a flexible PIMNT energy harvester. Energy Environ. Sci. 8, 2677–2684 (2015).

    Article  CAS  Google Scholar 

  119. Yao, G. et al. Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat. Commun. 9, 5349 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Bullen, R. A., Arnot, T. C., Lakeman, J. B. & Walsh, F. C. Biofuel cells and their development. Biosens. Bioelectron. 21, 2015–2045 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Settaluri, K. T., Lo, H. & Ram, R. J. Thin thermoelectric generator system for body energy harvesting. J. Electron. Mater. 41, 984–988 (2012).

    Article  CAS  Google Scholar 

  122. Montgomery, K. L. et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods 12, 969–974 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Lee, S. et al. A 250 μm × 57 μm microscale opto-electronically transduced electrodes (MOTEs) for neural recording. IEEE Trans. Biomed. Circuits Syst. 12, 1256–1266 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  124. Ding, H. et al. Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources. Proc. Natl Acad. Sci. USA 115, 6632–6637 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Charthad, J., Weber, M. J., Chang, T. C. & Arbabian, A. A mm-sized implantable medical device (IMD) with ultrasonic power transfer and a hybrid bi-directional data link. IEEE J. Solid State Circuits 50, 1741–1753 (2015).

    Article  Google Scholar 

  126. Seo, D. et al. Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91, 529–539 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Rezaei, M., Maghsoudloo, E., Bories, C., De Koninck, Y. & Gosselin, B. A low-power current-reuse analog front-end for high-density neural recording implants. IEEE Trans. Biomed. Circ. Sys. 12, 271–280 (2018).

    Article  Google Scholar 

  128. Park, S. Y., Cho, J., Lee, K. & Yoon, E. Dynamic power reduction in scalable neural recording interface using spatiotemporal correlation and temporal sparsity of neural signals. IEEE J. Solid State Circuits 53, 1102–1114 (2018).

    Article  Google Scholar 

  129. Wu, X. et al. A 0.04 mm3 16 NW wireless and batteryless sensor system with integrated Cortex-M0+ processor and optical communication for cellular temperature measurement. In Proc. 2018 IEEE Symposium on VLSI Circuits 191–192 (IEEE, 2018).

  130. Schwarz, D. A. et al. Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys. Nat. Methods 11, 670–676 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Burton, A. et al. Wireless, battery-free subdermally implantable photometry systems for chronic recording of neural dynamics. Proc. Natl Acad. Sci. USA 117, 2835–2845 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Sivaji, V. et al. ReStore: a wireless peripheral nerve stimulation system. J. Neurosci. Methods 320, 26–36 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  133. Dagdeviren, C. et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl Acad. Sci. USA 111, 1927–1932 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. Ouyang, H. et al. Symbiotic cardiac pacemaker. Nat. Commun. 10, 1821 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  135. Falk, M., Villarrubia, C. W. N., Babanova, S., Atanassov, P. & Shleev, S. Biofuel cells for biomedical applications: colonizing the animal kingdom. ChemPhysChem 14, 2045–2058 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Rapoport, B. I., Kedzierski, J. T. & Sarpeshkar, R. A glucose fuel cell for implantable brain–machine interfaces. PLoS ONE 7, e38436 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  137. Mercier, P. P., Lysaght, A. C., Bandyopadhyay, S., Chandrakasan, A. P. & Stankovic, K. M. Energy extraction from the biologic battery in the inner ear. Nat. Biotechnol. 30, 1240–1243 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Schroeder, T. B. H. et al. An electric-eel-inspired soft power source from stacked hydrogels. Nature 552, 214–218 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Nan, K. W. et al. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Sci. Adv. 4, eaau5859 (2018).

    Article  Google Scholar 

  140. Kim, A., Ochoa, M., Rahimi, R. & Ziaie, B. New and emerging energy sources for implantable wireless microdevices. IEEE Access 3, 89–98 (2015).

    Article  Google Scholar 

  141. Mickle, A. D. et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 565, 361–365 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Obaid, S. & Lu, L. Highly efficient microscale gallium arsenide solar cell arrays as optogenetic power options. IEEE Photonics J. 11, 8400108 (2019).

    Article  CAS  Google Scholar 

  143. Zhang, H. et al. Wiress, battery-free optoelectronic systems as subdermal implants for local tissue oximetry. Sci. Adv. 5, eaaw0873 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  144. Zhang, Y. et al. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Sci. Adv. 5, eaaw5296 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Jia, Y. Y., Wang, Z. Y., Mirbozorgi, S. A. & Ghovanloo, M. A closed-loop wireless homecage for optogenetic stimulation experiments. In Proc. 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS) 426–429 (2015).

  146. Khalifa, A. et al. The Microbead: a 0.009 mm3 implantable wireless neural stimulator. IEEE Trans. Biomed. Circuits Syst. 13, 971–985 (2019).

    Article  PubMed  Google Scholar 

  147. Dagdeviren, C. et al. Flexible piezoelectric devices for gastrointestinal motility sensing. Nat. Biomed. Eng. 1, 807–817 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Dagdeviren, C. et al. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extrem. Mech. Lett. 9, 269–281 (2016).

    Article  Google Scholar 

  149. El Ichi-Ribault, S. et al. Remote wireless control of an enzymatic biofuel cell implanted in a rabbit for 2 months. Electrochim. Acta 269, 360–366 (2018).

    Article  CAS  Google Scholar 

  150. Dong, K. et al. Microbial fuel cell as power supply for implantable medical devices: a novel configuration design for simulating colonic environment. Biosens. Bioelectron. 41, 916–919 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Gonzalez-Solino, C. & Lorenzo, M. D. Enzymatic fuel cells: towards self-powered implantable and wearable diagnostics. Biosensors 8, 11 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  152. Rasmussen, M., Ritzmann, R. E., Lee, I., Pollack, A. J. & Scherson, D. An implantable biofuel cell for a live insect. J. Am. Chem. Soc. 134, 1458–1460 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Halamkova, L. et al. Implanted biofuel cell operating in a living snail. J. Am. Chem. Soc. 134, 5040–5043 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Castorena-Gonzalez, J. A. et al. Biofuel cell operating in vivo in rat. Electroanalysis 25, 1579–1584 (2013).

    Article  CAS  Google Scholar 

  155. Zebda, A. et al. Challenges for successful implantation of biofuel cells. Bioelectrochemistry 124, 57–72 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Yu, X. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473–479 (2019).

    Article  CAS  PubMed  Google Scholar 

  157. Merli, F. et al. Design, realization and measurements of a miniature antenna for implantable wireless communication systems. IEEE Trans. Antennas Propag. 59, 3544–3555 (2011).

    Article  Google Scholar 

  158. Park, S. I. et al. Ultraminiaturized photovoltaic and radio frequency powered optoelectronic systems for wireless optogenetics. J. Neural Eng. 12, 056002 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  159. Xie, Z., Avila, R., Huang, Y. & Rogers, J. A. Flexible and stretchable antennas for biointegrated electronics. Adv. Mater. 32, e1902767 (2019).

    Article  PubMed  Google Scholar 

  160. Dobkin, D. M. The RF in RFID: UHF RFID in Practice (Newnes, 2012).

  161. Ho, J. S. et al. Self-tracking energy transfer for neural stimulation in untethered mice. Phys. Rev. Appl. 4, 024001 (2015).

    Article  Google Scholar 

  162. Elder, J. A. & Cahill, D. F. (eds) Biological Effects of Radiofrequency Radiation (US Environmental Protection Agency, 1984).

  163. Marincic, A. S. Nikola Tesla and the wireless transmission of energy. IEEE Trans. Power Appar. Syst. 101, 4064–4068 (1982).

    Article  Google Scholar 

  164. Tesla, N. Apparatus for transmitting electrical energy. US Patent 1,119,732 (1914).

  165. Das Barman, S., Reza, A. W., Kumar, N., Karim, M. E. & Munir, A. Wireless powering by magnetic resonant coupling: recent trends in wireless power transfer system and its applications. Renew. Sust. Energ. Rev. 51, 1525–1552 (2015).

    Article  Google Scholar 

  166. Sallan, J., Villa, J. L., Llombart, A. & Sanz, J. F. Optimal design of ICPT systems applied to electric vehicle battery charge. IEEE Trans. Ind. Electron. 56, 2140–2149 (2009).

    Article  Google Scholar 

  167. Kalwar, K. A., Aamir, M. & Mekhilef, S. Inductively coupled power transfer (ICPT) for electric vehicle charging—a review. Renew. Sust. Energ. Rev. 47, 462–475 (2015).

    Article  Google Scholar 

  168. Fareq, M., Fitra, M., Irwanto, M., Hasan, S. & Arinal, M. Low wireless power transfer using inductive coupling for mobile phone charger. J. Phys. Conf. Ser. 495, 012019 (2014).

    Article  Google Scholar 

  169. Kurs, A. et al. Wireless power transfer via strongly coupled magnetic resonances. Science 317, 83–86 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. Ho, S. L., Wang, J. H., Fu, W. N. & Sun, M. G. A comparative study between novel witricity and traditional inductive magnetic coupling in wireless charging. IEEE Trans. Magn. 47, 1522–1525 (2011).

    Article  Google Scholar 

  171. Low, Z. N., Chinga, R. A., Tseng, R. & Lin, J. S. Design and test of a high-power high-efficiency loosely coupled planar wireless power transfer system. IEEE Trans. Ind. Electron. 56, 1801–1812 (2009).

    Article  Google Scholar 

  172. Zhang, Y. M., Zhao, Z. M. & Chen, K. N. Frequency decrease analysis of resonant wireless power transfer. IEEE Trans. Power Electron. 29, 1058–1063 (2014).

    Article  Google Scholar 

  173. Yoon, I. J. & Ling, H. Investigation of near-field wireless power transfer in the presence of lossy dielectric materials. IEEE Trans. Antennas Propag. 61, 482–488 (2013).

    Article  Google Scholar 

  174. Poon, A. S. Y., O’Driscoll, S. & Meng, T. H. Optimal frequency for wireless power transmission into dispersive tissue. IEEE Trans. Antennas Propag. 58, 1739–1750 (2010).

    Article  Google Scholar 

  175. Cecil, S. et al. Numerical assessment of specific absorption rate in the human body caused by NFC devices. In Proc. 2010 Second International Workshop on Near Field Communication 65–70 (IEEE, 2010).

  176. Chung, H. U. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363, eaau0780 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  177. Kim, J. et al. Miniaturized flexible electronic systems with wireless power and near-field communication capabilities. Adv. Funct. Mater. 25, 4761–4767 (2015).

    Article  CAS  Google Scholar 

  178. Lazaro, A., Villarino, R. & Girbau, D. A survey of NFC sensors based on energy harvesting for IoT applications. Sensors 18, 3746 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  179. Ray, T. R. et al. Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119, 5461–5533 (2019).

    Article  CAS  PubMed  Google Scholar 

  180. Hui, S. Y. R., Zhong, W. & Lee, C. K. A critical review of recent progress in mid-range wireless power transfer. IEEE Trans. Power Electron. 29, 4500–4511 (2014).

    Article  Google Scholar 

  181. Denisov, A. & Yeatman, E. Ultrasonic vs. inductive power delivery for miniature biomedical implants. In Proc. 2010 International Conference on Body Sensor Networks 84–89 (IEEE, 2010).

  182. Podgorski, K. & Ranganathan, G. Brain heating induced by near-infrared lasers during multiphoton microscopy. J. Neurophysiol. 116, 1012–1023 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  183. Mialhe, P., & Mouhamed, S. & Haydar, A. The solar cell output power dependence on the angle of incident radiation. Renew. Energ. 1, 519–521 (1991).

    Article  CAS  Google Scholar 

  184. Johnson, B. C. et al. StimDust: a 6.5 mm3, wireless ultrasonic peripheral nerve stimulator with 82% peak chip efficiency. In Proc. 2018 IEEE Custom Integrated Circuits Conference (CICC) 1–4 (IEEE, 2018).

  185. Piech, D. K. et al. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Nat. Biomed. Eng. 4, 207–222 (2020).

    Article  PubMed  Google Scholar 

  186. Basaeri, H., Christensen, D. B. & Roundy, S. A review of acoustic power transfer for bio-medical implants. Smart Mater. Struct. 25, 123001 (2016).

    Article  Google Scholar 

  187. Seo, D. et al. Ultrasonic beamforming system for interrogating multiple implantable sensors. In Proc. 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2673–2676 (IEEE, 2015).

  188. Information for Manufacturers Seeking Marketing Clearance of Diagnostic Ultrasound Systems and Transducers (US Food and Drug Administration, 2008).

  189. O'Brien, W. D. Jr. Ultrasound-biophysics mechanisms. Prog. Biophys. Mol. Biol. 93, 212–255 (2007).

    Article  PubMed  Google Scholar 

  190. Bushberg, J. T. & Boone, J. M. The Essential Physics of Medical Imaging (Lippincott Williams & Wilkins, 2011).

  191. Nelson, T. R., Fowlkes, J. B., Abramowicz, J. S. & Church, C. C. Ultrasound biosafety considerations for the practicing sonographer and sonologist. J. Ultrasound Med. 28, 139–150 (2009).

    Article  PubMed  Google Scholar 

  192. Samineni, V. K. et al. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. Pain 158, 2108–2116 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  193. Harvey, C. D., Collman, F., Dombeck, D. A. & Tank, D. W. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461, 941–946 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  194. Tye, K. M. et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471, 358–362 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  195. Yilmaz, G. & Dehollain, C. Wireless Power Transfer and Data Communication for Neural Implants. Case Study: Epilepsy Monitoring (Springer, 2017).

  196. Liang, T. & Yuan, Y. J. Wearable medical monitoring systems based on wireless networks: a review. IEEE Sens. J. 16, 8186–8199 (2016).

    Google Scholar 

  197. Zhang, Z. H., Russell, L. E., Packer, A. M., Gauld, O. M. & Hausser, M. Closed-loop all-optical interrogation of neural circuits in vivo. Nat. Methods 15, 1037–1040 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  198. Mirza, K. B., Golden, C. T., Nikolic, K. & Toumazou, C. Closed-loop implantable therapeutic neuromodulation systems based on neurochemical monitoring. Front. Neurosci. 13, 808 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  199. Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  200. Aravanis, A. M. et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4, S143–S156 (2007).

    Article  PubMed  Google Scholar 

  201. Shin, Y. et al. Characterization of fiber-optic light delivery and light-induced temperature changes in a rodent brain for precise optogenetic neuromodulation. Biomed. Opt. Express 7, 4450–4471 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  202. Wang, Z., Hu, M., Ai, X., Zhang, Z. & Xing, B. Near‐infrared manipulation of membrane ion channels via upconversion optogenetics. Adv. Biosyst. 3, e1800233 (2019).

    Article  PubMed  Google Scholar 

  203. Lin, J. Y., Knutsen, P. M., Muller, A., Kleinfeld, D. & Tsien, R. Y. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 16, 1499–1508 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  204. Arrenberg, A. B., Bene, F. D. & Baier, H. Optical control of zebrafish behavior with halorhodopsin. Proc. Natl Acad. Sci. USA 106, 17968–17973 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  205. Yarmolenko, P. S. et al. Thresholds for thermal damage to normal tissues: an update. Int. J. Hyperth. 27, 320–343 (2011).

    Article  Google Scholar 

  206. Goncalves, S. B. et al. LED optrode with integrated temperature sensing for optogenetics. Micromachines 9, 473 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  207. Khan, W. et al. Inductively coupled, mm-sized, single channel optical neuro-stimulator with intensity enhancer. Microsyst. Nanoeng. 5, 23 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  208. Kampasi, K. et al. Fiberless multicolor neural optoelectrode for in vivo circuit analysis. Sci. Rep. 6, 30961 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  209. Samineni, V. K. et al. Optogenetic silencing of nociceptive primary afferents reduces evoked and ongoing bladder pain. Sci. Rep. 7, 15865 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  210. Busskamp, V. & Roska, B. Optogenetic approaches to restoring visual function in retinitis pigmentosa. Curr. Opin. Neurobiol. 21, 942–946 (2011).

    Article  CAS  PubMed  Google Scholar 

  211. Busskamp, V., Picaud, S., Sahel, J. A. & Roska, B. Optogenetic therapy for retinitis pigmentosa. Gene. Ther. 19, 169–175 (2012).

    Article  CAS  PubMed  Google Scholar 

  212. Chow, B. Y. & Boyden, E. S. Optogenetics and translational medicine.Sci. Transl. Med. 5, 177ps175 (2013).

    Article  Google Scholar 

  213. Krook-Magnuson, E., Armstrong, C., Oijala, M. & Soltesz, I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat. Commun. 4, 1376 (2013).

    Article  PubMed  Google Scholar 

  214. Paz, J. T. et al. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat. Neurosci. 16, 64–70 (2013).

    Article  CAS  PubMed  Google Scholar 

  215. Nussinovitch, U. & Gepstein, L. Optogenetics for in vivo cardiac pacing and resynchronization therapies. Nat. Biotechnol. 33, 750–754 (2015).

    Article  CAS  PubMed  Google Scholar 

  216. Shao, J. et al. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Sci. Transl. Med. 9, eaal2298 (2017).

    Article  PubMed  Google Scholar 

  217. Bansal, A., Yang, F., Xi, T., Zhang, Y. & Ho, J. S. In vivo wireless photonic photodynamic therapy. Proc. Natl Acad. Sci. USA 115, 1469–1474 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  218. Kramer, R. H., Mourot, A. & Adesnik, H. Optogenetic pharmacology for control of native neuronal signaling proteins. Nat. Neurosci. 16, 816–823 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  219. Banghart, M. R. & Sabatini, B. L. Photoactivatable neuropeptides for spatiotemporally precise delivery of opioids in neural tissue. Neuron 73, 249–259 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  220. Jennings, J. H. et al. Distinct extended amygdala circuits for divergent motivational states. Nature 496, 224–228 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  221. Stamatakis, A. M. et al. A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron 80, 1039–1053 (2013).

    Article  CAS  PubMed  Google Scholar 

  222. McCall, J. G. et al. CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron 87, 605–620 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  223. McCall, J. G. et al. Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics. Nat. Protoc. 12, 219–237 (2017).

    Article  CAS  PubMed  Google Scholar 

  224. Creed, M., Pascoli, V. J. & Lüscher, C. Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology. Science 347, 659–664 (2015).

    Article  CAS  PubMed  Google Scholar 

  225. McCall, J. G. & Jeong, J. W. Minimally invasive probes for programmed microfluidic delivery of molecules in vivo. Curr. Opin. Neurobiol. 36, 78–85 (2017).

    CAS  Google Scholar 

  226. Noh, K. N. et al. Miniaturized, battery-free optofluidic systems with potential for wireless pharmacology and optogenetics. Small 14, 1702479 (2018).

    Article  Google Scholar 

  227. Shmuel, A., Augath, M., Oeltermann, A. & Logothetis, N. K. Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat. Neurosci. 9, 569–577 (2006).

    Article  CAS  PubMed  Google Scholar 

  228. Liu, J. N., Bu, W. & Shi, J. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem. Rev. 117, 6160–6224 (2017).

    Article  CAS  PubMed  Google Scholar 

  229. Hopf, H. W. & Rollins, M. D. Wounds: an overview of the role of oxygen. Antioxid. Redox Signal. 9, 1183–1192 (2007).

    Article  CAS  PubMed  Google Scholar 

  230. Neely, R. M., Piech, D. K., Santacruz, S. R., Maharbiz, M. M. & Carmena, J. M. Recent advances in neural dust: towards a neural interface platform. Curr. Opin. Neurobiol. 50, 64–71 (2018).

    Article  CAS  PubMed  Google Scholar 

  231. Ghanbari, M. M. et al. A sub-mm3 ultrasonic free-floating implant for multi-mote neural recording. IEEE J. Solid State Circuits 54, 3017–3030 (2019).

    Article  Google Scholar 

  232. Ghanbari, M. M. et al. A 0.8 mm3 ultrasonic implantable wireless neural recording system with linear AM backscattering. In Proc. 2019 IEEE International Solid-State Circuits Conference (ISSCC) 284–286 (2019).

  233. Kang, S. K., Koo, J., Lee, Y. K. & Rogers, J. A. Advanced materials and devices for bioresorbable electronics. Acc. Chem. Res. 51, 988–998 (2018).

    Article  CAS  PubMed  Google Scholar 

  234. Won, S. M. et al. Natural wax for transient electronics. Adv. Funct. Mater. 28, e1801819 (2018).

    Article  Google Scholar 

  235. Boutry, C. M. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019).

    Article  CAS  PubMed  Google Scholar 

  236. Koo, J. et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 24, 1830–1836 (2018).

    Article  CAS  PubMed  Google Scholar 

  237. Son, D. et al. Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano 9, 5937–5946 (2015).

    Article  CAS  PubMed  Google Scholar 

  238. Pashaie, R. et al. Closed-loop optogenetic brain interface. IEEE Trans. Biomed. Eng. 62, 2327–2337 (2015).

    Article  PubMed  Google Scholar 

  239. Jonsson, A. et al. Bioelectronic neural pixel: chemical stimulation and electrical sensing at the same site. Proc. Natl Acad. Sci. USA 113, 9440–9445 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  240. Capogrosso, M. et al. A brain–spine interface alleviating gait deficits after spinal cord injury in primates. Nature 539, 284–288 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  241. Zanos, S. Closed-loop neuromodulation in physiological and translational research. Cold Spring Harb. Perspect. Med. 9, a034314 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  242. Lo, M. C. & Widge, A. S. Closed-loop neuromodulation systems: next-generation treatments for psychiatric illness. Int. Rev. Psychiatry 29, 191–204 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

L.C. and P.G. acknowledge the support of the Improving Health TRIF Project. P.G. acknowledges the support of NIG-NINDS R01NS112535 and start-up funds from the Department of Biomedical Engineering at the University of Arizona. S.M.W. acknowledges the support of the MSIT (Ministry of Science and ICT), Korea, under the ICT Creative Consilience program (IITP-2020-0-01821), supervised by the IITP (Institute for Information & communications Technology Planning & Evaluation). S.M.W. acknowledges support by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP; Ministry of Science, ICT & Future Planning; grant no. 2020R1G1A1101267). S.M.W. acknowledges the support by Nano Material Technology Development Program (2020M3H4A1A03084600) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT of Korea.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing and revising the manuscript, and approved the final version.

Corresponding authors

Correspondence to Philipp Gutruf or John A. Rogers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Won, S.M., Cai, L., Gutruf, P. et al. Wireless and battery-free technologies for neuroengineering. Nat. Biomed. Eng 7, 405–423 (2023). https://doi.org/10.1038/s41551-021-00683-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41551-021-00683-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research